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Adaptive Filtering in Subbands
Using a Weighted Criterion

Marc de Courville and Pierre Duhame&enior Member, IEEE

Abstract—Transform-domain adaptive algorithms have been One such approach builds on a frequency domain imple-
proposed to reduce the eigenvalue spread of the matrix gov- mentation of the block LMS (BLMS) algorithm [2], [3], which
eming their convergence, thus improving the convergence rate. s o fast implementation using the discrete Fourier transform

However, a classical problem arises from the conflicting require- . .
ments between algorithm improvement requiring rather long (DFT), known as the fast BLMS algorithm. This serves as a

transforms and the need to keep the input/output delay as small basis for an improved version denoted the frequency domain
as possible, thus imposing short transforms. This dilemma has block LMS (FBLMS) algorithm, in which the DFT plays two
been alleviated by the so-called “short-block transform domain roles. First, the DFT is used for complexity reduction, and sec-
algTOhr.'thms but is still apparent. . . . ond, the availability of the energy of the input signal frequency
is paper proposes an adaptive algorithm compatible with . s . .
the use of rectangular orthogonal transforms (e.g., critically bins allows an individual normalization pf the adaptation steps
subsampled, lossless, perfect reconstruction filter banks), thus to be performed for convergence rate improvements.
allowing better tradeoffs between algorithm improvement, arith- The second approach (the transform domain adaptive filter
metic complexity, and input/output delay. (TDAF) [4], [5]) was originally proposed for convergence and

The method proposed here makes a direct connection between _ _. : :
the minimization of a specific weighted least squares criterion residual error improvements (the fast convolution property of

and the convergence rate of the corresponding stochastic gradient the orthogonal transform was not required). Compared with
algorithm. This method leads to improvements in the convergence the FBLMS algorithm, more flexibility in the choice of this
rate compared with both LMS and classical frequency domain transform is provided.
algorithms. In both cases, the orthogonal transform is used as a means
for decomposinghe input signalinto approximately decorre-
I. INTRODUCTION AND RELATED WORK lated components [5]-[7]. Moreover, in both approaches, the
. _variables that are explicitly adapted are the transform domain

DAPTIVE filtering is a widespread technique in " ) . .
many applications. For acoustic echo cancellatio‘f‘loeﬁ'c'ems of the adaptive filter. Therefore, in the initial

(AEC) hands-free telephony, very large adaptive ﬁltetxéersions of both algorithms, the transform size is strongly

are used in a system identification context, whereas Iferd to the adaptive filter length. This constraint has been

digital communications, adaptive filters perform the channgpPMewhat relaxed in further extensions such as the multidelay
distortion equalization. The present need for increasdlie” (MDF) [8] or the generalized MDF (GMDF) [9] but

throughput in new systems also results in an increase GnOt be totally removed.

the equalizer length. In these two areas, there is a demand COmmon characteristic of these schemes is that the

for efficient and low complexity algorithms. This paper builg&ransform is primarily applied to the adaptive filter inputs as a
on this approach. means for factorizing the input signal autocorrelation matrix.

e Classical Approaches Using a Square Orthogonal Filter Banks and Adaptive Filtering: The “Transform
Transform Domain” Approach

The least mean square (LMS) adaptive algorithm [1] is For the TDAF as well as for the FBLMS algorithm, a better

widely used since it provides both low complexity and robudiecorrelation of the_inpu_t signal is feasible by in_creasing the
performance. However, the relatively slow convergence isSguare transform size (i.e., the number of basis functions).
major drawback in several applications. This is the motivalowever, when the number of basis functions increases,
tion for searching for improved, yet simple, versions of thg0 does their length. Thus, a specific procedure is required
initial algorithm. Interestingly, many solutions make use dPr constraining accordingly the time domain adaptive filter

projections of the input signal on an orthogonal basis, allowi{§ rémain of constant size. Nevertheless, the use of longer

them to act “almost” separately on the various modes of th@sis functions without increasing their number would also
convergence. allow a_better decor.relatlon to be perfgrmed in a simpler and
more direct way, with maybe the additional advantages of a
M;”USC”Pt recf'\ée% 'Vt'ﬁfdz:gi;l?g fev'SEdFDecem_?ﬁf 19, 19_9t7- Tgiﬂtéduced I/O delay. Such longer, orthogonal, basis functions are
WOrK was supporte y the , Rennes, rrance. € associate editor . . -
coordinating the review of this paper and approving it for publication wagPO\”ded by lossless (LL) p_e_rfeCt reconstruction (PR) filter
Prof. M. H. Er. banks (FB’s) [10]; the coefficients of an LL PR FB can be
M. de Courville was with Dpartement Signal, ENST, Paris, France. He |ﬁ1terpreted as a nonsquare matrlx Of Orthonormal vectors.
now with Motorola CRM, Paris, France. Indeed. it i Il Kk h LL PR FB hi
P. Duhamel is with Bpartement Signal, ENST, Paris, France. _n. eed, It is W.e nown that can achieve
Publisher Item Identifier S 1053-587X(98)05243-X. efficient decorrelation, even for a small number of components

1053-587X/98$10.00] 1998 IEEE



2360 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998

[11]. Since the discrete wavelet transform (DWT) can badaptive filter (which are located at the edges of the subbands).
implemented using LL PR FB, the DWT also belongs to thi&nother approach, which was proposed in [26], consists of
category and can be considered here as a special case. modifying the structure of the filter bank by introducing non-
A straightforward use of such basis functions applied to tltEecimated auxiliary subbands. Finally, the use of oversampled
input signal as done in a transform domain adaptive scheffiiteer banks was recommended in [20] and [21] in order to
would raise the same issues as the one met in [12]-[14]; sodexrease the aliasing effect. In any of the above methods, it
kind of periodization of the wavelet transform structure oappears that a noticeable gain in computational complexity
of the input signal has to be performed in order to keep tldways comes with a degradation of the convergence properties
orthogonality property on a finite length window [15], [16]. of the subband adaptive process. Thus, the goal seems to be
e Proposed Algorithm Using a Subband Decomposition to try to offset this loss while increasing the computational
Instead of working directly on the input signal, in this seceomplexity by the smallest possible amount.
tion, a projection othe modeling erroon an orthogonal basis One explanation of the problems encountered with these
[17] is considered. Indeed, intuitively, separating the err@pproaches comes from extending the use of subband de-
signal driving the convergence into decorrelated componegmposition to purposes other than convergence improvement:
should bring an improvement of convergence rate, as is tf&stconvolution implementation (which can only be achieved
case when the input signal is decomposed. approximately in this way). In order to avoid this problem,
Focusing on the previous considerations, this paper proposes method separates the convergence improvement (which is
a new subband adaptive algorithm: the weighted subbanbitained by a subband decomposition of the error) from the
adaptive filter (WSAF). The main advantages of our algorithmeduction in complexity achieved by any fast algorithm since
are twofold. First, the required orthogonality is kept withoueur method is basically of a block type. This is explained
changing the classical filter bank computational structure, aimd Section Ill, which presents the new multiband adaptive
second, it provides full flexibility in the choice of the lengthalgorithm.
of the filter bank. In addition, this approach shows some links ¢ Scope of the Paper
betweenappropriately weightedeast squares minimization Section Il describes the notation and introduces the new
and the improvement in convergence of the resulting adaptieighted criterion to be minimized. The proposed algorithm

filter. (the WSAF) is presented in Section Ill as well as an appro-
e Other Relevant Approaches Using a Subband Decom- priate choice of the weights in the stationary case. The WSAF
position convergence behavior is studied in Section IV from both the

Another set of papers [18]-[21] deals with subband adaptigenvergence rate and residual error point of view. Further
filtering in the context of AEC, mainly in order to allow com-refinements that will improve the convergence of the WSAF
putational savings. In these schemes, the input and referepee provided in Section V, including a time-varying strategy
signals are decomposed into subbands and decimated, andah&e weights and the adaptation step size for a nonstationary
adaptation is performed in each subband. Thus, transposifpgut signal.
the adaptive filtering structure behind the analysis filter bank The use of a decimated FB forces our algorithm to be of
turns the problem of adapting a single long FIR filter into th& block type. Just like in all “improved” block algorithms,
of adapting several short filters operating at a lower rate [18is has two opposing effects. On the one hand, increasing

Since the frequency response of the filters in the bank dhe block size improves the algorithm behavior, but on the
overlapping (e.g. QMF banks), when critical subsampling ®her, this simultaneously decreases the stability region of
used [22], [23], the output of the FB contains undesirablbe stepsizes. Hence, in order to provide fair comparisons,
aliasing components that impair the adaptation ability &ection VI compares the TDAF and FBLMS algorithms with
the algorithm. These aliasing components can be cancelel WSAF using the same block sizes. This requires the
by introducing a full matrix of cross filters between thelescription of small block realizations of the FBLMS and
analysis and synthesis bank [11], [24]. When doing so, a tined DAF, which is detailed in Section VI-A. Computational
domain filtering equation is exactly implemented in subbandgomplexities are discussed in Section VI-B. Section VI-C
However, the equivalence between filtering in the time domaiimally compares convergence behaviors by simulation.
and in the subband domain imposes many connections between
these cross filters. Therefore, not all the filters of this polyphase
matrix should be adapted independently if maximum conver-
gence rate is desired. This is difficult to take into account while The whole study is undertaken in the context of adaptive
using a stochastic gradient algorithm. identification. All variables are assumed to be of complex

An approximate approach has been proposed in [18] awndlue, which corresponds to the most general case, and allows
[25], where only adjacent filters in the bank were supposedfar easy use in a channel equalization context.
overlap in order to reduce the complexity. This correspondsin the following, let(-)* be the operator denoting transpo-
to the polyphase matrix of subband adaptive filters beirgition, let(-)* be conjugation, and I€t)” = ((-)*)*, whereas
tridiagonal. Diag(.X ) stands for the diagonal matrix whose diagonal el-

Other authors [19] avoid this problem by using feweements are the components of vecfor I, is the identity
overlapping filter banks (in the frequency domain). Howevematrix of dimensionl.. ® indicates the component by compo-
this tends to introduce spectral holes in the output signal of thent (Schur) product of two vectors. The FIR adaptive filter

Il. NOTATION CRITERION
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decomposed iV subbands(c®, --,er 1)tk > 0 by H,
wy " (n) which is the analysis bank.

If the input signal is ergodic and wide sense stationary,
the orthogonality property of the LL PR FB ensures that both
formulations of the block criterion below are equivalent (where
has length. In this paper, data are filtered by the conjugate ¢f(.) denotes mathematical expectation)
filter W for a more convenient expression of the convergence
equations. Notations,, and d,, denote the complex valued Block Nl ) =,
input and reference signal, respectively, as depicted in Fig. 1. J =& Z lernnl™ | =€ Z lenl™ ] (@)

N is the block size (number of computations that are grouped =0
together, which is equal to the number of subbands), whereas course, minimizing both versions of the criterion would
the orthogonal filter bank is assumed to be of lengtly for  resultin the same algorithm, i.e., a BLMS algorithm. However,
simplicity. Uppercase letters stand for vectors or matrices @bnsider now the minimization of the following weighted
appropriate sizes as in mean square criterion, where the quadratic errors in each
subband are weighted by some constants

Fig. 2. General transform domain LMS adaptive digital filter.

n=0

Xo = (2n, Tne1, o, TnkN41)
N-1
X =(Xn, X1, ,Xn7L+1)KN;<L JWSAF _ Z NE(|EL ). )
W, :(wo(n)vwl(n)v T '7wL—1(n)) =0
— oo - AT t . .
Dy = (dn, dn—t, ’d"*“\‘“)t Here, the size of the transform (the number of subbands) is
E, =(en,en—1," ", en—kN41)" = Dn — X W, independent of the filter length and depends only on the block

) o o _ size. Further, since this approach relies on orthogonality, and

The row vector of theith analysis filter cpefﬂments iS since orthogonality of the LL PR FB requires the presence
denoted byH;, where all of them are gathered in &hx KN ot 5 sybsampling byV, this method is restricted to block
matrix H = (Hp, -, Hy_1)vx - Note that whenk' = gygrithms. Although it is described in the context of LL PR
1, H reduces to an orthonormal transform, whereas largeg ihis method still holds for any orthogonal transform (as a
values of K are able to increase the decorrelation propertlgﬁecim case of LL PR FB in whick = 1).
of the transform without increasing the number of subbands.
The efficiency of this procedure will be apparent in Table |
in Section IV-A.

Suppose now that the errefyi,,0 <n < N—-1,k>0 Assume that the set of; is constant. An LMS-like adap-
has been passed through a LL PR FB (cf., Fig. 3), thus beitadive minimization of the criterion (2) is easily obtained by

Ill. THE PROPOSEDALGORITHM
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Fig. 5. Multirate adaptive filter scheme fdr = AMN.

computing its instantaneous gradient estimatgiV) relative A. Computational Structure

to W Equation (8) defines the generic version of the WSAF. How-

aJ, N1 /g \* ever, cgreful considerat.ion of (6) shows that some redyndancy
W('*‘HI)N = szN—NW =Win—np Z 62(81/;*) (3) exists in the computations wheh = MN, M € N (i.e.,

i=0 the adaptive filter is larger than the number of subbands).
This paragraph proposes a reduced complexity implementation
scheme for the weight update.
If w;, (0<p<N-10<q< M-1) denotes the
d (N3] coefficient of W* [i.e., gth coefficient of thepth
polyphase component 8¥*(z)], we can observe that

wherey is the positive scalar step size controlling the conver
gence of the adaptive process.

In order to calculate each partial derivative of the subband
error, define

d% :Hi<DkN ; 9cj, i i 9¢i_y
X =(z -, =H,X, 4 ax " TEN—p— N = "®(k—1)N—p—gN — 7+ -
n =(@n, T 1) (4) ow' p—(g+1) (k—1)N-p—g dw;,
where X! containsL nondecimated outputs of thith analysis ()

filter H; excited byz,, andd;, is theith subband decompo-
sition of the reference signal by the analysis bank.
This is also denoted by, = H,E;n and

Thus, the full vector(dei, /OW*)o<i<n—1 iS obtained by
collecting the different output vectors generated by the analysis
filter bank whose input igz,,) in which the subsampler has

Ewn = Dpn — Xn Wiy (5) been regoved. The resulting_ scheme is provided on Fig. 5,
where A~ represents the weighting of each subband by the
such thate!, = di — X', Wy Thus corresponding facton,;.
aet, . i i i
aWk* =—Xi,. (6) B. Appropriate Choice of the Weights

At this point, it is not clear how the use of weighted
Hence, the tap update (3) reads mean square errors instead of regular ones could improve the
adaptive algorithm convergence rate. In order to understand

" " i o this mechanism, it is first necessary to rewrite (7) in terms
Witnyny = Wiw + Z AiXjov el (7) of the contributions of each subband error to the total update
=0 increment
or, in a more compact form (matrix notation) N_1
Wigon =Win + nAWiy Wiw = Z: Win
AWy = (HXn )" A H By Winiiyn =Win + Xyl (10)
Exny =Dy — Xn Wiy (8) . . ' :
Consider the ideal case where the filter bank is composéd of
where A=2 = Diag(\o,---,Ax_1) is the diagonal matrix of ideal Nyquist filters that are adjacent and do not overlap (i.e.,
the weightsA,. K tends to infinity K’ — +oc0). Under this assumption, as the
The actual algorithm described by (8) is denoted as tilspectra ofX? are nonoverlapping, each teIZkI;lX,;}e,; of the
WSAF. sum in (7) deals with adapting a different pWF N of the

Note that wherk = 1 (i.e., H is an orthonormal transform) spectrum ofW (cf., Fig. 4). Thus, the algorithm minimizes
and \; = 1 V4, the proposed algorithm reduces exactly to thine quadratic errors in each subband independently with a
BLMS algorithm. different step size for each of them. Without any drawback,
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our algorithm is merely equivalent several LMS algorithms This apparently contradicts the expected good convergence

working separatelyin each subband behavior of the WSAF. The following subsection shows that
Furthermore, it is a well-known result [27] that undeit is only an apparent contradiction.

white noise input, the fastest convergence rate of the LMSLet W, be the L-tap filter to be identified (of same length

algorithm is achieved for an adaptive step size given lkasW*). The tap-error vector of the WSABHV,  is defined

Wi = pA = 1/(La§7-), where agi denotes the variance ofas é6Wixy = Wiy — W,. Suppose that the reference signal

the input signalz?, in the present situation). The normalizedi, is the sum of the true linear filtering af, by W, and of

LMS algorithm is usually defined with reference to this valua zero mean white Gaussian nofsg In vector notation, we

of the adaptation step. Since the parametesd \; need to haveD,, = X,,W* + B,,, whereB,, = (b, -, bu—rn+1)"-

be tuned, we shall also choose so that under white noise Under this assumption, the error can be expresséf as=

input, the fastest convergence occurs independently in edohy — Aun Wiy = Binv — XundWi,, and the WSAF
subband when, = 1. Such a choice corresponds to adaptation equation reads
A\ = 1/(Lo). (12) Wiy =L — n(HXn) AT H G N6Wily
In practice, this set of weights can be used for parameteriz- + u(H X)) A2 H By 12)

mg_the WSAF but with a smalles: » < 1 in order to obtain Under the usual so-called “independence” assumptions (i.e.,

{RE adaptive filter taps are uncorrelated from the input samples

_Int(_erestlngly, _th_e _ch0|ce of th? set Oti_ determ_mes the z,, andz,, is not correlated t@,,), the above equation yields
criterion to be minimized. Thus, this establishes a link between

the speeding up of the convergence rate of the proposet{6W 1)) = €[l — w(HX )T ATPH XN E(6W ).
algorithm and the formal statement of the criterion to be (13)
minimized.

This contrasts with classical frequency-domain or The convergence rate of the WSAF is thus driven by the
transform-domain adaptive approaches. Despite intuitiogigenvalues of matrixl;, — u(HXn)" A=2HX;n, which
these do not minimize the error in each frequency bamsthould be close to zero for faster convergence. Obviously,
independently: instead of adapting each adaptive filtthis could be feasible by some tuning efif the eigenvalue
coefficient in the transform domain with respect to thepread of matrix}/ = E[(HXn)"A=2HX,N] is close to
full time domain error generated as any classical transforln It can be shown in a straightforward way thaf =
domain approach, the WSAF rather adapts each part of Hg¢H Xy )TA 2HXn] = T gt MiRxixi.
spectrum ofW* according to the error produced in the same If the analysis bank is composed of perfect Nyquist brick
frequency subband (cf., Fig. 4). filters (i.e., K — +oc0), each individual matrixRx:x: is

Moreover, in the context of AEC, the WSAF enablesingular. However, since the filters in the bank are nonover-
perceptual considerations to be taken into account. Inde&fping and adjacent, a given eigenvalue will not be zero in
each subband error in the criterion can be weighted accordimsubbands. Therefore, the summation of all matriggs
the sensitivity of the ear applicable in that subband so that largeighted by; is not singular, and for each matriy: y:,
errors can be tolerated without affecting the subjective qualitye weightA; plays the role of a normalization coefficient such
of the AEC. In an extreme case, if no adaptation is requirdédat the eigenvalue spread of the whole summation is reduced.
in some subbands, this can also result in complexity savingsThis somewhat intuitive development has been checked
in the adaptation process by either including some decisibyi simulation by computing the eigenvalue spread of the
functions to determine when to switch off the adaptation @natrices determining the convergence rate of the algorithm
preselecting the relevant subbands according to a percepinahe case of an autoregressive matrix of an order 2 (AR2)
knowledge. highly correlated input signal. This signal is obtained by

filtering white Gaussian noise by the inverse @6{z) =
IV. ALGORITHM BEHAVIOR 1— 1621 + 0.81z 2 (Wlth zeroes such thaltZZ| = 09)

The WSAF with weights\; = 1/(Lo2,) and increasing filter

Without trying to determine precisely the adaptive bq— ngths in the bank is compared with the LMS algorithm
havior, this subsection intends to provide a more accur e number of subbands is set 16 — 10. and the filter '

understanding of the underlying mechanism, allowing a fasﬁ%r be modeled hag = 20 taps (as does the adaptive filter).
convergence for the WASF. The length of the filters in the bank are Z& = 1) for
a discrete cosine transforfDCT;y ), 40 (K = 2) for a
modulated lapped transform (MLT), and 8% = 4) for an

Let Rxixi = S(XjLXjLH) denote the sizé. autocorrelation extended lapped transform (ELT) [10], respectively. We can
matrix of the nonsubsampled outputs of thté filter H,. observe in Table | that the eigenvalue spread reduces when
Since the filters in the bank are selectivé, has a narrow the filter lengths in the bank increase. In faEf;?)l NRxixi
spectrum. ThusRx x: is expected to be badly conditionedhas a much smaller condition number th&g x; it has been
If the WSAF were to be strictly considered as several LM&duced from 1400 to 2.2. This explains the better convergence
algorithms working independently in each subband, we woubghavior of the WSAF compared with the LMS algorithm, as
expect a slow convergence rate for each LMS algorithmiell as the influence of the weights (in the definition of the

A. Convergence Rate
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TABLE | With all previous assumptions taken into account, relations
EIGENVALUE SPREAD OF THE MATRIX DETERMINING THE CONVERGENCE RATE 9 9
O'b = O'bi
algorithm eigenvalue spread: %\‘::: L—71
LMS ou WSAF(Iy) 1.4 x 10° HA—2 _ 2
WSAF(DCTv) K =1 51.2 El(Hern) A Hen] = Z Aidzi
WSAF(MLT) K =2 27 i=0
WSAF(ELT) K =4 22 L—1
E(HB)T AunHBin] =LY Mopio:,
1=0
criterion) on the convergence rate of the associated stochastic . L-1 ) o o
gradient algorithm. El(Hexn)" AxnHern] =L Z N[00
1=0
2y — 12
B. Residual Error hold. At convergences(||6Wg4nyn|I9) = E(I6Wrn||*), and

(15) vyields
It is well known that the misadjustment of LMS-like algo-

rithms depends on the adaptation step and on the amount of
noise found in the reference signal. If the noise is white, and
if the input signal is not, the relative noise level is different o ) o
in each subband. Since, in some sense, the WSAF behaveRS it IS, this equation is not very tractable. However, due
like several LMS algorithms running in parallel, it is thereford® the assumption of an ideal filter bank, it is reasonable to
suitable to have different tunings of the adaptation step in eag$PPOSe that the part of the residual error in #tesubband
subband. It turns out, as shown below, that a good choice f6i:) is due only to the signals;, and;, in this same subband.

-1
2
Z L)\iu[u/\iaii(aiafi + o) — zrfﬁ} =0. (16)

1=0

the weights makes use of the SNR in each subband. In this case, each individual term of the sum (16) is zero, and
First, decompose the errdi, as the sum of the modeling W& have

errore, = (eg, -, en—ixn—1)" plus the noise. Sinc®,, = 2 2 N 2 i< N _

B, + X, W*, we haves,, = X, §W>* yielding [cf., (8)] et Lo?, pAiai | = pioy,  0sis N =1 (17)

which can be rewritten in terms of the modeling error variances
W(*k+1)1\f:WI:A’+N(HXkAf)HA_2H(BkA’ — XN OWiN). ng- = (u)\f,agi/_@/l.zaii) — pAia;). _ _ _ _
(14) In AEC applications, the adaptive filter is run in order to
subtract an estimate of the echo (the amount of signal in the
microphone that is a linear filtering of the loudspeaker signal)

All signals z,,, b,,d,,, ande,, are assumed to be ergodic androm the microphone signal. The error signal is, thus, what
wide sense stationary. The filters in the bank are once agiirsent back to the distant speaker. Reasonable specifications
supposed to be nonoverlapping perfect Nyquist filters. Congé€ given in terms of echo return loss enhancement (ERLE),
quently, the subband outputs are uncorrelated. In the followinghich should be larger than some fixed quantity (say 20 dB).
the notationd;, (signald with superscript and indexed byk) In terms of the variables of the adaptive algorithm, this
is used for theith subband sample associated with bldgk corresponds to the requirement that the asymptotic variance
resulting from decomposition af, by H. Let us calculate the Of the total misadjustment should petimes smaller than that
expectation of the squared norm &)y (|[6W,|? = of the total echo. o

W 6W,,). Under the assumption that, Lb,, andb,, Le, (L The flexibility of the WSAF allows the possibility of

stands for “is uncorrelated with"and designating by, the different requirements to be set in each subband. The tunings
matrix A, = A2HX, X7 HTA=2, we have such thats?, in each subband is asymptotically smaller than

the variance of the actual echd; in the same subband (say,
p; times lower) can now be derived. This condition reads

02 <picy, 0<i<N-1 (18)

ENWaan) N I7) =L (Wi 1) +1>E[(H Br) " ArnH Biw]

+ 12 E[(Hern)? Apn Hern) 4 Ning this | — _ onbf
2 (Her VA2 Her ], 15) and, applying this inequality in the previous expression
nE((Hern) e (15) results inp;o2, > (pXiof /(2/Lo2) — phia;).
An upper bound on the adaptation step sizes= A; can
It is well known that&(|e|?|=i _,|*) < o%02.. Hence, thus be obtained from the above equation

define a; > 0 as &(|e,||«}_x|*) = aicZo2,. The case 20 .
a; = 1 corresponds to the classical (but unrealistic unlesg’ = pdi < o2\’ 0<i<N—-1. (19)
the input is white noise) hypothesis that the modeling esfor Lo?, <aipi + 0—3)
is uncorrelated with the input signal, whereas smaller values &
a; < 1 represent larger correlations. The following are a few comments on (19).
Since, in this section, the filters of the bank are assumed to When the requirement described in (18) is loose (jpg.,
be ideal, for any{s,j} i # j, we havee}, L e,2% L 7, is large), the adaptation step sizes tend to the regular ones

andzi L &. given in the previous subsection.
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+ The smaller the SNR?, /o2, the smaller the adaptation TABLE I
step size should be in order to meet the requirement. COMPLEXITY OF THE TRANSFORMS USED IN THE PAPER
» With excellent SNR, the adaptation steps (19) reduce alsS0™ C éransform R multiplications R additions
to the regular ones DFT(L) Llog, L—3L+4 | 3Llog, L—3L+4
DCT(L) Llog, L +2 3Llog, L — 2L + 2
pi =phi <2/(Loa;)  0<i<L-—1. (20) DCTv (L) Llogy L + 2L 3Llog, L
ELTnxxn (K even){N(K +logy, N +3) | N(K + 3log, N + 1)

e The upper bound for the step sizes still holds when the
noise is not assumed to be uncorrelated (white). The only ) . . o ‘
difference in this case is thai2 are not equal. This is and &7 (k) the estimated variances of signalf;, bi, and d,
obtained under the assumption of perfect Nyquist filt&furing blockk, the weights\; = = Diag[Ao(k), - - -, Ay—1(k)]
banks. are given by [cf., (19)]Ni(k) = (2p:i/L52% (k)(aipi +
- This strategy can be applied in a straightforward way &7 (£)/63:(k)))) 0 < i < N — 1 and updated by
the BLMS or the LMS algorithm as a particular case of
the WSAF, where all; are equal:; = 1/02._ . 6% (k4+1) =fo%.(k)
. Th|s_r_10rm:;1I|zat|on 2a|ms at a given echo rejection level +(1— XK whereX e {d', b, '}
requiring o2, < p;o3. 22)
« The use of these new step-size formulas can only result (
in decreasing the adaptation step size, which cannot lead
to instability problems. leading to the same adaptive equation ¥gf as (21).

This result shows another advantage brought by the al-When a poor SNR occurs, the classical adaptation rule
gorithm: Each adaptation step size = pA; can be tuned results in a somewhat erratic variation of the adaptive filter
according to the signal variance and noise variance in the sal@@s since the filter is driven mainly by noise. This can generate
subband. This technique is of great interest when nonstationt#ge modeling errors that are even larger than the actual echo.
signals such as speech are processed. This possibility is furthe@ adaptive filter must then converge again when the SNR
worked out in the next subsection. Moreover, such differefifproves. Of course, this phenomenon does not happen in

requirementsp;) can be chosen according to the perceptugfationary situations where the adaptation step size is tuned
importance of each subband. in order to obtain a given residual error. However, when the

input signal variance varies a lot, the SNR also exhibits large
variations and often reaches values for which the adaptation
step is too large and temporarily amplifies the echo.

This section proposes two possible refinements (by noThe time-varying strategy provided in this section allows the
means compulsory) that can be applied to the WSAF or aggrrection of this problem, even in the case of nonstationary
other adaptive algorithm in order to improve the convergenggjnals. Indeed, if the SNR is low in a subband, the weight
behavior. in that specific subband is also small. Thus, the adaptation

process is slowed down in that very subband until a good SNR
A. A Time-Varying Strategy for the Weights and Step Size is encountered. It is illustrated in the simulations Section VI-

Practical evaluation of all proposed expressions for tife that in a context of AEC for nonstationary signals such as
weights \; requires the computation of an average varian&P€ech, time variable weights (k) noticeably improve the
estimate of some signals. Moreover, since the signals (as wkinvergence behavior of the WSAF in a noticeable manner.
as the system to be identified) can be nonstationary, large
variations of the variance of the observed signals can Be Faster Update: The Refreshed WSAF

expected. More than a 60-dB dynamic range is common forAn improvement concerning the convergence rate of the

speech. This justifies the need for a time-varying strategy \WSAF can be obtained at the cost of additional computations
the calculation of the WSAF weights;, as proposed below. i/ith the same technique as used in the GMDF algorithm

V. FURTHER REFINEMENTS

Classically, as for the normalized version of the LM 9]. Indeed, the error samples present in the FB filters (for

g.lgggrhmth[zsﬂ’o;ﬂ.nexzz:(:?;al .;ar'saerécelz;v?r::gzge OIh'tsh omputing the decomposition of the error) can be re-evaluated
'ghat wi N9 Nt is used. ! » S at each update of the adaptive filter ff > 1). In fact, if the

: . . 5
'E\)rigozl)r\]ts o tie re():l;;s;&n for_t?i;'ft(ales;glgf [Offlét’ ; filter size of the FB is large and if a big error is made at a
(H)g( ?5*] ;Nh’\‘e’;éX argtche_weikhts o osec?in (ﬁ\) an articular moment, it will influence the FB output for a long
.0 <M\f <’ Lis the ;orgetting fact%r Inpcht case. the u,pdatime' Thus, in order.to mi_nimize this problem, it is ppssible to
e&uzﬁion_of the WSAFE becomes : ' Fecompute at each iteration the elements present in the delay
line of the filters as if they had resulted from the output of
Wity = Wi + u(HX ) AP HEy.  (21) Fhe Ias_t updated adaptive filter. A dra_\wback of this method
is the increase of the overall complexity. On the other hand,
The same technique can be applied for the proposas illustrated later, it improves the convergence rate. In the
normalization of Section IV-B, aiming at ensuring a certaifollowing, this algorithm is denoted as the “refreshed WSAF"
amount of echo rejection level. Denoting By, (k),6;. (k) (RWSAF).
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TABLE Il
COMPLEXITY OF VARIOUS ELEMENTARY TASKS
C task R multiplications R additions
modulus 2 1
pe complex multiplication 3 3
ac complex addition - 2
pr real multiplication - 1
ag real addition 1 -
ure a real times a complex 2 -
NIL C(N,L) 4+ 3L — 6N + 2L10g, (2N) + 2N logy(2N) | 4+ % — 6N + 6L log, (2N) + 6N log,(2N)
LIN C(N,L) —9N + 8 1 4N log,(2L) —2L - 7N + 8Y + 19N log,(2L)
Ly, update of A*2 4L 2L
D, division by A? 2L _
Ar update of W - 2L
VI. EVALUATION AND COMPARISON e Small Block Algorithms
WITH OTHER ALGORITHMS Existing versions of small block LMS algorithms can be
found in [8]. The corresponding scheme, which is called the
A. The Set of Algorithms to Be Compared multidelay block frequency adaptive filter (MDFAF), allows

the use of smaller blocks, hence introducing a smaller
ay in the processing. Due to application requirements, such
constraint is a prerequisite for time varying systems such as
coustic path modeling.

The method used in [8] consists of dividing the time domain

esponse of the adaptive filter in several portions of same
ngth N (the block size), each one being adapted by the
MS algorithm with the global time domain block error. Any

Since the WSAF uses a critically subsampled analysis filtg:f'r
bank, this algorithm is obviously bound to be of block type.el
However, one of the major drawbacks of block algorithm
(at least in their initial version) is avoided since the blocR
size is fully independent of the filter length. This is all the
more important in AEC since we are working with very larg
filters (typically 1000 taps) and that the application limits th

processing delay to at most 128 samples. Thus, working wi ) ) .
ast convolution scheme [e.g., using fast Fourier transforms

(relatively) small blocks is a requirement. . )
Moreover, a fair algorithm evaluation requires the compap—:FT s)] can thus be used to perform the convolution for each

ison of similar versions of the various algorithms of intere&Ubﬁlter as well as the correlations required for the update of

frequency domain block LMS (FBLMS), transform doma-ncoefficients. . . .
[requency ! ( ) I The same technique can readily be applied to the FBLMS

adaptive filter (TDAF)]. Plenty of possibilities exist: small igprithm. resulting in the small block (SB) FBLMS (SBF-

blocks, faster adaptation rate, etc. For completeness, som% ; . : )
the corresponding versions are recalled below. S) algorithm (which is a simpler version of the GMDF

9)).
o Block TDAF [ . .
Classically, in the TDAF, the update of the adaptive filter When applied to the BTDAF, the same procedure results in

is performed at the sample rate. Thus, in order to compare E‘S smgll block BTDAF (SBBTDAF). Sections VI-C and lV.'
WSAF with various orthogonal transforms to the classical al- prowdg an evaluation qf the performance and the required
gorithms, a block version of the TDAF has to be derived. Th%omplexny of these algorithms compared to the WSAF.

is simply performed by constraining the taps of the adaptive

filter to be updated once p&¥ samples and minimizing the B. Arithmetic Complexity and Processing Delay

common block criterion/Bleck [cf. (1)].

The classical ti d . q . ¢ the TDA A first criterion for algorithm comparison is arithmetic
(v _e z)a??ca time domain update equation of the gomplexity, which allows the evaluation of one of the terms

of the complexity/efficiency tradeoff. The complexity is here
Woy1 =W, + qulAZQTLXnGZ, evaluated |n terms of the number of _real multiplicati_ons and
e —d —wWHx 23) of real adQ|t|onS(uR and og). All _algorlthms are considered -
e no under their complex valued versions (the more general one is
where: denotes the positive scalar step size, Ajdestimates usable in an equalization context). In an AEC context, where
the diagonal matrix of the average variance of the componegtk variables are real, the given values will thus need to be
of T7.X,.. When transformed into a block algorithm, thisgPproximately halved.

results in This complexity is conveniently expressed in terms of
T . basic operations (transforms, filters, and correlations), and we
Wognyy =Win + NTL A nTL N By first recall the corresponding number of multiplications and
Ewy =Din — Xy Wiy 24) additions.
M M PN TTRA (24) Basic Operators: In the following ac, i1¢c, and uge denote
for the block TDAF (BTDAF). the complexity of the complex addition, multiplication, and

Small block versions are outlined below by similarityof a real times a complex, respectively. Based on the tech-
with already available versions of small block FDLMShiques described in [28], the computational cost of these basic
(SBFDLMS) algorithms. operations is evaluated in Table IlI.
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Transforms: Table 11 gives the arithmetic complexity of the X
complex and real transforms used in the simulations, as given L L
in [10]. In the following and for the simulations, the filter -
bank H used as an orthogonal transform when the number of ‘Y I L LIN case
analysis filters taps is larger than the number of subbands, % :
an ELT [10]. ‘Y i L

More generally,Hxxn Stands for the arithmetic com-
plexity needed to compute one output vector of &rband il

YiiN

filter bank with filters of sizek NV for a given input sequence. NI “iy“ N Z NI|L case
HI . v represents the product complexity B by a KN — =0 <= xx
components vector. X “T Yot
In the special case, whe#¢ is an ELT, the output vector of o
H*Y can be calculated very efficiently usingl¥CT ;v [10]. vy

The corresponding complexity is , N _
. " Fig. 6. Decomposition of the product of a block Hankel matrix by a vector
complexity ELT 5 n» n> K even) = DCTy(N) + K Nuge.  for fast computation.

(25)
Correlation and Convolution:In order to evaluate the com- . Adaptl\{e Algorithms:The complexity of the adaptive algo- .
thms using an orthogonal transform can often be reduced in

. . . e |
plexity of the various algorithms, it is assumed that fast conv&I . . )
lution and correlation is achieved using the fast Fourier tran 1 case _Of the PFT' Tht_erefore, part_|cular attention will be
id to this special case in the following.

form (FFT)-based algorithms. Both operations have the sam@

costC(N, L), whereC(N, L) stands for the complexity of the f Smcef mos.ttionsmered _alg?r:nhm_s ?r:e of blolck type, a utseful
fast product of al.-dimension vectol” by a N x L, not nec- igure of merit for comparing them is the complexfigr inpu

. - sample
essarily square matrix’ made of Hankel blocks (each of the . . . : .
ysq ( The arithmetic complexity of each algorithm per input

form (z;..),. . : XY. Two cases have to be considered: . ) S
($Z+J)(Z’J)€N?V—l) sample in terms of the elementary tasks detailed above is given

* If LIN (i.e., the remainder of the integer division 8f i, Taple v (7, denotes the complexity of a square transform
by L is zero), the matrix is divided ”(N/L)L X L of dimensionL). The corresponding analytical expressions are
square Hankel submatrices, as depicted in Fig. 6. Thitajled in Table V, whereas Table VI gathers the numerical
the result of the multiplication is the concatenation of5jues of these formulae for ah — 1024 tap adaptive filter:
several products of these Hankel matrices by the SarRe— 32 and K = 2. In these tables, for plain block transform
original vector. This can be achieved in a very efficietiomain adaptive filters, the block length is assumed to be
way with an overlap save (OLS) [29], [30] technique andqya to the filter sizé L), whereas in the WSAF case, the
results in the following: Foi|N,C(N, L) = ((N/L) +  plock length is the number of subban(®). Note that, for
1) DFTc(2L) + 2N pic. _ o simplicity, the complexity of the RWSAF is given only in the

* If V|L, the vector and the matrix are split intd/N)N-  case wherel, > N (i.e., the adaptive filter length is larger
dimension vectors andV x NV square Hankel matrices, fhan the number of subbands) afd> 1 (i.e., the filterbank
respectively, as illustrated in Fig. 6. The result of thgues not reduce to a square transform).
multiplication is the summation of the products of these \we can observe [cf., (6)] that for an MLT filter bank of
Hankel matrices by the cprre_sponding vectors. Agaiw = 32 subbands (i.e.X = 2 ELT case),ug = 1013.38,
each term of the summation is computed applying afhq g = 3725.38. In comparison with a small block version
OLS technique, yielding of the FBLMS and the SBFBLMS (where the adaptive filter

_ 2L is split into equal sized vectors whose size is equal to the
NIL,C(N, L) = N DFTe(2N) +2Luc block length, each of them being adapted by an FBLMS), the
4 <L )N%' (26) complexities of the WSAF and the RWSAF are 16% and 6%

— -1 . o -
N smaller, respectively. The additional cost of employing the

Note that since on®FT¢ is often shared by the fast correlaefreshed version of the WSAF is quite small (about 10%).
tion and convolution, this DFT has been counted only onceMoreover, it can be checked that the WSAF based on square
Exponential Weighting UpdateThe update\? |, = fAZ+ transforms has the same complexity as the BTDAF based on
(1 — f) Diag[Z7,X, ® (I1,X,)*] of the exponential win- the same transform. -
dow estimate of the mean square components of the inpufrocessing Delay:Since the WSAF is intrinsically a block
transformed vector has a complexity 6f, = L modulus algorithm, it introduces the same processing delay as any other
+2Lug + Lag. A = Lac is the number of adds required forblock algorithm with same block sizgV). Moreover, one of
adding the precomputed updatéV* to the L-tap adaptive the WSAF advantages is that this processing delay is formally
filter W*, whereasD; = Lugc denotes the cost of thelinked to neither the adaptive filter size (a property shared
multiplicétion by A-2. by the small block versions of any block algorithm) nor to
The resulting numbers of real additions and multiplicatiori§e filterbank decorrelation efficiency (i.e., the length of the
are summarized in Table IIl. subband filters).
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TABLE IV
META-COMPLEXITIES

algorithm complezity

LMS 2Luc + pre + 2Log

hline BLMS, N =L AL +C(L,L) + DFT¢(2L) + C(L, L) + Log + Lyrc]/L

FBLMS, N =1L Ap + Lo + Doy, +C(L, L) + DFTc(2L) +C(L,L) + Lac]/L

BTDAF, N =L, Ty, AL+ L1 +D +C(L,L) + DFT¢(2L) + 37, + C(L, L) + Lac]/L

BTDAF, N =L, Ty AL + Lof, + Doy, + C(QL, L) -+ DFTc(QL) + 3721 + C(L, L) + Lacl/L

BTDAF, N = L, DFT,;, Ap+Ly+D2p +C(2L, LY+ DFTc(2L)+2DFT¢(2L)+C(L, LY+ Lac]/L

SBBLMS, N|L A +C(L,N) + DFT¢c(2N) + C(N, L) + Nac + Lugc]/N

SBFBLMS, N|L Ap + Lon + %(DzN +C(N,N)) + DFTc(2N) + C(N,L) + Nac]/N

SBBTDAF, NI|L, T, AL+£N+TN+1%(’DN+C(N, N)+27n5)+DFTc(2N)+C(N, L)+ Nac]/N

SBBTDAF, N|L, Ty, Ap+Lon+Ton + %(DzN +C(2N,N)+2T;n)+DFTc(2N)+C(N,L) +
Nac]/N

SBBTDAF, N|L, DFT¢(2L) [AL+£2N+ﬁ(’D2N+C(2N, N)+2DFT¢(2N))+DFTc(2N)+C(N, L)+
Nacg}/N

WSAF, KN|L, Hnxkn [AL + Ly + H + Dy + C(L,KN) + DFTc(2KN) + H¥ + C(N,L) +
DFT¢{2N) + Nac + H]/N

WSAF, LIKN, Hyxxn [AL + Ly + H + Dy + C(L,KN) + DFTc(2L) + H¥ + C(N,N) +
DFTc(2N) + Nag + H]/N

RWSAF, KN|L, K >1,L > N, Hnxkn~ [AL + Lxy + H+ Dy +C(L,KN) + DFTc(2KN) + H¥ + C(KN, L) +
KNac + H]/N

RWSAF, LIKN, K >1, L > N, Hnxkn [AL+ LN +H +Dn +C(L,KN) + DFTc(2L) + HP + C(KN,KN) +
DFTc(2KN) + KNoc + H]/N

TABLE V
COMPLEXITY OF THE VARIOUS SIMULATED ALGORITHMS

algorithm R multiplications R additions

LMS 2 + 6L 10L

BLMS —16 + 0"+ 10log,(2L) —14+ 2 + 301log,(2L)

FBLMS -6+ 2 gy 10log,(2L) -10 + 27 + 30log,(2L)

BTDAF, T;, = DFT, By +3log, (L) +10log, (2L) —21+3¥;+910g2(L)+30 log, (2L)

BTDAF, Ty = DCT,, —12+ 2 + 3log, (L) + 10log, (2L) | —18+ 25 +9log,(L) +301og, (2L)

SBBLMS —12+L+“+§3——%+ -10 + £ + & + iy
9 IOgZ(ZL) + 2L logz(2L) +16 log2 (2L) + 6L loilsz! +
4log,(2N) + M 12l0g,(2N) + 8L108,CN)

SBFBLMS 2+ 0L 2 “L+210g2(2N)+ -2+, 2 11L+610g2(2N)+
8Llog2(2N) 24L |og2§2N2

SBBTDAF, Ty = DFT -5+ 2L U F I tlog,(N) + 7+%%+ I +3log,(N) +
%2‘—”—) + 2log,(2N)  + S‘L"}f,z@ + 6log,(2N) +
8L 1032(2N) 24Llog,(2N)

N

SBBTDAF, Ty = DCTy 2+29.£r+,v BL +log,(N) + | —6+ 3% + 5% — 13F +3log,(N) +
logN) 1 glegy(2N) 4 | PB4 glog,2N) 4+
BL Iog2(2N) 24Llog,(2N)

WSAF, KN|L, Hyxxn = ELT 8f8K+8L+W+”— 210K+ 35+ g+ 2 -
8+ 3logy(N) + 2logy(2N) + | 3% + 9logy(N) + 6logy (2N) +
%2@ + 4Klog,(2KN) + ﬂ%ﬂw + 12K log, (2K N) +
2L log, (2K N) 6Llog, (2K N)

N

WSAF, LIKN, Hyxgn = ELT 2 5K + X4 IT BV 65K + 35+ T -84
4Klogy(2L) + 2ElmChl 4 | 19K log,(2L) + SLleCh)
3log,(N) + 6log,(2N) 9log,(N) + 18log,(2N)

RWSAT, KN|L, Hyxxn = ELT 14-8K+%5+7\,——%+ 410K+ P+ 5 -+
3log,(N) + 4Klogy(2KN) + | 9logy(N) + 12K log,(2KN) +
6L log, (2K N) 18L log,(2K'N)

N N

RWSAF, LIKN, Hyxxn = ELT 417K + B+ B T4 — 15K + 35 + T - %+
4Klogy(2L) + ZRmCD) 4 | 19K |og,(2L) + SEloeCL)
3log,(N) + 6Klog2(2KN) 9log,(N) + 18K log, (2K N)

WSAF, N=L, K =1, H,«; = DFT, same complexity as the BTDAF, T, = DFT,

WSAF, N=L,K =1,HLx; =DCT, same complexity as the BTDAF, Ty, = DCT,

C. Simulations e Convergence Behavior for an AR2 Highly Correlated

This section presents some simulations that are aimed!Rut Signal
comparing the convergence behavior of the various algorithmsContext: In Figs. 7 and 8, the input,, is a highly correlated
All simulations are run in a context of adaptive modelizatiolAR2 signal obtained by filtering a white Gaussian noise by
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TABLE VI
NUMERICAL EVALUATION OF THE COMPLEXITIES FOR L = 1024, N = 32 AND K = 2
algorithm R multiplications R additions
LMS 6146 10240
BLMS 94.0195 316.02
FBLMS 104.02 320.02
BTDAF, T, = DFT, 119.031 399.031
BTDAF, T;, = DCTy, 128.025 402.025
SBBLMS 998.379 3268.38
SBFBLMS 1214.12 4306.12
SBBTDAF, Ty = DFTx 1284.25 5092.25
SBBTDAF, Ty = DCTy 1475.19 51563.19
WSAF, Hyxxn = ELT 1013.38 3725.38
RWSAF, Hyxgn = ELT 1131.25 4075.25
WSAF, N=L,K =1, Hy,; = DFT,| same complexity as the BTDAF, T;, = DFT,
WSAF, N=L,K =1, Hy,x; = DCT| samec complexity as the BTDAF, T;, = DCT},

AR2 N=20 L=20 AR2 L=20

ot ) X ... mean power of d

g g

c 50} Z =50} N ... mean power of d

= = \

2 @ S —— WSAF MLT L=20 N=10 K=2
= c

o N

= -100| £ 100} ~ ... WSAF MLT L=20 N=20 K=2
s . — WSAF DT o N —. RWSAF MLT L-20 N=10 K2
3 - ——BTDDCT ] N

2 h FBLMS 5 ~ RWSAF MLT L=20 N=20 K=2
E . E

o ~1501 ~ WSAF DCT o ~150F

® &

2 =1

3 o

w w

& -200f & -200f

o @

E £

_250+ -2501

_300 . . : I | _ I
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Fig. 7. Performance of some exhibited algorithms for step gizemed for Fig. 8. Performance of the WSAF and RWSAF using an MIET = 2) as
fastest convergence. All algorithms are similarly tuned. Same block size amgtlysis bank and a step sigetuned for fastest convergence.
filter length L.

1/G(z) = 1/(1 — 1.6z~ + 0.812~2). The adaptive filter as RWSAF versus WSAF with Various Block Lengths:

well as the filter to be identified both have= 20 taps. The Fig. 8, the WSAF makes use of a modulated lapped transform
simulations are performed in a non-noisy context (no modelifliLT) as the filter bank. This case corresponds to a filter
noise), and the step size is tuned in order to achieve thelength being equal to twice the number of subbands (i.e.,
fastest convergence rate. K = 2) [10]. The aim of this simulation is twofold. First,

Classical Square Transforms, Block Size Equal to the Addpintends to present the convergence rate improvement when
tive Filter Length: Fig. 7 compares the various convergenciefreshing the error samples present in the delay line of
behaviors of the FBLMS algorithm, the BTDAF, and thdhe analysis bank at each of the adaptive filter updates
WSAF with the same block size (set to the adaptive filtdps described in Section V-B). Second, it illustrates the
length L) and using two square transforms: the DFT and tHg@nvergence behavior of the WSAF in the case of a nonsquare
DCT. transform.

Note that for the FBLMS algorithm, the DET dimension In these simulations, the fastest convergence rate is reached
is two times the block size and thus performs a better decorf®y- the RWSAF, where the filter bank is an MLT witN' =
lation. This explains its better convergence rate compared with, X' = 2, and L = 20. The expected improvement of the
both the WSAF and the BTDAF with a DRFTas transform. convergence rate between the RWSAF and WSAF is clearly
However, in all the cases, the WSAF has a better behaviwticeable and would appear to be worth the only 10% increase
than the BTDAF for comparable transforms. Moreover, when the complexity. Increasing the lengths of the filters in the
replacing the DFT with the DCT;, as a filter bank in order bank for a constant number of subbands (from an PQT
to decorrelate further the outputs of the transform, the WSAHg. 7 to the MLTL = N = 20 and K = 2 in Fig. 8) can
convergence rate is even faster than that of the FBLMS wilsad to significant improvement in convergence rate but only
its transform two times larger. for the refreshed version of the WSAF (RWSAF).
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Fig. 9. Comparison of the convergence curves of the WSAF, SBFBLMS&ijg. 10. Comparison of the convergence curves of the LMS, improved LMS
and LMS algorithms. and improved WSAF algorithms for speech data.

e Acoustic Echo Cancellation Framework error, the same strategy applied to the WSAF allows a further
In practice, it is interesting to use small transforms (i.eimprovement of about 7 dB on the residual error without loss

few subbands) and larger adaptive filters (e.g., in the contdi¢€rms of convergence rate.
of AEC). This is readily achievable for the WSAF because
no link between the adaptive filter length and the number of VIl. CONCLUSION
subbands is required in its original version (see Section VI- In this paper, a new subband adaptive scheme using LL PR
A). The comparison is made with small block versions of theB is presented: the weighted subband adaptive filter. Like
FBLMS algorithm and the BTDAF. classical approaches (BTDAF or the FBLMS algorithm), the
Context: The filter to be identified has 128 taps (it is th@&VSAF uses an orthonormal projector for convergence rate
truncation of the acoustic response of a room), and so ddegrovement, but it is used in a different manner. In the
the adaptive filte( 7. = 128). The parameters of the WSAFWSAF, it is the modeling erroe,, that is projected in place
algorithm areN = 32 and K = 2. The filter bank is again an of z,, (classical schemes). We can highlight the following
MLT, and once again, the step size of each algorithm is algéstinctions between both types of algorithms:
chosen to obtain the fastest convergence rate. The noise is BTDAF-like algorithms, including the FBLMS : These
subtracted from the error before computing its mean squared algorithms use the common time domain block criterion
value. JBleck for the adaptive filter tap update. The convergence
Adaptive Filter Length Greater than the Block SizZEig. 9 behavior improvement is obtained by introducing differ-
compares the new algorithm WSAF to the LMS and SBF- ent step sizes for the adaptation of each of the adaptive
BLMS algorithms. The simulation is run in the context of filter coefficients in the transform domain.
adaptive modeling. The input of the adaptive filter is stationary « The WSAF algorithm: Here, the different weights are
noise with on average the same spectrum as speech. White introduced through a block weighted criterion and the use
noise is added to the reference signal and the output signal- of critically subsampled lossless perfect reconstruction
to-noise ratio (SNR) is 40 dB. filter banks. Hence, the weights are applied on the spectral
In all the simulations we have run, the proposed algorithm contents.
is clearly an improvement over the LMS and the SBFBLM§he WSAF offers more flexibility for the choice of the
algorithms for which the parameters were similarly tuned: Wifferent parameters involved in the adaptive process. Indeed,
have the same number of row vectors in the transform afist the WSAF, the size of the transform (FB) is independent
same block sizes. of the adaptive filter length and is only linked to the block
Time-Varying Strategy for the Weights for Nonstationargize. This gives the required degrees of freedom, compared
Signals: Finally, Fig. 10 shows a classical normalized LMSwith classical transform domain-based approaches. Moreover,
(NLMS) algorithm, an improved NLMS algorithm (with thein the WSAF, the size of the transform is not necessarily
same time-varying strategy as we propose for the WSAFuare, and this allows a better decorrelation property without
and an improved WSAF in the same context as previoushcreasing the block size, which is not easy to achieve in
described (AEC) but with a real speech signal as inpthe original versions of the classical algorithms. Finally, this
and a SNR of 10 dB. It clearly appears that while thapproach presents some links betwappropriately weighted
improvement provided by the time-varying strategy on tHeast square minimization and the improvement of the adaptive
NLMS is important both in terms of convergence and residuptocess convergence rate.
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In the same conditions, the WSAF is shown to perform [@1] M. R. Petraglia and S. K. Mitra, “Performance analysis of adaptive filter
better convergence rate than the small block implementation of  Structures based on subband decompositiorPot. Int. Symp. Circuits
the FBLMS (SBFBLMS) while offering a similar (and evenpy
slightly lower) complexity.

Furthermore, a time-varying strategy for the step size of t

v

adaptation that replaces the natural normalization of the WSAF
is discussed. This technique is relevant for signals having large
variance variations such as speech in an AEC context. In t

case, the technique is shown to further improve the adaptive

behavior of the algorithm.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]
(9]

[20]
[11]

[12]

(23]

[14]

[15]

[16]

(17]

(28]

[29]

[20]

[25]

[26]
REFERENCES

B. Widrow, “Adaptive filters,” inAspects of Network and System Theoryl27]
R. Kalman and N. DeClaris, Eds. New York: Holt, Rinehart, and
Winston, 1971, pp. 563-587.

M. Dentino, J. McCool, and B. Widrow, “Adaptive filtering in the [28]
frequency domain,Proc. IEEE vol. 66, pp. 1658-1659, Dec. 1978.

E. R. Ferrara, “Fast implementation of LMS adaptive filterdEEEE
Trans. Acoust., Speech, Signal Processira. ASSP-28, pp. 474-475, [29]
Aug. 1980.

S. S. Narayan, A. M. Peterson, and M. J. Narasimha, “Transform domdi30l
LMS algorithm,” IEEE Trans. Acoust., Speech, Signal Processuud
ASSP-31, pp. 609-615, June 1983.

J. C. Lee and C. K. Un, “Performance of transform-domain LMS
adaptive digital filters,IEEE Trans. Acoust., Speech, Signal Processing
vol. ASSP-34, pp. 499-510, June 1986.

, “Performance analysis of frequency-domain block LMS adaptiv
digital filters,” IEEE Trans. Circuits Systvol. 36, pp. 173-189, Feb.
1989.

D. F. Marshall, W. K. Jenkins, and J. J Murphy, “The use of orthogons
transform for improving performances of adaptive filtedEEE Trans.
Circuits Syst. vol. 36, pp 474-484, Apr. 1989.

J.-S. Soo and K. K. Pang, “Multi block frequency domain adaptivi
filter,” IEEE Trans. Signal Processingol. 38, pp. 373-376, Feb. 1990.

E. Moulines, O. AitAmrane, and Y. Grenier, “The generalized multi- ]
delay filter: Structure and convergence analysi§EE Trans. Signal

Processing vol. 43, pp. 14-28, Jan. 1995.

H. S. Malvar, Signal Processing with Lapped Transforms$Norwood,
MA: Artech House, 1992.

P. P. VaidyanathanMultirate Systems and Filter Banks Englewood
Cliffs, NJ: Prentice-Hall, 1993.

N. Erdol and F. Basbug, “Performance of wavelet transform bast
adaptive filters,” inProc. Int. Conf. Acoust., Speech, Signal Process
vol. 3, pp. 500-503, Minneapolis, MN, Apr. 1993. !
S. Hosur and A. H. Tewfik, “Wavelet transform domain LMS algorithm,’
in Proc. Int. Conf. Acoust., Speech, Signal Procesinneapolis, MN,
Apr. 1993, vol. 3, pp. 508-510.

M. Doroslov&ki and H. Fan, “Wavelet-based adaptive filtering,” in|
Proc. Int. Conf. Acoust., Speech, Signal Procddineapolis, MN, Apr.
1993, vol. 3, pp. 488-491.

S. Attallah and M. Najim, “O the convergence enhancement of tt
wavelet transform based LMS,” iRroc. Int. Conf. Acoust., Speech
Signal Process.Detroit, MI, May 1995, vol. 2, pp. 973-976.

, “A fast wavelet transform-domain LMS algorithm,” FProc. Int.

Syst, Chicago, IL, June 1993, vol. 1, pp. 60-63.

A. Gilloire, “Experiments with sub-band acoustic echo cancellers for
teleconferencing,” irProc. Int. Conf. Acoust., Speech, Signal Progess.
Dallas, TX, Apr. 1987, vol. 4, pp. 2141-2144.

Y. Ono and H. Kiya, “Performance analysis of subband adaptive systems
using an equivalent model,” iRroc. Int. Conf. Acoust., Speech, Signal
Process. Adelaide, Australia, Apr. 1994, vol. 3, pp. 53-56.

M. Vetterli, “Running FIR and IIR filtering using multirate filter banks,”
IEEE Trans. Acoust., Speech, Signal Processutd. 36, pp. 730-738,
May 1988.

S. Zimmermann and G. A. Williamson, “Subband adaptive filters with
zero alias component constraints,” froc. Int. Conf. Acoust., Speech,
Signal Process.Atlanta, GA, May 1996, vol. 3, pp. 1736-1739.

V. S. Somayazulu, S. K. Mitra, and J. J. Shynk, “Adaptive line
enhancement using multirate techniques,”Aroc. Int. Conf. Acoust.,
Speech, Signal Proces§lasgow, U.K., May 1989, vol. 2, pp. 928-931.
B. Widrow, J. M. McCool, M. G. Larimore, and C. R. Johnson,
Jr., “Stationary and nonstationary learning characteristics of the LMS
adaptive filter,”Proc. IEEE vol. 64, pp. 1151-1162, Aug. 1976.

Z. J. Mou, P. Duhamel, and J. Benesty, “Fast complex FIR filtering
algorithms with applications to real FIR and complex LMS filters,” in
Proc. EUSIPCO,Sept. 1990, pp. 549-552.

E. O. Brigham,The Fast Fourier Transform Englewood Cliffs, NJ:
Prentice-Hall, 1974.

A. V. Oppenheim and R. W. Schafddjscrete-Time Signal Processing
Englewood Cliffs, NJ: Prentice-Hall, 1989.

Marc de Courville was born in Paris, France, on
April 21, 1969. He graduated from the Ecole Na-
tional Sugerieure des &lecommunications (ENST),
Paris, in 1993 and received the Ph.D. degree, also
from the ENST, in 1996.

His research interests include multicarrier sys-
tems, adaptive algorithms, and multirate filtering.
= Since 1996, he has been with the Motorola Research
Center (CRM), Paris, as a Research Engineer.

Pierre Duhamel (SM'87) was born in France in
1953. He received the Ing. degree in electrical
engineering from the National Institute for Applied
Sciences (INSA), Rennes, France, in 1975, the
Dr.Ing. degree in 1978, and the Doctoestsciences
degree in 1986, both from Orsay University, Orsay,
France.

From 1975 to 1980, he was with Thomson-CSF,
Paris, France, where his research interests were
in circuit theory and signal processing, including
digital filtering and analog fault diagnosis. In

1980, he joined the National Research Center in Telecommunications
(CNET), Issy les Moulineaux, France, where his research activities were

Conf. Acoust., Speech, Signal Procesglanta, GA, May 1996, vol. 3, first concerned with the design of recursive CCD filters. Later, he worked
pp. 1343-1346. on fast Fourier transforms and convolution algorithms and applied similar
M. de Courville and P. Duhamel, “Adaptive filtering in subbands using #chniques to adaptive filtering, spectral analysis, and wavelet transforms.
weighted criterion,” inProc. Int. Conf. Acoust., Speech, Signal ProgessHe is now developing studies in channel equalization (including multicarrier
Detroit, MI, May 1995, vol. 2, pp. 985-988. systems) and source coding (including joint source/channel coding). Since
A. Gilloire and M. Vetterli, “Adaptive filtering in subbands with crit- June 1993, he has been Professor with the Ecole Nationarfgupe des

ical sampling: Analysis, experiments, and application to acoustic ecA&eécommunications (ENST), Paris, with research activities focused on signal
cancellation,”lEEE Trans. Signal Processingol. 40, pp. 1862—1875, processing for communications. He was recently nominated Head of the
Aug. 1992. Signal and Image Processing Department.

H. Yasukawa, S. Shimada, and |. Furukawa, “Acoustic echo cancellerDr. Duhamel is chairman of the IEEE Signal Processing Society's DSP
with high speech quality,” irProc. Int. Conf. Acoust., Speech, SignalCommittee, was an Associate Editor of the IEERANSACTIONS ON SIGNAL
Process. Dallas, TX, Apr. 1987, vol. 4, pp. 2125-2128. ProcessinG from 1989 to 1991, and was an Associate Editor for the
W. Kellermann, “Kompensation Akustischer Echos in FrequenzteilbafEEE ScNAL PrRocEssING LETTERs He was a Guest Editor of the IEEE
dern,” Frequenz vol. 39, pp. 209-215, July 1985. TRANSACTIONS ON SIGNAL ProcessINGfor the Special Issue on Wavelets.



