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Adaptive Filtering in Subbands
Using a Weighted Criterion
Marc de Courville and Pierre Duhamel,Senior Member, IEEE

Abstract—Transform-domain adaptive algorithms have been
proposed to reduce the eigenvalue spread of the matrix gov-
erning their convergence, thus improving the convergence rate.
However, a classical problem arises from the conflicting require-
ments between algorithm improvement requiring rather long
transforms and the need to keep the input/output delay as small
as possible, thus imposing short transforms. This dilemma has
been alleviated by the so-called “short-block transform domain
algorithms” but is still apparent.

This paper proposes an adaptive algorithm compatible with
the use of rectangular orthogonal transforms (e.g., critically
subsampled, lossless, perfect reconstruction filter banks), thus
allowing better tradeoffs between algorithm improvement, arith-
metic complexity, and input/output delay.

The method proposed here makes a direct connection between
the minimization of a specific weighted least squares criterion
and the convergence rate of the corresponding stochastic gradient
algorithm. This method leads to improvements in the convergence
rate compared with both LMS and classical frequency domain
algorithms.

I. INTRODUCTION AND RELATED WORK

A DAPTIVE filtering is a widespread technique in
many applications. For acoustic echo cancellation

(AEC) hands-free telephony, very large adaptive filters
are used in a system identification context, whereas in
digital communications, adaptive filters perform the channel
distortion equalization. The present need for increased
throughput in new systems also results in an increase of
the equalizer length. In these two areas, there is a demand
for efficient and low complexity algorithms. This paper builds
on this approach.

Classical Approaches Using a Square Orthogonal
Transform

The least mean square (LMS) adaptive algorithm [1] is
widely used since it provides both low complexity and robust
performance. However, the relatively slow convergence is a
major drawback in several applications. This is the motiva-
tion for searching for improved, yet simple, versions of the
initial algorithm. Interestingly, many solutions make use of
projections of the input signal on an orthogonal basis, allowing
them to act “almost” separately on the various modes of the
convergence.
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One such approach builds on a frequency domain imple-
mentation of the block LMS (BLMS) algorithm [2], [3], which
is a fast implementation using the discrete Fourier transform
(DFT), known as the fast BLMS algorithm. This serves as a
basis for an improved version denoted the frequency domain
block LMS (FBLMS) algorithm, in which the DFT plays two
roles. First, the DFT is used for complexity reduction, and sec-
ond, the availability of the energy of the input signal frequency
bins allows an individual normalization of the adaptation steps
to be performed for convergence rate improvements.

The second approach (the transform domain adaptive filter
(TDAF) [4], [5]) was originally proposed for convergence and
residual error improvements (the fast convolution property of
the orthogonal transform was not required). Compared with
the FBLMS algorithm, more flexibility in the choice of this
transform is provided.

In both cases, the orthogonal transform is used as a means
for decomposingthe input signalinto approximately decorre-
lated components [5]–[7]. Moreover, in both approaches, the
variables that are explicitly adapted are the transform domain
coefficients of the adaptive filter. Therefore, in the initial
versions of both algorithms, the transform size is strongly
linked to the adaptive filter length. This constraint has been
somewhat relaxed in further extensions such as the multidelay
filter (MDF) [8] or the generalized MDF (GMDF) [9] but
cannot be totally removed.

A common characteristic of these schemes is that the
transform is primarily applied to the adaptive filter inputs as a
means for factorizing the input signal autocorrelation matrix.

Filter Banks and Adaptive Filtering: The “Transform
Domain” Approach

For the TDAF as well as for the FBLMS algorithm, a better
decorrelation of the input signal is feasible by increasing the
square transform size (i.e., the number of basis functions).
However, when the number of basis functions increases,
so does their length. Thus, a specific procedure is required
for constraining accordingly the time domain adaptive filter
to remain of constant size. Nevertheless, the use of longer
basis functions without increasing their number would also
allow a better decorrelation to be performed in a simpler and
more direct way, with maybe the additional advantages of a
reduced I/O delay. Such longer, orthogonal, basis functions are
provided by lossless (LL) perfect reconstruction (PR) filter
banks (FB’s) [10]; the coefficients of an LL PR FB can be
interpreted as a nonsquare matrix of orthonormal vectors.

Indeed, it is well known that LL PR FB can achieve
efficient decorrelation, even for a small number of components

1053–587X/98$10.00 1998 IEEE



2360 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998

[11]. Since the discrete wavelet transform (DWT) can be
implemented using LL PR FB, the DWT also belongs to this
category and can be considered here as a special case.

A straightforward use of such basis functions applied to the
input signal as done in a transform domain adaptive scheme
would raise the same issues as the one met in [12]–[14]; some
kind of periodization of the wavelet transform structure or
of the input signal has to be performed in order to keep the
orthogonality property on a finite length window [15], [16].

Proposed Algorithm Using a Subband Decomposition
Instead of working directly on the input signal, in this sec-

tion, a projection ofthe modeling erroron an orthogonal basis
[17] is considered. Indeed, intuitively, separating the error
signal driving the convergence into decorrelated components
should bring an improvement of convergence rate, as is the
case when the input signal is decomposed.

Focusing on the previous considerations, this paper proposes
a new subband adaptive algorithm: the weighted subband
adaptive filter (WSAF). The main advantages of our algorithm
are twofold. First, the required orthogonality is kept without
changing the classical filter bank computational structure, and
second, it provides full flexibility in the choice of the length
of the filter bank. In addition, this approach shows some links
betweenappropriately weightedleast squares minimization
and the improvement in convergence of the resulting adaptive
filter.

Other Relevant Approaches Using a Subband Decom-
position

Another set of papers [18]–[21] deals with subband adaptive
filtering in the context of AEC, mainly in order to allow com-
putational savings. In these schemes, the input and reference
signals are decomposed into subbands and decimated, and the
adaptation is performed in each subband. Thus, transposing
the adaptive filtering structure behind the analysis filter bank
turns the problem of adapting a single long FIR filter into that
of adapting several short filters operating at a lower rate [18].

Since the frequency response of the filters in the bank are
overlapping (e.g. QMF banks), when critical subsampling is
used [22], [23], the output of the FB contains undesirable
aliasing components that impair the adaptation ability of
the algorithm. These aliasing components can be canceled
by introducing a full matrix of cross filters between the
analysis and synthesis bank [11], [24]. When doing so, a time
domain filtering equation is exactly implemented in subbands.
However, the equivalence between filtering in the time domain
and in the subband domain imposes many connections between
these cross filters. Therefore, not all the filters of this polyphase
matrix should be adapted independently if maximum conver-
gence rate is desired. This is difficult to take into account while
using a stochastic gradient algorithm.

An approximate approach has been proposed in [18] and
[25], where only adjacent filters in the bank were supposed to
overlap in order to reduce the complexity. This corresponds
to the polyphase matrix of subband adaptive filters being
tridiagonal.

Other authors [19] avoid this problem by using fewer
overlapping filter banks (in the frequency domain). However,
this tends to introduce spectral holes in the output signal of the

adaptive filter (which are located at the edges of the subbands).
Another approach, which was proposed in [26], consists of
modifying the structure of the filter bank by introducing non-
decimated auxiliary subbands. Finally, the use of oversampled
filter banks was recommended in [20] and [21] in order to
decrease the aliasing effect. In any of the above methods, it
appears that a noticeable gain in computational complexity
always comes with a degradation of the convergence properties
of the subband adaptive process. Thus, the goal seems to be
to try to offset this loss while increasing the computational
complexity by the smallest possible amount.

One explanation of the problems encountered with these
approaches comes from extending the use of subband de-
composition to purposes other than convergence improvement:
fast convolution implementation (which can only be achieved
approximately in this way). In order to avoid this problem,
our method separates the convergence improvement (which is
obtained by a subband decomposition of the error) from the
reduction in complexity achieved by any fast algorithm since
our method is basically of a block type. This is explained
in Section III, which presents the new multiband adaptive
algorithm.

Scope of the Paper
Section II describes the notation and introduces the new

weighted criterion to be minimized. The proposed algorithm
(the WSAF) is presented in Section III as well as an appro-
priate choice of the weights in the stationary case. The WSAF
convergence behavior is studied in Section IV from both the
convergence rate and residual error point of view. Further
refinements that will improve the convergence of the WSAF
are provided in Section V, including a time-varying strategy
for the weights and the adaptation step size for a nonstationary
input signal.

The use of a decimated FB forces our algorithm to be of
a block type. Just like in all “improved” block algorithms,
this has two opposing effects. On the one hand, increasing
the block size improves the algorithm behavior, but on the
other, this simultaneously decreases the stability region of
the stepsizes. Hence, in order to provide fair comparisons,
Section VI compares the TDAF and FBLMS algorithms with
the WSAF using the same block sizes. This requires the
description of small block realizations of the FBLMS and
BTDAF, which is detailed in Section VI-A. Computational
complexities are discussed in Section VI-B. Section VI-C
finally compares convergence behaviors by simulation.

II. NOTATION CRITERION

The whole study is undertaken in the context of adaptive
identification. All variables are assumed to be of complex
value, which corresponds to the most general case, and allows
for easy use in a channel equalization context.

In the following, let be the operator denoting transpo-
sition, let be conjugation, and let , whereas
Diag stands for the diagonal matrix whose diagonal el-
ements are the components of vector is the identity
matrix of dimension indicates the component by compo-
nent (Schur) product of two vectors. The FIR adaptive filter
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Fig. 1. General time domain adaptive digital filter.

Fig. 2. General transform domain LMS adaptive digital filter.

has length In this paper, data are filtered by the conjugate of
filter for a more convenient expression of the convergence
equations. Notation and denote the complex valued
input and reference signal, respectively, as depicted in Fig. 1.

is the block size (number of computations that are grouped
together, which is equal to the number of subbands), whereas
the orthogonal filter bank is assumed to be of length for
simplicity. Uppercase letters stand for vectors or matrices of
appropriate sizes as in

The row vector of the th analysis filter coefficients is
denoted by , where all of them are gathered in an
matrix Note that when

reduces to an orthonormal transform, whereas larger
values of are able to increase the decorrelation properties
of the transform without increasing the number of subbands.
The efficiency of this procedure will be apparent in Table I
in Section IV-A.

Suppose now that the error
has been passed through a LL PR FB (cf., Fig. 3), thus being

Fig. 3. Notation for the analysis filter bank.

Fig. 4. Frequency division of the update of the adaptive filter.

decomposed in subbands by ,
which is the analysis bank.

If the input signal is ergodic and wide sense stationary,
the orthogonality property of the LL PR FB ensures that both
formulations of the block criterion below are equivalent (where

denotes mathematical expectation)

(1)

Of course, minimizing both versions of the criterion would
result in the same algorithm, i.e., a BLMS algorithm. However,
consider now the minimization of the following weighted
mean square criterion, where the quadratic errors in each
subband are weighted by some constants

(2)

Here, the size of the transform (the number of subbands) is
independent of the filter length and depends only on the block
size. Further, since this approach relies on orthogonality, and
since orthogonality of the LL PR FB requires the presence
of a subsampling by , this method is restricted to block
algorithms. Although it is described in the context of LL PR
FB, this method still holds for any orthogonal transform (as a
special case of LL PR FB in which ).

III. T HE PROPOSEDALGORITHM

Assume that the set of is constant. An LMS-like adap-
tative minimization of the criterion (2) is easily obtained by
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Fig. 5. Multirate adaptive filter scheme forL = MN:

computing its instantaneous gradient estimate relative
to

(3)

where is the positive scalar step size controlling the conver-
gence of the adaptive process.

In order to calculate each partial derivative of the subband
error, define

(4)

where contains nondecimated outputs of theth analysis
filter excited by , and is the th subband decompo-
sition of the reference signal by the analysis bank.

This is also denoted by and

(5)

such that Thus

(6)

Hence, the tap update (3) reads

(7)

or, in a more compact form (matrix notation)

(8)

where Diag is the diagonal matrix of
the weights

The actual algorithm described by (8) is denoted as the
WSAF.

Note that when (i.e., is an orthonormal transform)
and , the proposed algorithm reduces exactly to the
BLMS algorithm.

A. Computational Structure

Equation (8) defines the generic version of the WSAF. How-
ever, careful consideration of (6) shows that some redundancy
exists in the computations when (i.e.,
the adaptive filter is larger than the number of subbands).
This paragraph proposes a reduced complexity implementation
scheme for the weight update.

If denotes the
coefficient of [i.e., th coefficient of the th

polyphase component of ], we can observe that

(9)

Thus, the full vector is obtained by
collecting the different output vectors generated by the analysis
filter bank whose input is in which the subsampler has
been removed. The resulting scheme is provided on Fig. 5,
where represents the weighting of each subband by the
corresponding factor

B. Appropriate Choice of the Weights

At this point, it is not clear how the use of weighted
mean square errors instead of regular ones could improve the
adaptive algorithm convergence rate. In order to understand
this mechanism, it is first necessary to rewrite (7) in terms
of the contributions of each subband error to the total update
increment

(10)

Consider the ideal case where the filter bank is composed of
ideal Nyquist filters that are adjacent and do not overlap (i.e.,

tends to infinity ). Under this assumption, as the
spectra of are nonoverlapping, each term of the
sum in (7) deals with adapting a different part of the
spectrum of (cf., Fig. 4). Thus, the algorithm minimizes
the quadratic errors in each subband independently with a
different step size for each of them. Without any drawback,



DE COURVILLE AND DUHAMEL: ADAPTIVE FILTERING IN SUBBANDS USING A WEIGHTED CRITERION 2363

our algorithm is merely equivalent toseveral LMS algorithms
working separatelyin each subband.

Furthermore, it is a well-known result [27] that under
white noise input, the fastest convergence rate of the LMS
algorithm is achieved for an adaptive step size given by

, where denotes the variance of
the input signal in the present situation). The normalized
LMS algorithm is usually defined with reference to this value
of the adaptation step. Since the parametersand need to
be tuned, we shall also choose so that under white noise
input, the fastest convergence occurs independently in each
subband when Such a choice corresponds to

(11)

In practice, this set of weights can be used for parameteriz-
ing the WSAF but with a smaller: in order to obtain
various tradeoffs between convergence rate and residual error.

Interestingly, the choice of the set of determines the
criterion to be minimized. Thus, this establishes a link between
the speeding up of the convergence rate of the proposed
algorithm and the formal statement of the criterion to be
minimized.

This contrasts with classical frequency-domain or
transform-domain adaptive approaches. Despite intuition,
these do not minimize the error in each frequency band
independently: instead of adapting each adaptive filter
coefficient in the transform domain with respect to the
full time domain error generated as any classical transform
domain approach, the WSAF rather adapts each part of the
spectrum of according to the error produced in the same
frequency subband (cf., Fig. 4).

Moreover, in the context of AEC, the WSAF enables
perceptual considerations to be taken into account. Indeed,
each subband error in the criterion can be weighted according
the sensitivity of the ear applicable in that subband so that large
errors can be tolerated without affecting the subjective quality
of the AEC. In an extreme case, if no adaptation is required
in some subbands, this can also result in complexity savings
in the adaptation process by either including some decision
functions to determine when to switch off the adaptation or
preselecting the relevant subbands according to a perceptual
knowledge.

IV. A LGORITHM BEHAVIOR

Without trying to determine precisely the adaptive be-
havior, this subsection intends to provide a more accurate
understanding of the underlying mechanism, allowing a faster
convergence for the WASF.

A. Convergence Rate

Let denote the size autocorrelation
matrix of the nonsubsampled outputs of theth filter
Since the filters in the bank are selective, has a narrow
spectrum. Thus, is expected to be badly conditioned.
If the WSAF were to be strictly considered as several LMS
algorithms working independently in each subband, we would
expect a slow convergence rate for each LMS algorithm.

This apparently contradicts the expected good convergence
behavior of the WSAF. The following subsection shows that
it is only an apparent contradiction.

Let be the -tap filter to be identified (of same length
as ). The tap-error vector of the WSAF is defined
as Suppose that the reference signal

is the sum of the true linear filtering of by and of
a zero mean white Gaussian noise In vector notation, we
have , where
Under this assumption, the error can be expressed as

, and the WSAF
adaptation equation reads

(12)

Under the usual so-called “independence” assumptions (i.e.,
the adaptive filter taps are uncorrelated from the input samples

and is not correlated to ), the above equation yields

(13)

The convergence rate of the WSAF is thus driven by the
eigenvalues of matrix , which
should be close to zero for faster convergence. Obviously,
this could be feasible by some tuning ofif the eigenvalue
spread of matrix is close to
1. It can be shown in a straightforward way that

If the analysis bank is composed of perfect Nyquist brick
filters (i.e., ), each individual matrix is
singular. However, since the filters in the bank are nonover-
lapping and adjacent, a given eigenvalue will not be zero in
all subbands. Therefore, the summation of all matrices
weighted by is not singular, and for each matrix ,
the weight plays the role of a normalization coefficient such
that the eigenvalue spread of the whole summation is reduced.

This somewhat intuitive development has been checked
by simulation by computing the eigenvalue spread of the
matrices determining the convergence rate of the algorithm
in the case of an autoregressive matrix of an order 2 (AR2)
highly correlated input signal. This signal is obtained by
filtering white Gaussian noise by the inverse of

(with zeroes such that ).
The WSAF with weights and increasing filter
lengths in the bank is compared with the LMS algorithm.
The number of subbands is set to , and the filter
to be modeled has taps (as does the adaptive filter).
The length of the filters in the bank are 20 for
a discrete cosine transformDCT , 40 for a
modulated lapped transform (MLT), and 80 for an
extended lapped transform (ELT) [10], respectively. We can
observe in Table I that the eigenvalue spread reduces when
the filter lengths in the bank increase. In fact,
has a much smaller condition number than ; it has been
reduced from 1400 to 2.2. This explains the better convergence
behavior of the WSAF compared with the LMS algorithm, as
well as the influence of the weights (in the definition of the



2364 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998

TABLE I
EIGENVALUE SPREAD OF THEMATRIX DETERMINING THE CONVERGENCERATE

criterion) on the convergence rate of the associated stochastic
gradient algorithm.

B. Residual Error

It is well known that the misadjustment of LMS-like algo-
rithms depends on the adaptation step and on the amount of
noise found in the reference signal. If the noise is white, and
if the input signal is not, the relative noise level is different
in each subband. Since, in some sense, the WSAF behaves
like several LMS algorithms running in parallel, it is therefore
suitable to have different tunings of the adaptation step in each
subband. It turns out, as shown below, that a good choice for
the weights makes use of the SNR in each subband.

First, decompose the error as the sum of the modeling
error plus the noise. Since

, we have yielding [cf., (8)]

(14)

All signals and are assumed to be ergodic and
wide sense stationary. The filters in the bank are once again
supposed to be nonoverlapping perfect Nyquist filters. Conse-
quently, the subband outputs are uncorrelated. In the following,
the notation (signal with superscript and indexed by )
is used for the th subband sample associated with block,
resulting from decomposition of by Let us calculate the
expectation of the squared norm of

Under the assumption that and
stands for “is uncorrelated with”and designating by the
matrix , we have

(15)

It is well known that Hence,
define as The case

corresponds to the classical (but unrealistic unless
the input is white noise) hypothesis that the modeling error
is uncorrelated with the input signal, whereas smaller values

represent larger correlations.
Since, in this section, the filters of the bank are assumed to

be ideal, for any , we have ,
and

With all previous assumptions taken into account, relations

hold. At convergence, , and
(15) yields

(16)

As it is, this equation is not very tractable. However, due
to the assumption of an ideal filter bank, it is reasonable to
suppose that the part of the residual error in theth subband

is due only to the signals and in this same subband.
In this case, each individual term of the sum (16) is zero, and
we have

(17)

which can be rewritten in terms of the modeling error variances

In AEC applications, the adaptive filter is run in order to
subtract an estimate of the echo (the amount of signal in the
microphone that is a linear filtering of the loudspeaker signal)
from the microphone signal. The error signal is, thus, what
is sent back to the distant speaker. Reasonable specifications
are given in terms of echo return loss enhancement (ERLE),
which should be larger than some fixed quantity (say 20 dB).

In terms of the variables of the adaptive algorithm, this
corresponds to the requirement that the asymptotic variance
of the total misadjustment should betimes smaller than that
of the total echo.

The flexibility of the WSAF allows the possibility of
different requirements to be set in each subband. The tunings
such that in each subband is asymptotically smaller than
the variance of the actual echo in the same subband (say,

times lower) can now be derived. This condition reads

(18)

and, applying this inequality in the previous expression of,
results in

An upper bound on the adaptation step sizes can
thus be obtained from the above equation

(19)

The following are a few comments on (19).

• When the requirement described in (18) is loose (i.e.,
is large), the adaptation step sizes tend to the regular ones
given in the previous subsection.



DE COURVILLE AND DUHAMEL: ADAPTIVE FILTERING IN SUBBANDS USING A WEIGHTED CRITERION 2365

• The smaller the SNR , the smaller the adaptation
step size should be in order to meet the requirement.

• With excellent SNR, the adaptation steps (19) reduce also
to the regular ones

(20)

• The upper bound for the step sizes still holds when the
noise is not assumed to be uncorrelated (white). The only
difference in this case is that are not equal. This is
obtained under the assumption of perfect Nyquist filter
banks.

• This strategy can be applied in a straightforward way to
the BLMS or the LMS algorithm as a particular case of
the WSAF, where all are equal:

• This normalization aims at a given echo rejection level
requiring

• The use of these new step-size formulas can only result
in decreasing the adaptation step size, which cannot lead
to instability problems.

This result shows another advantage brought by the al-
gorithm: Each adaptation step size can be tuned
according to the signal variance and noise variance in the same
subband. This technique is of great interest when nonstationary
signals such as speech are processed. This possibility is further
worked out in the next subsection. Moreover, such different
requirements can be chosen according to the perceptual
importance of each subband.

V. FURTHER REFINEMENTS

This section proposes two possible refinements (by no
means compulsory) that can be applied to the WSAF or any
other adaptive algorithm in order to improve the convergence
behavior.

A. A Time-Varying Strategy for the Weights and Step Size

Practical evaluation of all proposed expressions for the
weights requires the computation of an average variance
estimate of some signals. Moreover, since the signals (as well
as the system to be identified) can be nonstationary, large
variations of the variance of the observed signals can be
expected. More than a 60-dB dynamic range is common for
speech. This justifies the need for a time-varying strategy in
the calculation of the WSAF weights , as proposed below.

Classically, as for the normalized version of the LMS
algorithm [27], an exponential variance averaging of the
signal with smoothing constant is used. For instance, this
amounts to the recursion for the time estimate of
Diag in Diag

, where are the weights proposed in (11), and
is the forgetting factor. In that case, the update

equation of the WSAF becomes

(21)

The same technique can be applied for the proposed
normalization of Section IV-B, aiming at ensuring a certain
amount of echo rejection level. Denoting by

TABLE II
COMPLEXITY OF THE TRANSFORMS USED IN THE PAPER

and the estimated variances of signals and
during block , the weights
are given by [cf., (19)]

and updated by

where

(22)

leading to the same adaptive equation for as (21).
When a poor SNR occurs, the classical adaptation rule

results in a somewhat erratic variation of the adaptive filter
taps since the filter is driven mainly by noise. This can generate
large modeling errors that are even larger than the actual echo.
The adaptive filter must then converge again when the SNR
improves. Of course, this phenomenon does not happen in
stationary situations where the adaptation step size is tuned
in order to obtain a given residual error. However, when the
input signal variance varies a lot, the SNR also exhibits large
variations and often reaches values for which the adaptation
step is too large and temporarily amplifies the echo.

The time-varying strategy provided in this section allows the
correction of this problem, even in the case of nonstationary
signals. Indeed, if the SNR is low in a subband, the weight
in that specific subband is also small. Thus, the adaptation
process is slowed down in that very subband until a good SNR
is encountered. It is illustrated in the simulations Section VI-
C that in a context of AEC for nonstationary signals such as
speech, time variable weights noticeably improve the
convergence behavior of the WSAF in a noticeable manner.

B. Faster Update: The Refreshed WSAF

An improvement concerning the convergence rate of the
WSAF can be obtained at the cost of additional computations
with the same technique as used in the GMDF algorithm
[9]. Indeed, the error samples present in the FB filters (for
computing the decomposition of the error) can be re-evaluated
at each update of the adaptive filter (if ). In fact, if the
filter size of the FB is large and if a big error is made at a
particular moment, it will influence the FB output for a long
time. Thus, in order to minimize this problem, it is possible to
recompute at each iteration the elements present in the delay
line of the filters as if they had resulted from the output of
the last updated adaptive filter. A drawback of this method
is the increase of the overall complexity. On the other hand,
as illustrated later, it improves the convergence rate. In the
following, this algorithm is denoted as the “refreshed WSAF”
(RWSAF).
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TABLE III
COMPLEXITY OF VARIOUS ELEMENTARY TASKS

VI. EVALUATION AND COMPARISON

WITH OTHER ALGORITHMS

A. The Set of Algorithms to Be Compared

Since the WSAF uses a critically subsampled analysis filter
bank, this algorithm is obviously bound to be of block type.
However, one of the major drawbacks of block algorithms
(at least in their initial version) is avoided since the block
size is fully independent of the filter length. This is all the
more important in AEC since we are working with very large
filters (typically 1000 taps) and that the application limits the
processing delay to at most 128 samples. Thus, working with
(relatively) small blocks is a requirement.

Moreover, a fair algorithm evaluation requires the compar-
ison of similar versions of the various algorithms of interest
[frequency domain block LMS (FBLMS), transform domain
adaptive filter (TDAF)]. Plenty of possibilities exist: small
blocks, faster adaptation rate, etc. For completeness, some of
the corresponding versions are recalled below.

Block TDAF
Classically, in the TDAF, the update of the adaptive filter

is performed at the sample rate. Thus, in order to compare the
WSAF with various orthogonal transforms to the classical al-
gorithms, a block version of the TDAF has to be derived. This
is simply performed by constraining the taps of the adaptive
filter to be updated once per samples and minimizing the
common block criterion [cf. (1)].

The classical time domain update equation of the TDAF
is

(23)

where denotes the positive scalar step size, andestimates
the diagonal matrix of the average variance of the components
of When transformed into a block algorithm, this
results in

(24)

for the block TDAF (BTDAF).
Small block versions are outlined below by similarity

with already available versions of small block FDLMS
(SBFDLMS) algorithms.

Small Block Algorithms
Existing versions of small block LMS algorithms can be

found in [8]. The corresponding scheme, which is called the
multidelay block frequency adaptive filter (MDFAF), allows
for the use of smaller blocks, hence introducing a smaller
delay in the processing. Due to application requirements, such
a constraint is a prerequisite for time varying systems such as
acoustic path modeling.

The method used in [8] consists of dividing the time domain
response of the adaptive filter in several portions of same
length (the block size), each one being adapted by the
BLMS algorithm with the global time domain block error. Any
fast convolution scheme [e.g., using fast Fourier transforms
(FFT’s)] can thus be used to perform the convolution for each
subfilter as well as the correlations required for the update of
coefficients.

The same technique can readily be applied to the FBLMS
algorithm, resulting in the small block (SB) FBLMS (SBF-
BLMS) algorithm (which is a simpler version of the GMDF
[9]).

When applied to the BTDAF, the same procedure results in
the small block BTDAF (SBBTDAF). Sections VI-C and IV-
B provide an evaluation of the performance and the required
complexity of these algorithms compared to the WSAF.

B. Arithmetic Complexity and Processing Delay

A first criterion for algorithm comparison is arithmetic
complexity, which allows the evaluation of one of the terms
of the complexity/efficiency tradeoff. The complexity is here
evaluated in terms of the number of real multiplications and
of real additions and All algorithms are considered
under their complex valued versions (the more general one is
usable in an equalization context). In an AEC context, where
all variables are real, the given values will thus need to be
approximately halved.

This complexity is conveniently expressed in terms of
basic operations (transforms, filters, and correlations), and we
first recall the corresponding number of multiplications and
additions.

Basic Operators: In the following and denote
the complexity of the complex addition, multiplication, and
of a real times a complex, respectively. Based on the tech-
niques described in [28], the computational cost of these basic
operations is evaluated in Table III.



DE COURVILLE AND DUHAMEL: ADAPTIVE FILTERING IN SUBBANDS USING A WEIGHTED CRITERION 2367

Transforms: Table II gives the arithmetic complexity of the
complex and real transforms used in the simulations, as given
in [10]. In the following and for the simulations, the filter
bank used as an orthogonal transform when the number of
analysis filters taps is larger than the number of subbands, is
an ELT [10].

More generally, stands for the arithmetic com-
plexity needed to compute one output vector of an-band
filter bank with filters of size for a given input sequence.

represents the product complexity of by a
components vector.

In the special case, where is an ELT, the output vector of
can be calculated very efficiently using a [10].

The corresponding complexity is

complexity ELT K even DCT

(25)

Correlation and Convolution:In order to evaluate the com-
plexity of the various algorithms, it is assumed that fast convo-
lution and correlation is achieved using the fast Fourier trans-
form (FFT)-based algorithms. Both operations have the same
cost , where stands for the complexity of the
fast product of a -dimension vector by a , not nec-
essarily square matrix made of Hankel blocks (each of the
form : Two cases have to be considered:

• If (i.e., the remainder of the integer division of
by is zero), the matrix is divided in
square Hankel submatrices, as depicted in Fig. 6. Thus,
the result of the multiplication is the concatenation of
several products of these Hankel matrices by the same
original vector. This can be achieved in a very efficient
way with an overlap save (OLS) [29], [30] technique and
results in the following: For

DFT .
• If , the vector and the matrix are split into -

dimension vectors and square Hankel matrices,
respectively, as illustrated in Fig. 6. The result of the
multiplication is the summation of the products of these
Hankel matrices by the corresponding vectors. Again,
each term of the summation is computed applying an
OLS technique, yielding

(26)

Note that since one is often shared by the fast correla-
tion and convolution, this DFT has been counted only once.

Exponential Weighting Update:The update
Diag of the exponential win-

dow estimate of the mean square components of the input
transformed vector has a complexity of modulus

is the number of adds required for
adding the precomputed update to the -tap adaptive
filter , whereas denotes the cost of the
multiplication by

The resulting numbers of real additions and multiplications
are summarized in Table III.

Fig. 6. Decomposition of the product of a block Hankel matrix by a vector
for fast computation.

Adaptive Algorithms:The complexity of the adaptive algo-
rithms using an orthogonal transform can often be reduced in
the case of the DFT. Therefore, particular attention will be
paid to this special case in the following.

Since most considered algorithms are of block type, a useful
figure of merit for comparing them is the complexityper input
sample.

The arithmetic complexity of each algorithm per input
sample in terms of the elementary tasks detailed above is given
in Table IV ( denotes the complexity of a square transform
of dimension ). The corresponding analytical expressions are
detailed in Table V, whereas Table VI gathers the numerical
values of these formulae for an tap adaptive filter:

and In these tables, for plain block transform
domain adaptive filters, the block length is assumed to be
equal to the filter size , whereas in the WSAF case, the
block length is the number of subbands Note that, for
simplicity, the complexity of the RWSAF is given only in the
case where (i.e., the adaptive filter length is larger
than the number of subbands) and (i.e., the filterbank
does not reduce to a square transform).

We can observe [cf., (6)] that for an MLT filter bank of
subbands (i.e., ELT case), ,

and In comparison with a small block version
of the FBLMS and the SBFBLMS (where the adaptive filter
is split into equal sized vectors whose size is equal to the
block length, each of them being adapted by an FBLMS), the
complexities of the WSAF and the RWSAF are 16% and 6%
smaller, respectively. The additional cost of employing the
refreshed version of the WSAF is quite small (about 10%).
Moreover, it can be checked that the WSAF based on square
transforms has the same complexity as the BTDAF based on
the same transform.

Processing Delay:Since the WSAF is intrinsically a block
algorithm, it introduces the same processing delay as any other
block algorithm with same block size Moreover, one of
the WSAF advantages is that this processing delay is formally
linked to neither the adaptive filter size (a property shared
by the small block versions of any block algorithm) nor to
the filterbank decorrelation efficiency (i.e., the length of the
subband filters).
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TABLE IV
META-COMPLEXITIES

TABLE V
COMPLEXITY OF THE VARIOUS SIMULATED ALGORITHMS

C. Simulations

This section presents some simulations that are aimed at
comparing the convergence behavior of the various algorithms.
All simulations are run in a context of adaptive modelization.

Convergence Behavior for an AR2 Highly Correlated
Input Signal

Context: In Figs. 7 and 8, the input is a highly correlated

AR2 signal obtained by filtering a white Gaussian noise by
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TABLE VI
NUMERICAL EVALUATION OF THE COMPLEXITIES FOR L = 1024; N = 32 AND K = 2

Fig. 7. Performance of some exhibited algorithms for step sizes� tuned for
fastest convergence. All algorithms are similarly tuned. Same block size and
filter length L:

The adaptive filter as
well as the filter to be identified both have taps. The
simulations are performed in a non-noisy context (no modeling
noise), and the step size is tuned in order to achieve the
fastest convergence rate.

Classical Square Transforms, Block Size Equal to the Adap-
tive Filter Length: Fig. 7 compares the various convergence
behaviors of the FBLMS algorithm, the BTDAF, and the
WSAF with the same block size (set to the adaptive filter
length ) and using two square transforms: the DFT and the
DCT.

Note that for the FBLMS algorithm, the DFT dimension
is two times the block size and thus performs a better decorre-
lation. This explains its better convergence rate compared with
both the WSAF and the BTDAF with a DFTas transform.
However, in all the cases, the WSAF has a better behavior
than the BTDAF for comparable transforms. Moreover, when
replacing the DFT with the DCT as a filter bank in order
to decorrelate further the outputs of the transform, the WSAF
convergence rate is even faster than that of the FBLMS with
its transform two times larger.

Fig. 8. Performance of the WSAF and RWSAF using an MLT(K = 2) as
analysis bank and a step size� tuned for fastest convergence.

RWSAF versus WSAF with Various Block Lengths:In
Fig. 8, the WSAF makes use of a modulated lapped transform
(MLT) as the filter bank. This case corresponds to a filter
length being equal to twice the number of subbands (i.e.,

[10]. The aim of this simulation is twofold. First,
it intends to present the convergence rate improvement when
refreshing the error samples present in the delay line of
the analysis bank at each of the adaptive filter updates
(as described in Section V-B). Second, it illustrates the
convergence behavior of the WSAF in the case of a nonsquare
transform.

In these simulations, the fastest convergence rate is reached
by the RWSAF, where the filter bank is an MLT with

and The expected improvement of the
convergence rate between the RWSAF and WSAF is clearly
noticeable and would appear to be worth the only 10% increase
in the complexity. Increasing the lengths of the filters in the
bank for a constant number of subbands (from an DCTin
Fig. 7 to the MLT and in Fig. 8) can
lead to significant improvement in convergence rate but only
for the refreshed version of the WSAF (RWSAF).
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Fig. 9. Comparison of the convergence curves of the WSAF, SBFBLMS,
and LMS algorithms.

Acoustic Echo Cancellation Framework
In practice, it is interesting to use small transforms (i.e.,

few subbands) and larger adaptive filters (e.g., in the context
of AEC). This is readily achievable for the WSAF because
no link between the adaptive filter length and the number of
subbands is required in its original version (see Section VI-
A). The comparison is made with small block versions of the
FBLMS algorithm and the BTDAF.

Context: The filter to be identified has 128 taps (it is the
truncation of the acoustic response of a room), and so does
the adaptive filter The parameters of the WSAF
algorithm are and The filter bank is again an
MLT, and once again, the step size of each algorithm is also
chosen to obtain the fastest convergence rate. The noise is
subtracted from the error before computing its mean squared
value.

Adaptive Filter Length Greater than the Block Size:Fig. 9
compares the new algorithm WSAF to the LMS and SBF-
BLMS algorithms. The simulation is run in the context of
adaptive modeling. The input of the adaptive filter is stationary
noise with on average the same spectrum as speech. White
noise is added to the reference signal and the output signal-
to-noise ratio (SNR) is 40 dB.

In all the simulations we have run, the proposed algorithm
is clearly an improvement over the LMS and the SBFBLMS
algorithms for which the parameters were similarly tuned: We
have the same number of row vectors in the transform and
same block sizes.

Time-Varying Strategy for the Weights for Nonstationary
Signals: Finally, Fig. 10 shows a classical normalized LMS
(NLMS) algorithm, an improved NLMS algorithm (with the
same time-varying strategy as we propose for the WSAF),
and an improved WSAF in the same context as previously
described (AEC) but with a real speech signal as input
and a SNR of 10 dB. It clearly appears that while the
improvement provided by the time-varying strategy on the
NLMS is important both in terms of convergence and residual

Fig. 10. Comparison of the convergence curves of the LMS, improved LMS
and improved WSAF algorithms for speech data.

error, the same strategy applied to the WSAF allows a further
improvement of about 7 dB on the residual error without loss
in terms of convergence rate.

VII. CONCLUSION

In this paper, a new subband adaptive scheme using LL PR
FB is presented: the weighted subband adaptive filter. Like
classical approaches (BTDAF or the FBLMS algorithm), the
WSAF uses an orthonormal projector for convergence rate
improvement, but it is used in a different manner. In the
WSAF, it is the modeling error that is projected in place
of (classical schemes). We can highlight the following
distinctions between both types of algorithms:

• BTDAF-like algorithms, including the FBLMS : These
algorithms use the common time domain block criterion

for the adaptive filter tap update. The convergence
behavior improvement is obtained by introducing differ-
ent step sizes for the adaptation of each of the adaptive
filter coefficients in the transform domain.

• The WSAF algorithm: Here, the different weights are
introduced through a block weighted criterion and the use
of critically subsampled lossless perfect reconstruction
filter banks. Hence, the weights are applied on the spectral
contents.

The WSAF offers more flexibility for the choice of the
different parameters involved in the adaptive process. Indeed,
for the WSAF, the size of the transform (FB) is independent
of the adaptive filter length and is only linked to the block
size. This gives the required degrees of freedom, compared
with classical transform domain-based approaches. Moreover,
in the WSAF, the size of the transform is not necessarily
square, and this allows a better decorrelation property without
increasing the block size, which is not easy to achieve in
the original versions of the classical algorithms. Finally, this
approach presents some links betweenappropriately weighted
least square minimization and the improvement of the adaptive
process convergence rate.
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In the same conditions, the WSAF is shown to perform a
better convergence rate than the small block implementation of
the FBLMS (SBFBLMS) while offering a similar (and even
slightly lower) complexity.

Furthermore, a time-varying strategy for the step size of the
adaptation that replaces the natural normalization of the WSAF
is discussed. This technique is relevant for signals having large
variance variations such as speech in an AEC context. In this
case, the technique is shown to further improve the adaptive
behavior of the algorithm.
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