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Introduction 
 

Computational electromagnetic is a very active area and in the last decade was a 
very interesting increasing for a wide class of applications. For the numerical 
solution of such problems, Yee's Finite-Difference Time-Domain (FDTD) [1] 
scheme has become a quite popular technique. FDTD is related to the physical 
space representations of the fields, in which the electric and magnetic fields are 
described by vectors, both discretized in time and space in a grid usually uniform. 
The main disadvantage of this representation is therefore the possible increase of 
the computation time to simulate such grid. For this reason, it is important to 
study adaptive numerical methods that use a refined grid only in certain regions of 
the space, and a less refined grid in other regions where the variation of the fields 
is smoother. The objective is to obtain an adaptive mesh as a function of time that 
allows to an economy of resources and a relatively short or acceptable time of 
simulation. In this direction, this paper concerns with high order finite difference 
schemes for Maxwell's equations combined with an adaptive strategy based on 
interpolating techniques, the so called SPR (Sparse Point Representation) Method 
[2]. In this method, the mesh structure presents a heterogeneous composition: 
sparse in smoothness regions and dense in regions of accented variation. The 
method combines the simplicity and accuracy of traditional finite difference 
schemes with the ability of wavelet coefficients in the characterization of local 
regularity of functions. The application of the SPR method in staggered and non-
staggered grids for the resolution of 1D Maxwell equations has been detailed by 
the authors in [3], which also include stability and dispersion analyses. It has been 
observed that high order schemes in non-staggered grids can be used with greater 
CFL parameters to achieve a prescribed accuracy with a certain number of cells 
per wavelength. Furthermore, the use of non-staggered grids facilitates the 
implementation of adaptive strategies. The application of the SPR method in non-
staggered grids for the resolution of 2D TE Mode Maxwell equations is described 
by the authors in [4]. In the present paper we demonstrate some of the potential of 
such scheme trough the results of the numerical simulation of a 2D horn. 
 



Wavelets tools and SPR representation 
 

In the adaptive SPR method, the goal consists of performing the finite difference 
model in a more economic fashion, by taking into account local regularity 
information about the numerical solution.  
 
The method has two basics parts: the representation part and the operational part. 
In the first part, there are wavelets tools for multiscale function representations.  
In such framework, functions are represented in different scale levels, and the 
main tools are appropriate transformations relating the information at the finest 
scale level to the lower ones, and vice versa. In each level, the wavelet 
coefficients are defined in terms of local interpolation errors at the new points of 
the current level of discretization. As interpolation errors, the wavelet coefficients 
can be used as indicators of local smoothness. Points associated with wavelet 
coefficients under a given threshold are removed from the grid. The resulting SPR 
grid is sparse in smoothness regions and dense in regions of accented variation.  
 
In the second part spatial derivatives are discretized by traditional uniform finite 
differences using only the information of the SPR representation using step sizes 
that are proportional to the point local scale. However, since a SPR grid may be 
good for the function representation, it may not be good enough to be used for the 
representation of its derivatives. Therefore, some kind of refinement must be 
performed consisting in the inclusion of some of the points in order to get an 
extended grid more appropriated for the application of the finite difference 
operator. More details on the SPR method are in [2, 3, 4]. 
 

TE mode Maxwell’s equations 
 
We consider the transverse electric (TE) mode for which there are only electric 
field components transverse to the z-axis. We assume no variation with respect to 
z, which means that all partial derivatives of the fields with respect to z equal 
zero. The corresponding set of equations is, 
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Where ε  is the electrical permittivity µ  is the magnetic permeability and σ is the 
conductivity. Both fields are sampled at the same uniform grid being represented 
by the following equations. 
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Based on these discrete values, using fourth order finite difference schemes for 
space derivatives and integrating in time using a first order Euler scheme, we 
obtain the following set of discrete equations. 
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where we introduce the finite difference operators: 
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Numerical Results 
 

Our purpose in the present section is to analyze the performance of the SPR 
method for the numerical solution of the TE mode system of Maxwell's equations 
described in the previous section. The example to be considered is a 2D horn. 
This structure extends to infinity in the z-direction with no change in its geometry. 
The model of the horn is illustrated in Fig.1. The walls of the horn are stepped. 
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Fig. 1: Geometry of the horn 

 
We consider that the fields at t=0 are ( ) ( ), , 0x yE x y E x y= =  and 

( ) ( )22 212500832500),( −−−−= yxz eeyxH . 
 
Fig. 2, shows the evolution with time of zH . In the SPR representation, the 
thresholding limits were 10-2 and 10-4 for the electric and magnetic fields, 
respectively. The finest grid is 128x128. 
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Fig. 2: Evolution with time of the solutions for zH  

 
Conclusions 

 
This paper describes a 2D application of interpolating wavelets and recursive 
interpolation schemes with thresholding, aiming the representation of the electric 
and magnetic fields in nonuniform, adaptive grids. Applied to Maxwell's 
equations, the method leads to sparse grids that adapt in space to the local 
smoothness of the fields, and at the same time track the evolution of the fields 
over time. In general, the number of points in the grid, Ns, is below the maximum 
number of points, N. It is possible to control Ns, by trading off representation 
accuracy and data compression, and therefore speed. A numerical example is 
presented showing the propagation of a gaussian pulse within a 2D horn. 
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