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ABSTRACT 

Applications of the Kalman filter in orbit determination have some- 

times encountered a difficulty which has been referred to as divergence. 

The phenomenon is a growth in the residuals; the state and its estimate 

diverge. This problem can often be traced to insufficient accuracy in 

modeling the dynamics used in the filter. Although more accurate dynamics 

is an obvious solution, it is often an impractical one. Model inaccuracies 

a re  here approximated by a Gaussian white noise input, and its covariance 

(Q) is determined so as to produce most probable sequences of residuals. 

The method is desirably non-Bayesian and adaptive, with direct feedback 

from the residuals. An explicit solution to the problem of when, and how 

much, Q to add is given. 
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I Introduction 

In the determination of orbits via the Kalman filter (or, for that 

matter, by other methods as well) , practical considerations place a limita- 

tion on the accuracy to which the dynamics are modeled in the filter. This 

produces an inherent inconsistency between the filter and the real observations. 

As long as the uncertainty in the estimation e r ror  of the dynamical state is 

large, this inconsistency is not very significant. The extremely precise 

observations which are taken tend to rapidly reduce the uncertainty in the 

estimation error,  to the point where the modeling e r rors  become significant. 

The commonly observed phenomenon is a growth in the residuals; the state 

and its estimate diverge. 

It is relatively clear that, in order to improve prediction accuracy, the 

dynamics have to be modeled more accurately and perhaps the nonlinearity of 

the problem need be taken into account. It does not appear that %hort-cutff 

methods are  available for the prediction problem. 

There do exist possible %hort-cutff methods of improving the filter. 

Residuals are  available and the filter gain can be "manipulatedff to produce 

satisfactory performance. One has to abandon the idea of optimal filtering 

and adopt the pragmatic engineering philosophy of constructing a filter that 

"worksff. The test to determine the efficiency of the filter now must be the 

size of the residuals, since this is the only enduring link between the analysis 

and the real world. 

A very natural approach to account for modeling e r ro r s  is to provide 

a noise input to the system and add its covariance Q to P , the covariance 

of the estimation errors .  The problem is when and how much Q to add. 
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Implicit in this sort  of procedure is the assumption that the noise input is zero- 

mean, white and Gaussian. This type noise input may reasonably account for 

modeling errors  whose effect is periodic with short period. Nonzero-mean 

noise might conceivably be used to account for modeling e r rors  of a secular 

nature but, in this case, the effect of the mean value of the noise on the state 

estimate itself must be taken into account. Looking at it in a non-theoretical 

but pragmatic way, Q may be thought of as representing some extra degrees 

of freedom which can be used to  make the filter rrworkff. 

Bayesian-type estimation of Q is possible, but this is not acceptable 

as  a solution to the problem of growing residuals. Such estimates asymptotically 

approach constant values, and the degrees of freedom which Q represents are 

lost. Since the modeled noise input does not exactly represent the modeling 

errors ,  the residuals will start growing again. The problem is not really 

solved; its onset is only somewhat retarded. 

It is believed that any scheme for determining a Q (or any other artifice) 

must deal directly with the actual residuals themselves. It is desired that the 

sequence of residuals considered in any scheme be long enough to be statistically 

significant. On the other hand, the sequence of residuals (actually the time- 

a rc  over which the sequence is defined) should be sufficiently short so that an 

adequate rffit" can be realized with the limited degrees of freedom which Q 

represents. These are, unfortunately, conflicting objectives. If not statistically 

significant, the scheme must be adaptive or self-correcting. It is doubtful that, 

in any orbit determination problem, a sufficient number of residuals is available 

over reasonably short time-arcs to represent a statistically significant sample. 

Thus a decision (Q) may have no statistical significance, and subsequent de- 

cisions must correct previous errors.  
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A scheme to determine Q which appears to have such adaptive features 

is presented here. The approach is to determine that Q which produces the 

most probable sequence of residuals. It involves numerous computations if 

the sequence of residuals considered is long. However, this scheme appears 

promising even when only one residual is considered at a time, in which case 

the computations are negligible. Numerical evaluation of the method is in 

progress. 

The problem which is considered here, that is, filter divergence due 

to modeling errors,  was first considered by Schmidt h1. His approach was 

to impose an a priori lower bound on a certain projection of P , which led to 

some interesting results. The approach taken here is somewhat more direct 

and, in a special case, a part of Schmidt's result is also obtained. 
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JI Analysis 

The following linear dynamical system model is assumed: 

- k = 0 ,  1, ..., x - N ( i O ,  Po),  0 %+l - 'k+l, k xk 'Gkwk 9 

= Mk\ +vk  'k 

where, 

- n x 1 vector state, xk 

- n x n state transition matrix, *k+l, k 

- n x r input noise coefficient matrix, Gk 

- r x 1 vector noise input, k W 

- scalar observation, 'k 

- l x n  matrix, Mk 

- scalar observation noise. k V 

{ w ] is a zero-mean, white Gaussian noise sequence with k 

w w y  = q I  tik&, q 2 0 scalar, I r x r  e i k  & 

and i v k  ) is a zero-mean, white Gaussian noise sequence with 
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We have assumed, without loss of generality, that the observations are scalar. 

A particularly simple form for the input noise statistics (2) is assumed, thus 

requiring the modeling of the matrix function G 

can be readily carried through with a more general form for 

which would in turn require less modeling of the function G k '  
(l), the initial condition x is assumed Gaussian with mean 2 

0 0 
matrix P 

The analysis which follows k '  

e{wkWF) ' 
As indicated in 

and covariance 

0 -  

The well known Kalman-Bucy filter for this model is 

T -1 T 
Mk 'k- 'k+ = p k- -Pk-Mk ( M  k P k- Mk +I-) 

A A - 
*k+l, k xk+ X (k+l) - 

T 
P cpT + q G k G k  - - 

@k+l, k k+ k+l, k P (k+l) - 

with initial conditions 2 and P . 
0 0 

Let 'k = Yk-1 , y k } - =Jk includes the prior data and all the 

observations up to and including y We define the following residuals: k .  

(4) 
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In view of (l), 

= M  (X - S  ) + v  k k  k- k 

The statistics of these residuals are  particularly nice (and this motivated our 

choice of these residuals): 

= o  

are uncorreiaied and, since they are clearly Gaussian, 'Inus residuais 

are also independent. It is easy to compute 

-. 

T e {r: } = M ~ P ~ - M ~  + r 

* We have used "Adam's rule". See p. 34 of [21, for example. These results 
can also be obtained by straightforward but lengthy computations using (7). 

6 



2 
k+i r 

1 2 M~ + r  
(12) 

Mk+j '(k+j) - k+j p (r .) = - ' ( M  P MT + r r /2  e k 3  (277)1/2 k+j (k+j)- k+j 

As an aside, it is interesting to note that 

so that 

A Suppose thzt the filter is at tirr-e k+ so that x and P are 
-k+ k+ 

available and (5) is about to be used to compute the (k + 1) - values. Fix N . 
The q value to be used (call it 4N ) is determined by the operation 

7 



That is, iN is that value of q which produces the most likely sequence of 
r 3 

residuals . . . , r 1 k+N 
. In view of (4) and (5), it is seen that 

The operation (15) involves a one-dimensional search for the maximum. 

Now p 2 0 everywhere and p -+ 0 as q -, . This should make the search 

for  the maximum easier. A new G could be determined at each time k . 
Alternatively, the same 4 
new one is found. 

N 
could be used for 4 N time steps before a N 

The adaptive features of this scheme are seen in the N = 1 example 

of the following section. 
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m Estimate of cl from One Residual 

In the case of only one residual ( N  = 1)  , it is easy to get a closed- 

form solution to the problem 

Let 

P aT MT - q E  r2 k+l - LMk+l *k+l, k k+ k+l, k k+l + '1 
m m  

G G A M '  Mk+l k k k+l 

then 

- 
q ,  i f q > o  

0, otherwise 
4 

W e  have, of course, assumed Mktl Gk Gk T T  Mk+l # 0 . - q , if non-negative, 
n 
4 

-4 
k t l  ' 

provides the only local maximum of p on [O!  03 ) , and U ( q 1  = - C r  
a q2 

C > 0 , so provides the global maximum on [O,  0) ) . If 3 is negative, 

then LE < o fora l l  q 2 0 ,  so G~ = o . 
a q  

To analyze this result, let u s  compute 

- - P Q~ M~ + r  Mk+l *k+l, k k+ k+l, k k+l 
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Thus, 

2 2 
- k+l - e {rk+l/q = O} 

T T  q =  
G G M  Mk+l k k k+l 

q1 This is a very reasonable result. Except for the proper scaling factor, 

is the excess, if any, of the residual squared over the expected value of that 

residual squared, under the assumption of no input noise. 

estimate, since an easy computation shows that 

A 

is anunbiased 
q1 

E Cq] = q 

This scheme is adaptive in the following sense. As long as the residuals 

0)  9 ti, = 0 , and the noise input is zero. This is as it should are small (q 
be, since the residuals are small and the filter is "working". When the residuals 

become large (4 > 0)  , a i1 is put into the filter, equation (5). If it should 

happen that a particular residual is large only because of a wild observation 

noise sample and this scheme puts too much q into equation (5), no permanent 

damage is done. This would make P too large and would result in larger 

corrections to the estimate at subsequent observations, which is consistent with 

the requirement that the filter "keep on filtering". Subsequent observations 

will drive P down again. Legitimately large residuals (due to model errors) 

clearly produce the desirably large 4 which will keep the filter flopentf. 
1 

Since, strictly speaking, ten residuals do not have much more statistical 

significance than one residual, and a thousand residuals are neither available 

nor feasibly analyzable, 6 appears as a serious candidate for the real orbit 

determination program. Very large q's , due to wild observation noise 

samples, can be avoided by putting an a priori upper bound on q , and per- 

forming the maximization in (15), (17) over q* 2 q 2 0 . 

1 
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IV More General Input Noise Statistics 

Suppose that the noise input w (1) has the more general statistic k 

Q r x r ,  Q Z O  

Then the second of equation (5), in the Kalman-Bucy filter, is replaced by 

T T 

P (k+l) - - - *k+l, k P k+ cp' k+l, k + G k Q  GL 

Now let us attempt to determine Q from one residual by the operation 

Differentiating p with respect to an element of Q , say qij , 
gives 

(26) +r)-2]EM - T T  a (G QG )M 
-1 2 

2 k+l i 3 q .  k k k+l 
LT +r) +r (M P [- ('k+lp(k+l) - k+l k+l k+l (k+l) -'k+l . 11 

T T  * 
for some i and j , (Gk Q G k )  Mk+l # 0 

a - Now assuming M - 
k+l a q.. 

13 
we get as the single scalar necessary condition for an unconstrained maximum 

of p the vanishing of the quantity in brackets in (26). This reduces to 

has at least one non-zero element. * That is, Gk Mk+l Mk+l Gk 
T T  
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Now equation (27) has infinitely many solutions . It can be shown * 
that the most general solution is given by 

€ 

k+l k k k+l 

Q =  Gz Mz+l Mk+l Gk + (M G GTMT )” 

T M  1 T T  
Gk Mk+l Mk+l Gk Gk Mk+l k+l Gk 

- 
(M G G ~ M ~  )” k+l k k k+l 

where Z is an arbitrary r x r  matrix. It can also be shown, at least for Q 

diagonal, that 

A k+l  

where c > 0 and A is a positive semi-definite matrix, for all solutions ‘& . 
Thus all diagonal are candidates for local maxima of p . 

T T  
Some particular solutions will now be exhibited. Let Z = F I/Mk+lS%%+l . 

Then we have 

I € - 
T T  Qe = 

G G M  Mk+l k k k+l 

* See [31 , for  example. 
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e 
weights" solution. If Q is 1 x l ,  that is, G is n x l  , then k 

€ - 
& =  ' F ' F  

G G ~ M '  Mk+l k k k+l 

for all 2 , and provides the global maximum of p . A family of ''relative 

weights" solutions is given by 

E - - 
Qi - r 

c [Mk+l (Gk)j]i+2 
j = 1  

\ 

L'k+l (Gd 1 1 0 

\ 
\ 
\ 

0 

k where (GQ are the columns of G - j 
Q o = G e  . 

, as can be verified directly in (27). 

, i =0, 2,4, . . . 

(32) 

Now all the solutions exhibited contain c , so that estimates of Q based 

upon these quantities have properties similar to those of 4 of Section III. 
1 

- 
Qi 9 6'0 

0 , otherwise 

(33) 
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2 
k+l 

are positive semi-definite and are  proportional to the excess, if any, of r 

over its expected value, with no input noise. All these estimates are, 

however, biased estimates. 

Suppose that it is not feasible to model the matrix function % and, 

(k+Q - therefore, desirable to determine the correction %Q%T to P 

[equation (24) 1 directly by the operation 

In that case, Gk Q GL is treated as the unknown in (27). The most general 

solution is, therefore, 

T -  T T M  T M  
GkQGk - (M k+l  M T  k+l >" Mk+lMk+l+Y-  (M k+l M k+l )2 Mk+l k+lYMk+l k+l 

T 
with Y an arbitrary n x n matrix. It can also be shown that for Gk Q Gk 

diagonal 

where d > 0 and B is a positive semi-definite matrix, for all solutions 
T 

G k Q  Gk 
T . The qii now denote the diagonal elements of Gk Q Gk . 
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Some particular solutions may now be exhibited. With Y = 0 or 
T 

Y = M L M  , we obtain k+l k+l 

- C 

G k & G i  - Mi+l Mk+l 
('k+l MkT,l)Z 

This solution resembles the correction to P derived by Schmidt [l], except 

that our correction is to P 

modify the estimate itself directly, while he does. Our strategy, based on (37), 

would be 

and his is to P Also, we do not (k+l) + ' (k+l) - 

which contains no undetermined scaling parameter, while Schmidt's scheme 

does. In fact, the scaling parameter is explicitly given, namely, 

F 

(M M T  )2 k+l k+l 

. Here, we have another solution Let Y = C I / M ~ + ~ M ~ + ~  T 

I T -  E 

Gk&Gk - T 
Mk+l Mk+l 

(3 7) 

Again, the estimates based on these solutions are biased estimates. 
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Actually, it is felt that MT M [equation (37) 1 has as little to do k+l k+l 
with model e r rors  as does I [equation (40) 3, and neither solution is therefore 

recommended. One can certainly do better with even a crude modeling of G 

It has not been proven (or disproven) that the a. (32) maximize p , nor has 

the global maximum of p(Q) been found. As a result, it is preferable to use 

the model and estimate given in Section III, if the estimate is to be based on 

only one residual. 

k '  

1 
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V Estimate of r from One Residual 

The present analysis can also be applied to the estimation of the observa- 

tion noise variance r [see (3) 1 . The ?'parameterf' r is not considered as 

useful as q in controlling filter divergence, since r can only produce a 

slower rate of decrease of the covariance matrix P , but cannot cause P to 

increase. The estimate of r from one residual follows. 

At time k- , r is determined from 

If 

- 2  T r z r  - M  P Mk k k k- 

it is easy to compute the solution 

r ,  F > O  

0 , otherwise 

Since 

T 2 
M P M = e  I r k l r = 0 3  k k- k 

(43) I 

(44) I 
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we have 

2 2 
= 1 rk - e Crk Ir = o j  , if positive 

0 ,  otherwise 1 

Also, 

(45) 
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VI Adaptive Filter Performance 

* 
Consider the filter (4, 5) with q replaced by the estimate 4 
1 

from (19). 1 
is random since it depends on the observation. As a result, the differ- Now 6 

ence equations for P are  stochastic. It is no longer possible to show that the 

estimates % are unbiased estimates (as they are in the case where q is 

known). Clearly, % is not the minimum variance estimate. The difficulty 

is that the difference equation for P is nonlinear and P 

k 

appears nonlinearly k k 
in the filter gain (4). Thus it is impossible to compute a recursion for e { (xk - 'kS) 2 

which is the expected estimation error, the relevant quantity in the consideration 

of biasness. 

T Furthermore, it is impossible to compute e {(x -2 ) (\-%J ISk} k k+ 
for the reasons mentioned above. This latter quantity is the matrix of conditional 

second moments about the estimate. Also, 

where P 

that the statistical properties of the estimates of q (or Q ) obtained in this 

paper are strictly valid only for the first such estimate, due to (47). The 

performance of the adaptive filter cannot be evaluated theoretically because 

is computed in the adaptive filter. At this point, it is to be noted 
k+ 

(4 7) 

* This estimate of q is considered here for concreteness, The results which 
follow apply to the other estimates of q as well. 
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it is impossible to compute 

which is an indicator of filter performance. 

The above remarks, however disquieting to the theoretician, need not 

be taken to heart by the engineer. The optimal filter, when applied to orbit 

determination, often does not work, and does this, to the frustration of the 

engineer, in an almost optimal way. A practical alternative, not without 

some theoretical basis, is offered here. It does not possess some of the nice 

theoretical properties, yet intuition indicates that it may indeed work very 

well. The "proofTT can only come from the rfpuddingff of numerical experiments. 
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