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Abstract. The theory and mathematical bases of a-posteriori error estimates 

are explained. It is shown that the Medial Axis of a body can be used to de- 

compose it into a set of mutually non-overlapping quadrilateral and triangular 

primitives. A mesh generation scheme used to generate quadrilaterals inside 

these primitives is also presented together with its relevant implementation as- 

pects. A new h-refinement strategy based on weighted average energy norm 

and enhanced by strain energy density ratios is proposed and two typical prob- 

lems are solved to demonstrate its efficiency over the conventional refinement 

strategy in the relative improvement of global asymptotic convergence. 
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1. Introduction 

The reliability and accuracy of finite element analysis (FEA) has always been a point 

of contention, especially in applications where the precision of the solution is critical to 

the analyst. In general, it can be stated that although FEA is the most widely used tool 

for the solution of a large class of engineering problems characterized by PDEs (Partial 

Differential Equations), the accuracy of the solution may always be questioned. From a 

global point of view, this inaccuracy may be attributed to the modelling drawbacks of FEA 

since it is practically impossible to characterize the infinite number of degrees of freedom 

of a real physical system by a discrete numerical model. This modelling deficiency usually 

results in a lower bound of the solution which is manifested by stiffening in structural 

mechanics problems. 

In most real life engineering analysis problems, classical solutions are almost never 

available since the problem domain is usually non-regular. In such cases, the FE solution 

is the only benchmark that can be taken as a reference and thus it is imperative that it is 

reliable and accurate. 

*For correspondence 
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In this aspect, one more feature of FEA should also be addressed - viz. automation of 

the procedure. The reason for this is two-fold: first, the automation of the FE procedure 

implies a lesser amount of man-machine interaction which reduces the chance of human 

errors and, second, as will be shown later, error estimation procedures perform best in 

automatic unstructured mesh generating environments - so, in a way automation enhances 

the reliability of the error estimation procedure. To address the problems of accuracy 

estimates and reliability of the FE solution, a closer insight to typical FE errors is thus 

required. A study of the derivation of the error estimates using variational bases is also 

necessary to gain further insight into the relationship these estimates share with the standard 

FE process. 

2. Errors in FEA 

FE solution errors may be broadly classified into three major groups depending upon 

their source of generation. It may be stated that the various sources of errors are inherent 

in the modelling of the continuum problem into a discrete set of equations, rounding 

off and truncation due to limited representation and operation of floating point vari- 

ables in the computer itself and in the overstiffening effect of the structural system 

in general. From these viewpoints, FE solution errors may be classified as given 

below 

• Mathematical modelling errors 

These occur due to the fact that no mathematical model can fully satisfy all the charac- 

teristics of a physical model. Thus, such errors are introduced at the very onset of the 

formulation of the PDEs. 

• Discretization errors 

In a discretized FE model there are a finite number of degrees of freedom which are 

used to model a continuum system which has practically an infinite number of de- 

grees of freedom. This overstiffens the system and produces discretization errors. In 

most cases (i.e. in smooth solution fields in analytic domains) it can be shown that the 

solution accuracy improves asymptotically with increase in the number of degrees of 

freedom. 

• Roundofferrors 

Since the computer handles variables usually through a finite number o f  words - a 

significant number of digits are rounded off to the next largest digit thus changing the 

values of the variables. 

In adaptive FEA, the discretization errors are minimized using suitable error estimates. 

2.1 Error analysis and estimation 

In this section a typical elliptic PDE as used by Kelly et al (1983) and Gago et al (1983) is 

considered and the Galerkin method is used to discretize the weak form of the equations as 

it is done in traditional FEA. Subsequently, it is shown that a weighted residual expression 

of the strong form of the PDE can be reformulated on the discretized domain which 
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gives rise to certain residuals that constitute the FE discretization errors. To arrive at the 

same results as Kelly et al (1983) and Gago et al (1983), a detailed derivation of the 

equations is presented below for the benefit of readers not conversant with functional 

analysis. 

Let us consider a domain denoted by f2 bounded by FD and I-'N such that FD ['7 FN = 0 

and l~D U FN = I'. Let the domain f2 be necessarily non-singular. Let a partial differential 

equation be defined in f2 as, 

--VT[aVu] + bu + f = 0, (1) 

where, u is an unknown function and b and f may be constants or functions depending 

upon the nature of the problem to be modelled, f2 C ~3 (in the most general, i.e. 3-D 

case). The boundary conditions are given by the following equations, 

u = ~7 ( 2 )  

which are the geometric boundary conditions defined on Fo.  For the current problem, 

homogeneous Dirichlet boundary conditions are used for which fi = 0. The natural (Von 

Neumann) boundary conditions are given as: 

Ou 
a ~ n  = q (3) 

which are defined on FN, n being the unit normal vector drawn on the boundary away 

from the domain. 

The weighted residual form of (1) may be written as, 

-favvr [aVu]da+ fabuvda+ favfda=O, (4) 

where v is a weighting function. On using the Gaussian divergence theorem on (1), the 

following equation is obtained, 

-favvr[aVu]df =fa[vv][aVru]d 2-frVaVu.ndr. (5) 

Assuming that the weighting functions v actually have square integrable first deriva- 

tives and obey the homogeneous Dirichlet boundary conditions, (5), (2) and (3) 

yield, 

- f vVTu[aVu]dfa= f [Vvl[aVTu]dfa- fFuvqdP. 

From (6), the weak form of the problem is obtained as, 

In this context, the concept of a bilinear form is presented as, 

B(u, v) = [ (L luMlv  + L2uM2v +...)df2, 
df~ 

(6) 

(7) 

(8) 
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where u, v are functions in the same normed vector space and Li and Mi are non-zero 

linear operators on u and v. Using this relation in (7), we obtain, 

B(u, v ) =  f,[aVTu][Vv]d~2+ f~ buvdf2=- fo fvdf2+ fFu vqdF. (9) 

As stated previously, v belongs to a space of functions which have continuous square 

integrable first derivatives and satisfy the homogeneous Dirichlet boundary conditions. 

Let this functional space be called Ho, and let a family of functions be Ni ~ HD. The 

functions u are approximated as, 

M 

fi = ~_, Nifii. (10) 
i=1 

Thus, B(u, v) = B(fi, Ni) 

B(a, Ni) = fa[aVr ~l[VNildS2 + fq bNiSdf2. (11) 

Now, the functions Ni are piecewise continuous functions over subdomains g2i where 

U ~2i = fL Each of these subdomains g2i is bounded by the boundary Fi. The continuity 

of the functions fi are of the same order as of the weighting functions Nj (Bubnov- 

Galerkin approach), which ensures that these two function families indeed belong to HD. 
The only difference is that the previous function space was defined in HD(g2) while the 

current space is defined in HD (f2i). Hence, the discretized equation may be represented 

as :  

B(fft'Nj)=~lf~2i'= [aVTNj][Vu]d~q-~-~ff2i=l i bNjud~. (12) 

One important point to be noticed about this step is that discretization introduces some ar- 

tificial boundaries in the system at which none of the boundary conditions are valid. Thus, 

at these zones some perturbations may arise if we revert back to the weighted residual 

form since the PDE is now redefined on a different domain (i.e. connected set of discrete 

subdomains). To demonstrate this, the first integral of (12) is integrated by parts by using 

the Gaussian divergence theorem as, 

Fa° l Njd. f.iVT"Nj[aVu]d~2=-f.iNjV:r[aVu]d~2+fr.crl_ OnJre 

f (aOU l Njdr, (13) + J 
JrKer \ 0 n / r K  

where, J [a (0 ~ / 0 n) ]rK is the "jump" or discontinuity in fluxes across the element interface. 

This occurrence is solely due to the approximation made in the function u. Although only 

first order continuous functional approximation of u needs to be done to satisfy the weak 

form of the equation, the first derivatives of these functions are not continuous across ele- 

ment boundaries which manifests itself in the PDE in the strong form. Thus, using (13) and 

(4), and rearranging the terms, the following equation is obtained as a complete weighted 
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residual formulation of the problem using the approximate functions on the discretized 

topology of the domain f2. 

~-~[LiNj[VT (aVYO + f +b(t]df2]=-[frecr (aOfi~NjdF1 
i=1  k, On/ "ai 

- I ; x C r J  (aOfi~ NjdF]  \ On/rK J~i 

+ [frN NjqdF] (14) 
fli 

From (14), which is also presented in Kelly et al (1983) and Gago et al (1983), it is evident 

that a new weighted residual (WR) form may be created when approximate functions for 

u are used on the discretized domain f2i, which creates some non-zero "residual" or error 

terms as will be shown in the next section. These are the discretization errors which are 

introduced in the FE formulation. From the new WR form in (14), let the substitute prob- 

lem statement in the PDE form (strong form) be constructed. There are practically three 

groups of integrals to be dealt with in this problem, i.e. those on the domain f2, those on 

the interface boundaries I'p which are not a part of the boundary 17 (and thus necessarily 

a part of f2) and the Von-Neumann boundaries I-'N. In fact, (14) gives the terms arising 

out of the violation of the (domain) equilibrium and the natural boundary conditions and 

associates them to a spurious "jump" of traction values across the discretization interfaces 

arising due to the lower order approximation of the function u by ft. The domain integrand 

may be written as, 

v r ( a v ~ )  + bfi + f = R (15) 

where R # 0, since in general u # ft. The terms on the Von Neumann boundary may be 

written as 

O~ 
q - a - - = F ,  

On 
where P is a non-zero vector. The term on the interface boundary is given by: 

(16) 

(17) 

where/} is also a non-zero vector quantity. Thus, it can be remarked that k is the term 

arising out of the approximation of u inside the domain, P indicates the violation of 

the natural boundary conditions due to the approximation of the function u on the Von- 

Neumann boundaries and/} is the measure of discontinuity of the first derivatives of 

fi on the discretized boundaries arising due to the discretization of the domain and the 

functional approximation of u. From the above equations it is also clear that, in order to 

evaluate the error of discretization, all the three terms need to be considered for study. 

In structural mechanics applications the domain term indicates the violation of internal 

element equilibrium, the Von Neumann boundary terms indicate the errors in load mod- 

elling and the element interface integral gives the jump in stresses across the element 

boundary. 
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2.2 Substitute variational problem in error 

As seen in the previous section, discretization of the domain S2 and functional approxima- 

tion of u are responsible for perturbations of the basic PDE, the natural boundary conditions 

and the first-order derivative discontinuities of the function on discrete boundaries. The se- 

lection of the approximate function fi is guided by the requirements of the weak form of the 

functional which is different from the actual function u whose continuity requirements are 

higher since it satisfies the strong form of the functional. However, the approximate func- 

tion is always a subset of the original functional space. Following Kelly et al (1983), the 

bilinear form of the error from the equations derived earlier is established, as given below. 

Let an error function e be introduced such that 

e = u - ~. (18) 

If the function e is introduced in the PDE (1) and the boundary conditions given by (2) 

and (3), then the following relations are obtained: 

- V r ( a V f i )  + bfi + f = R. (19) 

Hence, 

--VT(aVe) + be + R = 0. (20) 

The Dirichlet boundary conditions on I'D become 

u = ti.  ( 2 1 )  

The Von Neumann boundary condition is given on F'N by the following equation, 

8e 0~ 
a ~ n  = q - a--.0n (22) 

Thus, the above set of equations pose a strong form of the substitute problem in e. Using the 

method of weighted residuals as done previously in an attempt to decompose the problem 

to its weak form (using the same basis functions v ~ liD which obey the homogeneous 

geometric boundary conditions), the following equations are obtained: 

- favr  (aVe) vda + fabevd  + favRda=O. (23) 

Using the Gaussian divergence theorem on the first integral of the above equation we get, 

(a 0e) 
- ~ V r ( a V e ) v d S 2 = f a V v ( a V r e ) d f 2 - £ v  \ 0 n / d r .  (24) 

Since v satisfies the homogeneous Dirichlet boundary conditions, the above equation 

decomposes to the following: 

(aOe] 
- f a V r ( a V e ) v d f 2 = ~ V v ( a V r e ) d f 2 - f r N v \  0 n / d F .  (25) 

Using the substitute Von Neumann equation given previously, the above equation may be 

modified as 

-£VT(aVe)vdf2=f~Vv(aVTe)df2-frNv(q-aOU~dF'on/ (26) 
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Thus, replacing this condition into the weighted residual equation (23), the following 

equation is obtained, 

i~Vv(aV'e)d~-SrNV(q-aOU~dFJ-LOn./ f bevdf2 + .Io vRd~2 = O. 

(27) 

~'~ [ f~i gvj (a gT e)dfai ] = - ~-~. ff2i gT (a g e)vjd~2i 
i=1 i=1 

F F x \ On] vjdF 

Oe 
+ E vja~ndF" 

FpEF N P 

Substituting (3 I) in (30), we obtain: 

.(e, u):- ~-~. I.i=i i vr (aVe)':d" ÷ £.= i bevjd~'~i 

(aOfi]vJ dF + E ft. v'a°edr'" 

(31) 

(32) 

From (9), the bifinear form B(e, v) may be given as, 

B(e, v) = faVv(aVT e)dfZ + fabevdfa. (28) 

In structural mechanics problems, the bilinear form B(u, v) in (9) represents some measure 

of the internal energy (strain energy) of the body, whereas the right hand side indicates 

the external work done by the applied loads. In virtual work type formulations, v is the 

vector of virtual displacements, and the bilinear form indicates the internal virtual work 

done by the body as a response to the external virtual work done by the loads. In (28), 

therefore, B(e, v) indicates some measure in the error in internal energy of the body and 

v are general Galerkin weighting functions. The external perturbation given (on the non- 

discretized domain) is due to k (equilibrium error on domain due to modeled u) and ,~ 

(violated natural boundary conditions). 

As shown in § 2.1, let the domain fa be discretized into subdomains (finite elements) ~i 

and thus introduce several discretized boundaries (interelement boundaries) FK distinct 

from the Dirichlet and the Von Neumann boundaries, i.e. 

• U ~'2i -Jr- U FK (FK ~ F). (29) 

Using (29), and the discrete weighting function vj where j indicates the index indicating 

the degree of freedom (discrete), (28) is recast as 

B(e, vj)= ~-~,[faiVvj(aVre)dg2i+ faibevjdfai ] . (30) 
i=1 

Using the Gaussian divergence theorem to integrate the first domain integral in (30), the 

following relation is obtained, 
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From the above equations it can be seen that the term frK J[a(Oe/On)]vjdF, actually 

decomposes to frK J[a(Ofi/On)]vjdF, since the exact solution u does not have discon- 

tinuous first-order derivatives across the interelement boundary. Also, from the original 

partial differential equation of the system and the modelled equation it is obvious that the 

following relation holds, 

since, 

f~i vT (aVe)vjd~i -t- ~i bevjd~2i = ~i vT (aV(u -/g))vjdai 

+ fa, b(u - v l ) v j d ~ i ,  (33) 

ffzi Vr (aVu)vjdf2i + £ i  buvjdai = - ~ i  fv jda.  (34) 

Substituting (33) and (34) in (32), 

Dso Dso Dso B(e, v) = V T ( aVu)  v j d ~ i  - buvjd~i - fvjdfl  
" :  i i i 

+ r k Oe vja-~ndP. r \ On/vjdF + (35) 
I ~ K F p E F  N P 

On grouping terms under the domain and boundary integrals and replacing the domain 

residual term by Ri, we get, 

f B(e, v) ,]f~i Rivjda 

rxCru K \ On] vjdF + recr~-' P \ an /v jdr  (36) 

Due to orthogonality relations, the bilinear form B(e, v) is zero. Thus, (36), which has 

also been derived by Kelly et al (1983) and Gago et al (1983), indicates that the error in 

displacements e is such that a homogeneous form of (36) is satisfied for the whole domain. 

Since (36) becomes an identity, it cannot be solved directly and several assumptions are 

made to evaluate e. For example, as reported by Kelly (1984) and Kelly & Isles (1989) - 

it is assumed that the domain residual (indicated by R) and the interelement traction jump 

actually self equilibrate over an element and the natural boundary condition violations 

are treated as traction jumps at FN. In fact, (36) represents an enhanced FE equation, in 

which the domain term indicates the residual internal energy, the term on FK indicates the 

work done due to unbalanced intemal forces and the term on the Von Neumann boundary 

FN indicates the work done due to residual forces on loaded edges. This implies that 

the global sum of the residual forces actually yields a measure of the equilibrium error 

due to discretization. Thus, the standard FE energy, if enhanced by this residual energy, 

may yield better results. This concept is used by Cantin et al (1978) and Cook (1982) to 

estimate a better stress distribution from a given set of FE results by iteratively improving 

displacements using the residual loads. 
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Figure 1. (a) - Node patch. (b) Ele- 

ment patch. A, B, C, D, E, F = cen- 
troidal superconvergent points of the 

elements, p = patch assembly node, 

= patch assembly element. 

2.3 Error estimation procedures 

Several a posteriori type error estimates have been reported in literature. Among the most 

notable of these are the ones reported by Babuska & Szabo (1982), where the residual form 

of the estimate is considered. Zienkiewicz & Zhu (1987) designed abest guessed stress type 

error estimate based on least square smoothing of the stresses. More recently, Zienkiewicz 

& Zhu (1992) reported a superconvergent error estimate based on patchwise stress recovery. 

The method was enhanced by Wiberg and coworkers (Wiberg & Abdutwahab 1993; Wiberg 

& Li 1994; Wiberg et al 1:994) and Blacker & Belytschko (1994) who used equilibrium 

and natural boundary condition residuals together with conjoint polynomials to derive an 

asymptotically exact estimate. 

The development of such a posteriori error estimates is focussed on two aspects. First, a 

smoothed stress distribution needs to be extracted from the FE stresses and next, a proper 

refinement criteria needs to be designed which determines the new element size for the 

given error percentage. The errors are usually computed as a measure of the difference 

between the FE stresses and the smoothed stresses. 

In the patchwise stress recovery method, a patch of elements is selected around the node 

as shown in figure la. The unknown smoothed stress variation over this patch is assumed 

to be 

or* = [1, x, y, xy]{a}, (37) 
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where {a} is a vector of undetermined coefficients. The discrete L2 n o r m  of the stress 

difference is considered to be the stress error functional, Ha: 

NP 

Fla = E [c r*  - ~rhilT[cr * -- ffhi], (38) 

i=0 

where, N P = number of superconvergent sampling points on patch, o'hi = superconver- 

gent FE stress on ith sampling point. 

Equation (38) is valid only in the shaded area in the patch as shown in figure la. It 

may be noted that this equation is a least square estimation of the smoothed stresses from 

the superconvergent FE stresses Crhi. On differentiating this functional with respect to the 

undetermined coefficients, we get the following set of linear equations, 

NP NP 

~-)[Pi]r[Pi]]{a} = ~ ( [ P i ] r  ahi), (39) 

i = 0  i = 0  

where, 

[Pi] = [1, xi, Yi, xiYi]. 

Now, let us consider (36) again. Let the error in displacement e be replaced by 

e = u - u*, (40) 

where u is the exact displacement and u* is the displacement corresponding to the smoothed 

solution. Thus, the right hand side of (36) implies that the smoothed solution does not 

produce any equilibrium residual on the domain or any interelement residual on FE edges 

or any boundary residual on the Von Neumann boundaries. These conditions are thus used 

as constraint equations to enhance the functional rIa, (38), as 

NP 

ahi]T[ a* -- ahi] q - f l l  f_ [ V T O ' *  - -  f]T[ VT a* -- f]df2p l-Ia EL * 
i = 0  a~Zp 

+ 132 fn [[N](o'*) - t]T[[N](a*) -- i]dFp, (41) 
d l  p 

where, ill, f12 =- penalty coefficients, N P  = number of superconvergent sampling points 

on patch, [ v T a  * -- f ]  = equilibrium residual, f2p = patch domain, [N](a*) - ? = Von 

Neumann residual, and Fp = Von Neumann boundary on patch. 

The term on the interelement boundary is omitted because the smoothed stress poly- 

nomial is continuous over the patch. Equation (41) was also presented by Wiberg et al 

(1994) and Blacker & Belytschko (1994) but no strict justification was given regarding the 

enhancement of the basic stress functional by the equilibrium and the natural boundary 

condition enhancements. Thus, (36) represents the basic relation which is used to extract 

smoothed stresses in most of the published a posteriori error estimators either in direct 

form or as a constraint condition to enhance a least square stress functional given in (38). 

The use of the augmented patch-based stress extraction methods has some mathemat- 

ical inconsistencies in setting up of the limits of integration of the equilibrium and the 

Von Neumann residuals. It is seen that only a part of the patch is influenced by the 
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least square polynomial (indicated by hatchmarks in figure l a) which implies that the 

sampled values of ~r* in zones exterior to this part cease to be reliable. This implies 

that the integration limits of the equilibrium and the Von Neumann residuals cannot be 

over the entire patch. Recently, Wiberg et al (1994, 1995) proposed the element patch 

(figure lb) where such problems do not occur as the integration limits cover the entire 

element. However, as it is difficult to compute a least square projection of the stresses 

over the element patch, Wiberg et al (1994, 1995) use a least square displacement pro- 

jection technique from which the stresses are computed by using the strain displacement 

and constitutive laws. However, as the QUAD4 element does not possess superconvergent 

displacement points, it is not practicable to extract superconvergent stresses from an en- 

hanced displacement field directly although the enhanced displacement field is constrained 

by (36). 

In this context, Mukherjee & Krishnamoorthy (1996) have presented the element patch- 

based superconvergent error estimate which uses a least square fit of an enhanced stress 

polynomial and the penalty constraints of (36) are applied directly. Unlike Wiberg et al 

(1994, 1995), no displacement projection is done and thus the superconvergent nature of 

the stresses are guaranteed. The examples in this paper are solved by using this estimate. 

3. Automatic mesh generation procedures 

A major part of the effort in the adaptive FE process ties in the mesh generation procedure. 

Good reviews of mesh generation schemes may be found in Buell & Bush (1973), Thacker 

(1980), and Ho-Le (1988). The available mesh generators now in use may be generally 

classified into two groups, i.e. mapped and automatic mesh generators. In the mapped 

mesh generation process the problem domain is usually manually decomposed into a set 

of mappable regions which are mutually non-intersecting. A mapping technique, usually 

an isoparametric or a transfinite procedure, is employed to explicitly or implicitly handle 

a set of geometric representations within each mapped region. These representations are 

defined in terms of the information specified on the boundaries of the subregion. More 

specifically, the isopararnetric scheme is used to interpolate points in the subregion domain, 

while collocating at discrete points on the subregion boundary, and the transfinite mapping 

method interpolates points in the subregion domain, while collocating globally on the 

subregion boundaries. Thus, creation of transitions is impossible unless special measures 

are employed and, although these methods are fast, they are not flexible enough for local 

control. 

AUtomatic or unstructured mesh generators are generally boundary based, i.e. the bound- 

ary definition of the meshable object is taken as the starting point of the mesh generator, and 

as the generation procedure progresses, the meshable domain geometry also changes con- 

tinually. Thus, at every step of element generation, the geometry of the unmeshed domain 

needs to be evaluated. Hence, even though these processes have better mesh control and 

are more flexible, they are computationally more intensive. Also, the storage requirements 

for the unstructured mesh generators are larger as both connectivity and coordinates of the 

nodes need to be stored, whereas in case of mapped mesh generators only the coordinates 

need to be stored. 
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Thus, it was commented in Krishnamoorthy et al (1995) that the motivation for the 

development of a new mesh generation is to design a system which incorporates the com- 

putational efficiency of the mapping techniques and the flexibility and control characteris- 

tics of unstructured mesh generators. Keeping this in mind, a new method of quadrilateral 

mesh generation was proposed (Krishnamoorthy et al 1995), called Meshing by Successive 

Superelement Decomposition (MSD), which was shown to be composed of two parts - 

the Approximate Skeletal Method which automatically decomposes the problem domain 

into a set of mappable, topologically simple superelements and the Meshing by Successive 

Decomposition, which is a recursive quadrilateral mesh generation scheme acting on the 

individual superelements. 

3.1 Approximate skeletal method 

The theoretical basis of the approximate skeletal method is the generation of medial axes 

of objects, which is used for object recognition in pattern recognition theory. The imple- 

mentation details of this technique are presented by Krishnamoorthy et al (1995). The 

theoretical basis of the method is briefly discussed in the following sections. 

3.1 a Medial axis transforms: In pattern recognition theory, a skeleton or a medial axis 

or a symmetric axis of an object is defined as the locus of those points which are mini- 

mally equidistant from any two boundary points of the object - in general the method for 

generating the skeleton is usually referred to as the Medial Axis Transform (MAT) tech- 

nique or the Symmetric Axis Transform (SAT) technique. The existence of skeletons for 

various biological shapes and their use for shape description was first proposed by Blum 

(1967). Shapes are normally described by their boundaries - however, in MAT, the shape 

description of objects include the interior (and exterior) of the object by defining a primi- 

tive called a maximal disk. Hence the description of an object consists of two primitives - 

viz. the medial axis (MA) and the maximal disk (MD). The locus of the centre of the MD 

is the MA itself and the radii of the MD form an envelope which describe the boundary of 

the object. 

The flexibility and the generality of shape recognition by MAT cannot be overstressed. 

For example, the shape features which are shown in figure 2 are identified by simple local 

perturbations in the MA or the MD. In the case of apinch, the "noise" in the MA proves its 

presence. The worm, wedge, cup andflare are all characterized by local curvature values 

of the radius function of the MD. In specific cases, like the worm, the curvature change is 

zero, in all other cases it is non-trivial. Thus, by using MA and MD, not only the boundary 

features but also the width properties of the object may be identified. 

Mathematically, in MAT, an intrinsic coordinate system is used to define any two- 

dimensional object. Given a closed boundary A of a domain f2, the Euclidean distance 

d(x, A) from any point x to a set of boundary points A is given by 

d(x, A) = min[d(x, y) : y 6 A]. (42) 

It is clear that for some points, more than one boundary point satisfies this minimal distance 

criteria and the locus of such points is the MA of the system. Let this MA be designated 
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WORM WEDGE 

CUP FLARE 

Figure 2. Some elementary shape descriptors based on width properties and their MA. 

S; then a function f (x)  can be defined such that it maps A into a set of non-negative real 

numbers p ~ R, where R is the space of all non-negative real numbers as 

f (x)  = d(x, A). (43) 

From (42) and (43) as given above, it is clear that f (x)  is the radius function or the disk 

function of the domain. The value of this function for any x on S gives the measure of the 

radius of the MD at x. 

It can be shown that the MA of a shape and the Voronoi diagram of its edges are 

interrelated. In fact, they are identical for convex domains - however for non-convex 

domains, the Voronoi diagram is different. 

Geometrically, the MA is composed of several connected segments joined at a set of 

points called the skeleton nodes which are also called branch points (Blum 1967). Hence, 

the MA of a 2D object is a one-dimensional planar graph without any area. The MAT 

of objects can exist even outside the domain as shown in figure 2. ff the domain itself is 

considered as a hole in a very large bounded circle, then many properties of the internal 

MAT are also seen as that of the external MAT. However, external MATs have two distinct 

properties of their own, viz. for convex shapes external MATs do not usually exist and, 

even if they do, they are not connected. 

Interior MA can be used in pattern recognition as shown by Blum & Nagel (1973) 

and automatic mesh generation, as reported by Gursoy & Patrikalakis (1992) and Tam & 

Armstrong (1991), while exterior MA is used for motion planning and mesh generation 

for CFD applications. Figure 3 shows the interior and the exterior skeletons of an arbitrary 

domain. 

The analysis of MATs of continuous shapes was investigated by Blum (1973), Calabi 

& Hartnett (1968a, 1968b), and Nagel & Blum (1976). Computer implementation and 

discrete MA theory was developed by Montanari (1968). Besides these, the works of Lee 

(1982) and Bookstein (1979) are also noteworthy. 
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O 1- 

Figure 3. Outer and inner MAT of a domain. O = outer medial axis, I = inner 
medial axis. B = boundary. 

3.1b Domain decomposition using MAT: While addressing the issue of domain de- 

composition, the methods used for generating MA branches should be highlighted. In the 

present case, Krishnamoorthy et al (1995) presented the equations of the MA in simple 

parametric form since the domain boundaries could be represented by analytic equations. 

In pattern recognition theory, thinning algorithms and in CAD systems geometric search 

techniques are usually used for generating the MA branches (Turkiyyah & Fenves 1988). 

In case of FE mesh generation applications, domain feature extraction is not carded from 

the MA and hence a mathematically accurate MA extraction is not necessary. This is the 

basis for the method presented in Krishnamoorthy et al (1995), where simplified repre- 

sentations of boundary and the MA branches ensure a large computational saving in the 

domain decomposition process. 

The assumptions introduced in Krishnamoorthy et al (1995) produce no major perturba- 

tion of the MA. All curved boundary segments are represented as a union of line segments. 

This simplifies computations since the MAT of straight edges are only first- or second- 

degree curves. In fact, if boundary representations are handled by quadratic polynomials, 

the MA becomes a quartic polynomial. However, in the proposed algorithm, the MA is 

handled by piecewise continuous quadratic polynomials, consistent with the simplified 

bonndary representations. 

The MA branches (also referred to as skeletal curves or radial lines), which are rays 

traced from skeleton nodes to nearest boundary segments, and the boundary segments 

themselves decompose the domain into a set of non-intersecting, topologically simple 

superelements which are considered individually for mesh generation. The radial lines 

indicate the radii of the MD centred at the skeleton nodes. 

The superelement generation process is thus composed of four steps as shown below. 

• Generation of equidistant curve. 

• Generation of skeletal curve segments. 
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Figure 4. Equidistant and skeletal curves. 

• Ray tracing from skeleton node to generate radial lines. 

• Geometric merging processes to correct distorted superelements. 

W 

3.1b(i) Generation of  equidistant curve- An equidistant culwe for a pair of line segments 

is defined as the locus of all the points which are equally distant from these segments. In 

figure 4, the segments E1 and E2 are used to generate the equidistant curve RW which 

consists of five piecewise continuous curve segments RS, ST, TU, UV and VW. The 

discontinuities of the curve are marked by the perpendiculars P1, P2, P3 and P4. The 

equidistant curve is a piecewise continuous quadratic polynomial in these five segments. 

The coordinate systems and the computation procedures for the points on the equidistant 

curve may be found in Krishnamoorthy et al (1995). 

3. lb(ii) Generation of  skeletal curves - In the present work, the boundary primitives are 

straight lines, a chain of straight line segments representing a curved edge and reentrant 

vertices. The skeletal curve is a subset of the equidistant curve which is constrained by the 

interference of a third boundary primitive in accordance with (43). Thus, the skeletal curve 

segment is basically a branch of the MA and the union of these segments gives the MA 

of the whole domain. In figure 4, Q is a typical skeleton node generated by edge segment 

E3 and the segment SQ is a MA branch (skeletal curve segment) of the doublet defined by 

(El, E2). 

Thus, the MA is composed of several such individual segments which are bounded by 

these skeleton nodes and, since each is independent of the effect of another, they are unique, 

disjoint and complete. Since a unique pair of boundary segments is used to generate each 

segment, such doublets are also unique, disjoint and complete. 

3. lb(iii) Subregion decomposition - The decomposition of an object into meshable sub- 

regions is preceded by the generation of the shape primitives, which are derived from the 

medial axis and are discussed in the next section. 
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3.1 b(iv) Shape primitives- In this context, the concept of a shape primitive is introduced 

next, as proposed in Krishnamoorthy et al (1995). Let ~2 be a bounded planar domain with 

a boundary A, then following earlier definitions, d(x, y) is the Euclidian distance function 

from a point x ~ S to a point x ~ A where S is the MA. Thus d(x, y) is also the 

radius function of the MD at x. So, if a normalized coordinate system t is used for each 

MA branch and boundary segment, then D(t) becomes the normalized Euclidian distance 

function and indicates the lengths of the perpendiculars from the boundary segments onto 

the MA branch. At the skeleton node, there are three such equal perpendiculars from the 

two generating and one constraining boundary edge. 

As the MA is defined as the locus of the centres of such maximal disks which are 

tangential to the boundary segments, the distance function may be defined as the locus of 

the point of tangency of the MD to the boundary. In this context, let us introduce one more 

constraint in the definition of the MA; allowing the MD to move inside fl such that the 

bounding box to the MD has at least two opposite edges lying on the boundary A. It may 

be observed that the locus of the centre of MD, S, is only a subset of the MA, S. This new 

shape attribute of the domain f2 is now called the shape primitive (SP) of the domain. In 

geometrical terms, it is clear that the MA is a list of branches bounded by skeleton nodes 

and boundary nodes, whereas the SP is a list of branches bounded by skeleton nodes only. 

It may be noted that the algorithm for the generation of the SP differs markedly from the 

grassfire algorithm as proposed by Patrikalakis & Gursoy (1990). 

Previously, it was stated that the MA is a subset of the edge Voronoi diagram, and now 

the SP is presented as a subset of the MA. 

Recently, Reddy & Turkiyyah (1995) presented the trimmed skeleton which is identical 

to the SP as proposed earlier by the authors. 

3.1c Skeleton node classification and ray tracing methods: The branches of the shape 

primitives are identified by the type of skeleton nodes they are bounded by. The skeleton 

nodes are, in turn, identified by the number and configuration of the radial lines that can 

be traced from them to the object boundary A. In general, the rays from the skeleton node 

to the object boundary segments depend upon the relative positions of these segments in 

the 2D plane. For example, if three boundary edges are adjacent to each other, then the SP 

branch that is generated is itself a skeleton node. This is the typical branch node in MA 

where the MD touches A at three places, thus in the present case, three radial lines can be 

drawn from such nodes, hence such nodes are named triple ray type nodes. Similarly, in 

cases where at least two edge segments are adjacent or all three edges are non adjacent, 

triple ray type nodes are generated. In cases where the two edges are nonadjacent and 

are the generators of an SP arc, usually double ray type nodes are introduced which are 

basically the normal nodes in MA where the MD touches A at two points. It is to be noted 

that the double ray type node contradicts the definition of the skeleton node, but in case of 

domain decomposition applications, where the quality of the generated superelements is 

important, such double ray type nodes need to be introduced in places where the generating 

edge segments change curvature or, in general, possess large curvature. In the presence of 

reentrant comers pseudo double ray type nodes are introduced which remove the concavity. 

The generation of these nodes creates the geometric semiligatures as stated in Blum & 
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Nagel (1973). In the presence of end zone arcs, pseudo double ray type orpseudo triple 

ray type nodes are generated depending on the angle which the arc subtends in the domain. 

Thus, az a deviation from the usual MAT, the endpoints are replaced by either normal or 

branch points. 

Thus, each branch of the SP is bounded by exactly two of these node types as mentioned 

above. Each node type in turn is represented by the radial lines traced from them to 

the boundary of the object. Hence, in such a representation it is possible to maintain 

all the shape properties of the parent domain. In the traditional MA methods, the width 

properties of the object are represented by the MD while the axial properties of the object are 

represented by the branches of the MA, which is an intrinsic coordinate system independent 

of the external Cartesian system used to represent the object. In the proposed approach, 

keeping in mind the subsequent domain decomposition, the representation is done by the 

branches of the SP and the skeleton nodes which specify the radial fines - so the intrinsic 

coordinate system in this case is different from the one as given in Nagel & Blum (1976). 

3.1d Decomposition into superelements: The SP branches of a domain, together with 

the radial lines and the boundary edge segments form the basis of the subdivision of 

the domain into superelements. In fact, superelements may be grouped into two classes, 

viz. end-zone superelements and body superelements. The end-zone superelements are 

quadrilaterals typically bounded by two adjacent boundary segments and two radial lines, 

and with four nodes of which one node is a skeleton node while the other three are boundary 

nodes. These are generated in the regions where three boundary edges are adjacent, and the 

skeleton node in these superelements usually marks one extremity of the SP of the domain. 

The body superelements may be triangular or quadrilateral and are characterized by one 

SP branch, two radial lines, two skeletal nodes and at least one boundary node. These may 

be formed anywhere inside the domain along the SP of the body. Thus the set of these two 

types of superelements completely decompose the object into a set of non-overlapping, 

topologically simple subregions. 

As stated in the earlier section, the proposed intrinsic coordinate system of the object 

represents the object as a set of piecewise continuous SP segments bounded by the skeleton 

nodes. For representing the width, radial fines are associated with skeleton nodes. The 

superelement generation is shown as a natural extension to this object recognition strategy 

and the superelements include the boundary definition of the object together with the 

information on the interior of the object in terms of the skeleton nodes, SP branches and 

radial lines. Thus, the superelements encapsulate all the geometric features of the domain 

and may be used to represent the domain in all further computations. 

The decomposed representation of the domain as presented above is important with 

respect to the mesh generation and attribute handling point of view. The decomposition 

essentially implies that if any engineering feature is assigned to any of the superelements, 

then this feature would also be the property of any geometric entity that is extracted from 

this superelement. In a more global term, if the same feature is assigned to any part of the 

parent domain, then all superelements which compose that specific part will also inherit that 

feature. Subsequently, any geometric entity which is extracted from these superelements 

will in turn inherit this particular feature too. As an example, if a certain boundary condition 
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is applied on a part of A, then all superelement edges which contain that part of the boundary 

inherit the same boundary condition. In turn, all element nodes which may be generated 

on all such superelement edges also inherit that boundary condition, irrespective of the 

nature of the FE mesh. Thus, a hierarchic relation is created in the proposed model, which 

is suitable for adaptive analysis applications, since at every stage of analysis the mesh is 

modified requiring redistribution of attribute data. 

3.1e Control and correction of superelements - the merging process: The quality of 

the superelements usually affect the quality of the elements generated inside them. if the 

set of boundary segments of f2 include reentrant vertices or short boundary segments, 

then distorted superelements are generated which, in turn, may be responsible for large 

element distortions within them. It has also been noticed by the authors that for convex 

vertices with large included angles, large taper distortions usually occur. The merging 

process rectifies this anomaly by moving skeleton nodes toward one another to modify such 

geometry. 

In Krishnamoorthy et al (1995), two such merging procedures viz. parallel shift and 

angular shift corrections were proposed based on the movements of skeleton nodes to 

correct the distorted superelements. A set of rules for moving the node was also laid 

out. 

3.2 Meshing by successive decomposition 

As stated earlier, in adaptive mesh generation procedures, local mesh control is of prime 

importance, hence structured mesh generators which have control only on the superelement 

edges are not very useful. 

Among the more well-known quadrilateral mesh generators, the schemes by Zhu et al 

(1991), Talbert & Parkinson (1990) and Blacker & Stevenson (1991) are notable. The 

technique presented here overcomes the shortcomings of conventional mapping techniques 

and does not involve the computational complexities of other unstructured quadrilateral 

mesh generators either. 

In the present method, the superelements are divided recursively using discrete curve 

segments generated by transfinite interpolation. Nodes are generated recursively on these 

segments from a proposed background-grid to ensure complete internal local control of 

the mesh density. Multiple splitting methods are introduced to create transitions leading to 

mesh gradation within the subdomain. 

The general procedure for the proposed mesh generator is based on recursive splitting 

(with transitions). The procedure starts by discretization of the superelement boundaries 

into an even number of segments (Heighway 1983). Then the splitting procedure starts 

from the boundary to divide the superelement into a set of 2, 3 or 4 children superele- 

ments and accordingly the edges are also split. The new edges thus generated are now 

discretized by nodes and the children superelements are considered for an even number 

of segments. The procedure continues until the last child superelement edge may not be 

segmented any further. Then this superelement is recognized as a quad4 element and the 

procedure continues till all the children superelements have been thus transformed. The 
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node-spacing information is obtained from a proposed background grid which is created 

from a postprocessed FE solution, i.e. it contains the nodal spacing data corresponding to 

some error-tolerance norm. A garbage collection algorithm was developed to handle the re- 

cursive operations. A detailed description of this process may be found in Krishnamoorthy 

et al (1995). 

4. R e f i n e m e n t  c r i t e r i a  - a n e w  h - r e f i n e m e n t  s t r a t e g y  

In this section the authors propose a new h-refinement strategy which deviates from the 

conventional refinement strategy and it is shown that the new strategy yields a better 

convergence rate for the problems solved. 

4.1 Conventional h-refinement criteria 

The conventional h-refinement procedure was first proposed by Zienkiewicz & Zhu (1987). 

Error estimators of the elements were used to construct new element sizes at the centroid 

of the old elements on the basis of the assumption that the most optimal mesh is the one 

where the error is equally distributed among all the elements of the mesh. The general 

derivation for this is as follows. 

Let a set of elliptic PDEs defined over a typical domain g2 be 

Lu = q, (44) 

subject to the boundary conditions: 

u =t~ on FD. 

O u / 0 n = ~ F N .  

In typical linear elasticity applications, L is a linear differential operator, u is the unknown 

function of displacements, q is the body force term, and (39) is the equilibrium equation. 

If the maximum element diameter of a FE discretization is he, and the degree of the 

interpolating polynomial is n, then, the error in displacement is given by: 

Eu(h) = O(h n+l) < Ch n+l, (45) 

where C is some constant. 

If the stresses and the strains (i.e. general derivatives) are given by the mth derivative, 

then, we get 

E~ (h) = 0 (hn-m+l). (46) 

Then the error bounds of the strain energy, which is a quadratic functional of the displace- 

ment, become 

Ee(h) = O(h2(n-m)+l). (47) 

In another form, the norm of the 'error in energy becomes 

II Ee II = 0 (h (n-m)+l), (48) 
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where the global energy norm error, II Ee II is computed as 

IlEell=[f[~r*--~rh]r[D]-l[cr*--crh]d~2] °'5 . (49) 

The local energy norm error is given by 

[fo IIEeHi = [or* - o-hl r [Dl- l [e  * - ~rhldf~ . (50) 
i 

The local and global energy norm errors are related as: 

M 

IlEell 2 = y ~  [IEelli 2 (51) 
i=1 

where, o-* = smoothed stress, ah = FE stress, f2i = element domain, M = total number 

of elements. 

The convergence order of the global energy norm error is the same as that of the errors 

in the stresses, hence an accurate stress projection method will automatically accelerate 

the convergence in the energy norm (or L2 norm). Thus, 

II Ee II --< ClO(h(n-m~+l), (52) 

where C1 is a constant depending on element aspect ratio, quadrature rule etc. In fact this 

constant may be shown to be dependent on some norm of the displacement function u. 

As the element size tends toward zero (h ~ 0), the above equation tends to an equality 

with the bound given in an asymptotic manner. It has been shown in Babuska & Szabo 

(1982) and Zienkiewicz & Zhu (1992) that if stress extraction is based on superconvergent 

principles, then indeed (52) is true. If N is the number of global degrees of freedom in the 

system, and K is an arbitrary constant, then, we get 

N = K / h  2. (53) 

Replacing in (44), the following condition is obtained : 

[IEell < C1N[l+(n-m)]/2 (54) 

or  

II Ee II ~ C1 N-p~2, (55) 

where p = 1 - n + m. 

The bound given above is valid for smooth solutions in regular domains. However, in 

case of non-regular domains, the following modification is suggested, 

II Ee II -< C~ N -  min[~.,p]/2 (56) 

where ~. is a parameter whose value depends upon the singularity in the domain. Usually, 

for elastic problems, Z is 0.50 for closed cracks and 0.71 for a 900 comer. 

Now, let ~ be the target global error fraction and 17 be the actual relative percentage 

error, then 
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IlEell 
0 = (][Eell2 + Ilt~]12)o. 5 (57) 

where, I1~11 is the strain energy of the body. Obviously, this equation is valid in the local 

as well as the global form. Hence, both local and global relative percentage error energy 

measures can be computed. 

Let a reference norm be given by the following 

II R II = II u II/M°'5, (58) 

where Ilull is the energy computed on the basis of an improved stress field and M is the 

number of elements of the system. Thus, the upper bound of the (elementwise) local error 

estimate is set as 

IlEelli _< ~[IRII. (59) 

It has been shown by Zienkiewicz & Zhu (1987) that if the reference norm is based on 

the local energy level then usually overrefinement may occur. So, a global energy based 

reference norm is normally used. The above equation implies that the element level energy 

error reaches a fraction of the reference energy equally over all dements as h tends toward 

zero. Thus, in the limit, the optimality condition is reached when all the elements have 

equal amounts of error in energy. 

The size indicator is defined as the following: 

~i = [IEelli/6llRII (60) 

where, ~i is the size indicator used to change the size of the element as 

hnew hO~d/~z, 
= i ~i (61) 

where h new and h °ld are the new and old element sizes respectively. 

4.2 Proposed h-refinement criteria 

In this proposed h-refinement criteria, both the reference norm and the target global error 

fraction are modified. The reference normin this case is the weighted average of the energy 

norm which is computed as, 

M 

II W(u)II = ~ (llu II/Ai°'5), (62) 
i 

where Ilu IIi is the local element level strain energy computed by an improved stress field 

and Ai is the area of element i. 

The global energy density may be defined as 

Og = llu II/A °'5, 

where, A is the area of the domain. 

The local energy density is defined as 

Oi = Ilu Ili/a 0"5. 

(63) 

(64) 
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Thus, the modification to the target global error fraction is given as 

Tli = ~[ Dg/ Di] u, (65) 

where ot is a parameter which lies between 1.00 and 1.25 for most problems. The equation 

given above decomposes to the original expression for ~, (57), when a is zero. In physical 

terms the above equation reduces the modified target global error fraction where the energy 

density of an element exceeds the energy density of the system. Thus, automatically, this 

modification forces the element sizes to be smaller where there are large stress excursions. 

The modification to the reference norm is given as 

II g llmod = II W(u)II/AO'5, (66) 

where, I1" Ilmod is the modified reference norm. It may be noticed that instead of the average 

of the energy which was computed in (58), this norm computes the weighted average of 

the energy. In the case where all the elements are of equal size, the modified reference 

norm decomposes to the original reference norm. If L2 norm is used instead of the energy 

norm and Von Mises stresses are used instead of Cauchy's stresses, then this refinement 

criteria changes into the adaptive accuracy scheme as reported by Grosse et al (1992). 

The weighted average energy norm was first discussed in the context of structural shape 

optimization by Bugeda & Oliver (1991), 

- 1  

IIEelli < Cl~i ~ Ilnll, (67) 

where IIEelli is usually the local error in energy, the constant Cl is the user defined 

target global error fraction,/~i is some measure of the element size, ~. is a function of 

the convergence rate and II R II is the reference norm. 

In this context it may be relevant to discuss some other previously published refinement 

criteria, which are either SED-based or SED-enhanced, and their differences with the 

proposed criteria. 

Melosh & Marcal (1977) defined an SED-based refinement criteria which was used for 

mesh enrichment strategies. The differences in the SED from the centroid of the element to 

other Gauss points were computed and depending on the magnitude of these differences the 

element was divided into 4 subelements. No strict refinement strategy was thus followed 

and there is no explicit computation of the terms in (67) thus making it totally distinct from 

the proposed strategy. 

Botkin & Bennet (1986) treated the variation in strain energy as a measure of the error 

in the FE solution. Thus, this was also an SED-based estimate and the refinement equation 

was given by 

IIVeili < Ci~ikllOkVl[, (68) 

where, II Ve I I i= elemental error in SED, C1 = proportionality factor, ~i = element size 

measure, II Dk V II = k-th variation in SED, k = 1 for linear problems. 

Equation (68) is similar in structure to (67). It may be noticed that in (67) both the 

reference norm and the local error are in terms of SED which is quite different from the 

proposed strategy where the SED is used to modify only the factor Ci; the reference norm 

and the local error terms are in terms of weighted energy and strain energy respectively. 
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Figure 5. Example problems. (a) Bracket and (b) cracked panel. 

The technique proposed by Cedillo & Bhatti (1988) is again a simple mesh enrichment 

procedure where a given element is broken into 4 subelements provided the following 

relationship is valid 

LSED >/~ GSED (69) 

where, LSED = local (elemental) strain energy density, GSED = global strain energy 

density, and ¢3 = tolerance limit. 

In this strategy no explicit error estimation is done and thus no specific refinement 

strategy can be followed marking its difference from the proposed strategy. 

Lee & Lo (1992) use a SED enhanced scheme as proposed in the current scheme. In 

Lo's scheme, it is argued that the LSED to GSED ratio is very high for elements near 

the singularities. To accomodate for this effect, the convergence rate ~. in (67) is modified 

by the inclusion of this ratio such that at the presence of singular zones, the convergence 

rate increases accordingly. Thus, this method is also different from the proposed strategy 

where the convergence rate is unchanged but the target global error fraction is modified 

such that it reduces in the presence of a singularity. Lo's algorithm does not modify the 

reference norm either, as is done in the proposed method. 

5. Case studies 

To demonstrate the efficiency of the proposed refinement scheme over the conventional 

refinement scheme - two-plane elasticity examples are selected as shown in figure 5, and 

adaptive FEA is performed with a target global error of 5%. The meshes are shown in 
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Figure 6. 

No.  o f  D O F  = 3546  

Relative Percent E r r o r  = 4.71 

Adaptive analysis of a bracket. (a) Conventional and (b) proposed strategies. 

figures 6-7, the stress distribution of the cracked panel problem is shown in figure 8 while 

the convergence plots are shown in figure 9. Of the two problems solved, the bracket is 

characterized by a complicated geometry and the open crack problem is characterized by 

a singularity at the crack tip. It is observed that for both the refinement strategies, the 

non-singular bracket problem yields almost similar results in terms of convergence rates. 

However, in case of the modified refinement strategy, the mesh shows better localization in 

the high stress zones. Thus, in non-singular problems, the new refinement strategy brings 

about a measure of directional refinement - to yield an r-h refinement process. For the 

bracket problem, the conventional refinement strategy yields a error percentage of 4.77 for 

a mesh with 3900 degrees of freedom, whereas, using the proposed refinement strategy, 

3546 degrees of freedom in the final mesh yield an error percentage of 4.71. Thus, the 

proposed strategy yields a more economic solution. 

In case of the singular problems, the new refinement strategy yields a better convergence 

rate in addition to a better localization of the mesh. Thus, in such problems, the r-h method 

actually shifts nodes closer to the singular zones resulting in higher convergence rates for 

the same number of degrees of freedom. Using the conventional refinement strategy, 2760 

degrees of freedom in the final mesh yield an error percent of 4.72 while the proposed 

strategy requires only 2524 degrees of freedom to yield an error percent of 4.15. Thus, 
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Figure 7. Adaptive analysis of a cracked panel. (a) Conventional and (b) proposed strategies. 

in the case of this singular problem also, using the proposed strategy results in a more 
economic solution. 

6. Conclusions 

Based on the work presented here, the following conclusions may be drawn. 

(1) The skeleton-based domain decomposition procedure is ideally suited for the decom- 
position of complex objects into simple mapable subregions. 

(2) Since the mesh generator is activated in very simple domains (i.e. either quadrilateral 

or triangular), the speed of mesh generation is fast. 

(3) As each superelement is considered in turn for mesh generation, this method is ide- 

ally suited for parallel/distributed computing applications. In sequential computing 

environments also, substructuring may be adopted easily to bring down computational 

costs. 

(4) The superelement generation process automatically eliminates convex comers from 

the meshable regions. 

(5) The mesh generation process is based on very general splitting procedures, hence this 

technique may be used in problems with higher dimensions too. 
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(6) The proposed refinement strategy shows asymptotic rates of convergence, thus dis- 

pensing of the equal error distribution paradigm. In fact, it is shown that errors are 

distributed in proportion to element sizes which automatically imposes more stringent 

local refinement criteria at high stress zones. 

(7) An r-h adaptive method is embedded in an h-refinement framework by using the 

proposed strategy. 

(8) In both the problems solved, the modified strategy requires a lesser number of degrees 

of freedom than conventional strategy to achieve the same global accuracy levels. 

Thus, the modified refinement strategy makes the adaptive process more economical. 

(9) The proposed refinement strategy speeds up convergence for singularity dominated 

problems thus imparting greater measures of reliability to the FE solutions of such 

problems. 

7. Future direction of research 

(1) Adaptive analysis of R-M plates using field consistent 4-node elements was reported 

by the authors (Reddy & Turkiyyah 1995), where the effects of plate thickness and 

boundary conditions on adaptivity were discussed. 

(2) The skeletal decomposition of general parametric surfaces has been taken up for adap- 

tive analysis of shells. 

(3) The mesh generation process is being modified for generation of quadrilateral elements 

on 4-sided doubly curved superelements. 

(4) An optimization based global-local error estimate is being developed for local point- 

wise error control and asymptotic convergence rates. 

(5) A new patchwise superconvergent stress recovery procedure is under development 

incorporating residuals due to equilibrium violation, natural boundary condition vio- 

lation and interelement stress differences. 
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