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Abstract—This paper presents a new adaptive fuzzy control
scheme for active suspension systems subject to control input time
delay and unknown nonlinear dynamics. First, a predictor based
compensation scheme is constructed to address the effect of input
delay in the closed-loop system. Then, a fuzzy logic system (FLS)
is employed as the function approximator to address the unknown
nonlinearities. Finally, to enhance the transient suspension re-
sponse, a novel parameter estimation error based finite-time (FT)
adaptive algorithm is developed to online update the unknown
FLS weights, which differs from traditional estimation methods,
e.g. gradient algorithm with e-modification or σ-modification.
In this framework, both the suspension and estimation errors
can achieve convergence in finite-time. A Lyapunov-Krasovskii
functional is constructed to prove the closed-loop system stability.
Comparative simulation results based on a dynamic simulator
built in a professional vehicle simulation software, Carsim, are
provided to demonstrate the validity of the proposed control
approach, and show its effectiveness to operate active suspension
systems safely and reliably in various road conditions.

Index Terms—Fuzzy logic systems, Adaptive control, Active
suspension systems, Input time delay, Finite-time convergence.

I. INTRODUCTION

THE rapid development of automotive industry imposes

more stringent requirements on the ride comfort and driv-

ing safety. In modern vehicle systems, suspension systems, as

one of the most important vehicle chassis components, mainly

affect the ride comfort, vehicle manoeuvrability and safety

of drivers and occupants. Typically, suspension systems can

be grouped into three categories: passive suspension systems,

semi-active suspension systems and active suspension systems.

Unlike passive and semi-active suspension systems, active

suspension systems are equipped with extra actuation devices

to provide or dissipate energy induced into the systems,

thereby eliminating the vibrations and/or shocks transmitted

to the vehicle body from irregular road roughness. In this
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respect, active suspension systems have been recognized as

a promising pathway to achieve better suspension response

and thus greatly improve the ride comfort and driving safe-

ty. Therefore, active suspension system construction and the

associated control designs have attracted significant attentions

from both industrial and academic communities [1]–[7].

For active suspension systems, designing robust and effi-

cient control strategies is vital to operate them safely and reli-

ably in various road conditions. Hence, many advanced control

methods have been proposed for active suspensions since the

past decades, such as adaptive control [8], robust control [9],

fuzzy control [10] and H∞ control [11], etc. However, in prac-

tical engineering applications, active suspension systems have

inherent input time delay phenomenon induced by the adopted

hydraulic or pneumatic actuation devices. This critical delay

phenomenon can also be found extensively in many practical

control systems such as process control systems, networked

control, where the existence of input delay can dramatically

degrade the system performance and even trigger instability

[11]. In this sense, designing an appropriate control strategy

to accommodate the effect of input time delay has always

been a practically useful yet challenging task. To address this

issue, Smith [12] first proposed a Smith Predictor (SP) for

linear systems with input delay by introducing a predictor

structure to successfully avoid the appearance of delay in the

denominator in the closed-loop transfer function. Åström [13]

further tailored the SP framework for integral systems with

input delay. In [14], Annaswamy modified the original SP

method and presented an adaptive posicast controller (APC)

to address the spark ignition engine speed control problem.

Pade approximation approach was also adopted in [15] to

approximate and then compensate the effect of small input

delay in the control system. Although elegant mathematical

analysis has been provided in these above mentioned control

techniques for systems with input delay, they are mainly

suitable for linear systems only. Specifically, extension of SP

to nonlinear systems has still not been fully solved. Hence,

control design for nonlinear systems with unknown dynamics

and input delay is remaining as an open problem, in particular

for vehicle suspension systems.

Very recently, Fischer and Dixon developed a saturated

tracking controller [16] for uncertain nonlinear systems with

input delay. This idea has been further explored for nonlinear

systems with time-varying delays in the subsequent work [17],

[18]. In this framework, a constructive predictor is proposed to

address the effect of input delay, such that it can guarantee the

uniform ultimate boundedness of the tracking error even in the
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presence of input time delay and uncertain dynamics. Hence,

this paper will further study the possibility of incorporating

this new technique into adaptive control for uncertain active

suspension systems with input time delay and nonlinearities.

Apart from input delay, the unknown dynamics and non-

linearities are also inevitable in active suspension systems.

With respect to this point, adaptive control methods combined

with function approximators such as neural network (NN)

and fuzzy logic system (FLS) have been extensively studied

[19]–[27]. Among the aforementioned approaches, it is worth

mentioning that FLS is characterized as a powerful tool to cope

with uncertain dynamics and unknown nonlinearities by using

linguistic knowledge representation and the corresponding

fuzzy rules. Hence, adaptive fuzzy control techniques have

been widely investigated for various plants [28]–[33]. In the

FLS based adaptive control framework, the unknown weights

of FLS are online updated by using gradient based algorithm

to minimize the control error, then the convergence of the

FLS weights cannot be guaranteed. However, it is well known

that the approximation capability of FLS and the control

response heavily rely on the estimation accuracy of these

unknown weights. Hence, although much progress has been

achieved in the adaptive fuzzy control designs, there still

exist several issues that need to be further addressed. In

particular, the conventional parameter estimation algorithms

(e.g. e-modification or σ-modification) contain a damping term

which prevents the estimated FLS weights from converging

to their ideal values, which in turn lead to sluggish transient

control response. According to the analysis in [34] and [35],

the overall adaptive control performance can be improved pro-

vided that the estimated parameters can achieve convergence

faster and smoother, with shorter settling time and smaller

overshoot. To this end, it deserves further investigation to

develop new learning algorithm for parameter estimation as

[36]–[38] to further improve the adaptive control performance.

Inspired by the previous discussions, we will present a new

adaptive fuzzy control design for active suspension systems

with input time delay and unknown nonlinearities. We first

introduce an input time delay compensation strategy in the

adaptive control design, such that the effect of input delay

on the closed-loop control system can be remedied. Then,

a FLS is adopted to accommodate the uncertainties and

nonlinearities. To guarantee better estimation of unknown

FLS weights and thus improve the control response, a new

parameter estimation algorithm containing information of the

derived parameter error is developed to online update the

FLS weights. This can be obtained by designing a set of

auxiliary filtered matrices on the measurable system dynamics

to derive a new leakage term, which can be superimposed

on the gradient algorithm. In this new parameter estimation

framework, accurate and finite-time convergence properties of

the estimated FLS weights can be guaranteed. A Lyapunov-

Krasovskii functional is constructed to prove the stability and

convergence of the controlled system. A dynamic simulator

is built by using a professional vehicle simulation software,

Carsim 8.1, together with Matlab/Simulink, and comparative

simulations are given to show the efficacy of the proposed

approach.

The structure of this paper is organized as follow: Modeling

of vehicle active suspension system and preliminary knowl-

edge are given in Section II. The proposed input time delay

compensation strategy, adaptive fuzzy control and the stability

analysis are presented in Section III. Section IV provides

comparative simulation results. Conclusions are given in V.

II. SYSTEM MODELING AND PRELIMINARIES

A. Modeling of Vehicle Active Suspension System

A quarter-car active suspension system with uncertain dy-

namics and control input time delay is studied in this paper,

whose schematic is given in Fig.1. The variables in Fig.1

are defined as: ms and mu represent the sprung mass and

unsprung mass, which denote the vehicle chassis and the

mass of tire assembly. Fd is the damper force and Fs is the

spring force. Ft and Fb refer to the elasticity and damping

forces of the tire. zs and zu are the vertical displacements

of the sprung and unsprung masses, respectively. zr is the

road excitation displacement and U is the control input of the

active suspension system. τ is a bounded positive constant

input delay, which is induced by the adopted actuator.
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Fig. 1. Schematic representation of quarter-car active suspension systems

The differential equations for describing the studied quarter-

car active suspension system’s motion behavior can be estab-

lished based on the Newton’s law as:










msz̈s + Fd (żs, żu) + Fs(zs, zu) = U(t− τ)

muz̈u − Fd (żs, żu)− Fs(zs, zu) + Ft(zu, zr)

+ Fb(żu, żr) = −U(t− τ)

(1)

To facilitate the control design, we set the system state

variables as:

x1 = zs, x2 = żs, x3 = zu, x4 = żu (2)

Then system (1) can be rewritten in a state-space form as:










































ẋ1 = x2

ẋ2 =
1

ms

(

− Fd (x2, x4)− Fs (x1, x3) + Uτ

)

ẋ3 = x4

ẋ4 =
1

mu

(

Fd (x2, x4) + Fs (x1, x3)− Ft (x3, zr)

− Fb (x4, żr)− Uτ

)

(3)

where Uτ = U (t− τ) defines the delayed control input signal.
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Remark 1: Unlike most existing control schemes for active

suspensions (e.g. [3], [5], [8]), the input delay induced by

the actuator dynamics is considered in the vehicle system

and the subsequent control synthesis in this paper. Moreover,

the damper force Fd and spring force Fs are considered to

be nonlinear, unknown rather than the unrealistically known,

linear cases as in [5], [9], [11]. These advancements are not

trivial since the derived model (3) can cover more realistic

suspension system dynamics, while specific compensation of

the input delay has to be considered.

Remark 2: In practical operation scenarios of vehicle sus-

pension systems, the vertical displacement x1, velocity x2

and acceleration ẋ2 can be measured by the configured sig-

nal acquisition devices, e.g. displacement/acceleration sensor.

Hence, the system state variables x1, x2 and ẋ2 in (3) are

assumed to be measurable and will be used in the control

implementation.

B. Problem Formulation

The aim of this paper is to develop a new adaptive control

scheme for active suspension system (3) with unknown forces

and input delay, such that the following suspension perfor-

mance requirements can be addressed:

• Performance Requirement 1 (PR1)-Ride Comfort: The

vertical displacement and acceleration of vehicle body

should be minimized under external road disturbances,

since these two variables are widely regarded as the key

performance indices to evaluate the vehicle ride comfort.

Hence, the proposed control should have capability of

attenuating vibrations and/or shocks as much as possible

and maintaining the stabilization of vehicle body. This

requirement can be described by:

PR1: min (zs) & min (z̈s) (4)

• Performance Requirement 2 (PR2)-Road Holding and

Deflection: In order to ensure the driving safety of drivers

and occupants, the firm, continuous connection of the

wheel with the road should be strictly guaranteed. This

fact requires that the dynamic tire loads should not exceed

the limitation, which can be described by:

PR2:
|Ft + Fb|

(ms +mu) g
< 1 (5)

• Performance Requirement 3 (PR3)-Suspension Stroke:

Due to the restrictive mechanical active suspension struc-

ture, the proposed control should guarantee the sus-

pension stroke within a reasonably allowable maximum

suspension movement limitation zmax, given by:

PR3: |zs − zu| < zmax (6)

C. Function Approximation with FLS

Fuzzy logic systems (FLS) have been widely used in the

control designs for nonlinear systems because of its capability

of approximating unknown nonlinear functions without the

requirement of a priori accurate knowledge of system dynam-

ics. The general structure of the FLS used for the function

approximation is shown in Fig.2.

Fuzzifier Inference 
Engine Defuzzifier

Fuzzy Rule 
Base

`

z y
Crisp Input Crisp OutputFuzzy 

Sets
Fuzzy 
Sets

Fig. 2. Overview of FLS structure

In this paper, we will adopt a FLS to approximate a lumped

unknown nonlinear function F (x) ∈ R
m with x ∈ R

n being

the input variables, which stems from the unknown dynamics

in the active suspension system given in Fig.1. The formulation

of FLS is explained as follows [22]:

i) Fuzzifier: Fuzzifier provides a map from the crisp input

x to the fuzzy linguistic behavior with the following

Gaussian function:

ξj (x) = exp
(x− ςj)

T
(x− ςj)

σ2
(7)

where ςj = [ς1, ς2, . . . , ςn]
T ∈ R

n is the center vector

placed on a regular lattice and σ denotes the width of the

Gaussian function.

ii) Fuzzy Rule Base: A fuzzy rule base is composed of

various fuzzy rules in the form of IF-THEN statement,

denoting relationship between the input set and output

set using the Mamdani min-implication as:

Rule j, (j = 1, 2, . . . , γ):

IF xi is Aji, i = 1 . . . n
THEN yo is Bjo, o = 1 . . .m

where x = [x1 . . . xn] ∈ R
n and y = [y1 . . . ym] ∈ R

m

are the variables corresponding to the input and output,

respectively. Aji and Bjo are the fuzzy sets, and γ is the

number of the rules.

iii) Fuzzy Inference Engine and Defuzzifier: The FLS adopt-

ed here with the Gaussian fuzzifier, sum-product inference

and centre-average defuzzifier is defined as:

yo (z) =

γ
∑

j=1

φjo

n
∏

i=1

µAji (xi)

γ
∑

j=1

n
∏

i=1

µAji (xi)

(8)

where φjo = maxyo(x)∈R (µBjo (φj)) is the point

at which µBjo (φj) achieves its maximum value and

µAji (xi) denotes the membership function. Φ (x) =

[ξ1 (x) , ξ2 (x) , . . . , ξγ (x)]
T ∈ R

γ , with ξj (x) =
k
∏

i=1

µAji (xi) /
γ
∑

j=1

k
∏

i=1

µAji (xi) the Gaussian function

given in (7). Define Wo = [φ1o, φ2o, . . . , φγo]
T ∈ R

γ

and W = [W1,W2, . . . ,Wm] ∈ R
γ×m. Hence, the FLS

can be formulated as the following form:

y (x) = WTΦ (x) (9)

Since all the membership functions are chosen as the

Gaussian membership function, the following lemma holds:
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Lemma 1: [39] Given a compact set Ωo, we define fo (z) ∈
R as a continuous function. Then, a FLS can be constructed

such that:

sup
fo(x)∈Ωo

|fo (x)− yo (x)| ≤ ϑ (10)

with yo = WT
o Φ (x) is true for any small positive constant ϑ.

Based on Lemma 1, any contiguous function vector F (x) =
[f1 (x) , f2 (x) , . . . , fm (x)] ∈ R

m can be expressed as:

F (x) = WTΦ (x) + ε (11)

where W ∈ R
γ×m is the ideal FLS weights matrix, Φ ∈ R

γ

is the FLS regressor vector and ε ∈ R
m is the residual FLS

approximation error, which are bounded by ‖W‖ ≤ Wb and

‖ε‖ ≤ εb for constants Wb, εb > 0. It is noted that the FLS

approximation error ε can be set arbitrarily small by tuning

the number of FLS rules γ sufficiently large.

III. ADAPTIVE ACTIVE SUSPENSIONS CONTROL DESIGN

AND ANALYSIS

A. Adaptive Finite-time Fuzzy Control

As explained in the introduction, the input delay is a

crucial and challenging problem in the control designs for

nonlinear systems with uncertain dynamics. Although some

input delay compensation strategies [11], [14], [15] have been

proposed, only few work have been reported for nonlinear

systems with input delay. On the other hand, nonlinear active

suspension systems rather than linear counterparts in [5], [11],

[15] are considered to cover more realistic applications. These

two issues will be considered in this section, where we will

present a novel finite-time convergence adaptive fuzzy control

scheme to effectively address the uncertainties/nonlinearities

and compensate the input delay. The diagram of the proposed

control system can be found in Fig.3. Note that as clarified in

Remark 2, the system states x1, x2 and ẋ2 can be measured

by commercial sensors (e.g. displacement/acceleration sensor)

configured in the vehicle system, and thus they can be used

in the control implementation.
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Fig. 3. Block diagram of the proposed control strategy.

Regarding to the primary requirement PR1, the proposed

control should regulate the vehicle motion (i.e. x1 → 0)

as much as possible to mitigate the road excitation zr. To

accomplish the regulation of vertical displacement, a control

error, e1 ∈ R, to be minimized is defined as:

e1 = x1 (12)

Moreover, a filter error S ∈ R is designed as:

S = Ke1 + ė1 (13)

where K ∈ R
+ is a positive constant.

To derive a delay-free predictor to compensate the effect of

input delay in (1), an integral control input signal eu ∈ R is

introduced as inspired by [17], [18], which is designed based

on the Leibniz-Newton formula:

eu =
1

ms

(U − Uτ ) =
1

ms

∫ t

t−τ

U̇ (λ) dλ (14)

To eliminate the input delay by incorporating the compen-

sator eu into the control design, another error signal, r ∈ R,

is defined along (13) and (14) as:

r = Ṡ + ΛS + eu (15)

where Λ ∈ R
+ is also a positive control constant. As

mentioned before, the system states x1, x2 and ẋ2 can be

measured in the suspension system, such that the error signal

r can be used in the control implementation in this paper.

Then, the time derivative of r can be deduced along (3) and

(14) as:

ṙ = S̈ + ΛṠ + ėu

= Kẋ2 +
1

ms

(

− Ḟd (x2, x4)− Ḟs (x1, x3)
)

+
1

ms

U̇τ + ΛṠ +
1

ms

U̇ − 1

ms

U̇τ

(16)

where F (x) = 1
ms

(

−Ḟd (x2, x4)−Ḟs (x1, x3)
)

can be defined

as the lumped unknown system dynamics.

Assumption 1: The damper force Fd and spring force Fs

are continuous on a compact set Ω and their first derivatives

are bounded on the compact set.

Based on the analysis shown in [40], [41], we know that

the derivative of unknown system dynamics is also a nonlinear

function of the measured system states, such that the lumped

unknown dynamics F (x) can be approximated by a FLS

shown in Lemma 1 as:

F (x) =
1

ms

(

− Ḟd (x2, x4)− Ḟs (x1, x3)
)

= WTΦ (x) + ε
(17)

By using (17), then equation (16) can be reformulated as:

ṙ = Kẋ2 +WTΦ (x) + ΛṠ +
1

ms

U̇ + ε (18)

For the ease of subsequent analysis, we further define an

auxiliary function Ñ ∈ R as:

Ñ = Kẋ2 + ΛṠ + S + r (19)

Then following the analysis procedure given in [17], [18]

and [42], the Mean Value Theorem can be applied on this

continuously differentiable function Ñ . Hence, according to
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Remark 1 and Assumption 1, one can claim that the Ñ can

be upper bounded by:

‖Ñ‖ ≤ ζ (‖z‖) ‖z‖ (20)

with ζ(·) being a positive, strictly increasing function, and

the coordinates z given by:

z = [e1, S, eu, r]
T (21)

Therefore, equation (18) can be rewritten by using (19) as:

ṙ =Ñ +WTΦ (x) + ε+
1

ms

U̇ − S − r (22)

Now, a delay-free control input U can be designed as:

U = −ms

∫ t

0

[

ŴT (λ) Φ (x (λ)) + (ks + 1) r (λ)

]

dλ (23)

where ks > 0 is the feedback gain, and Ŵ is the estimate of

the unknown FLS weights W , which will be online updated

by a new adaptive law with guaranteed finite-time convergence

as presented in the next subsection.

Taking the derivative of U given in (23) with respect to time

t, then it follows:

U̇ = −ms

(

ŴTΦ (x) + (ks + 1) r
)

(24)

Substituting (24) into (22), the closed-loop system dynamics

(22) can be reformulated as:

ṙ =Ñ + W̃TΦ (x) + ε− (ks + 2) r − S (25)

where W̃ = W−Ŵ is the estimation error of the FLS weights.

B. Adaptive Law with Finite-Time Convergence

To implement the adaptive fuzzy control (23), we need to

design an adaptive law to obtain the estimated FLS weights

Ŵ online. In most existing adaptive fuzzy control designs, the

adaptive laws are usually designed based on the tracking error

r with e-modification or σ-modification. In these algorithms,

the involved damping term prevents the estimated weights

from converging to their ideal values. However, based on the

certainty equivalence principle [34], if the estimated weights

could converge to their ideal values fast and accurately ,

the overall control performance can be greatly improved.

Specifically, as shown in (25), if the estimation error of the

FLS weights W̃ could be driven to zero with adequately fast

convergence rate, the effect of the undesired error W̃TΦ (x)
on the convergence of r can be eliminated, such that better

transient control response can be obtained [43].

Following the above discussions, we will develop a novel

adaptive parameter estimation algorithm which is able to guar-

antee that the estimated FLS weights converge to their ideal

values (i.e. Ŵ → W ) with guaranteed finite-time convergence.

To realize this objective, a low-pass filter (•)f =
(•) / (κs+ 1) is applied on (22) to avoid the use of ṙ, which

yields:


































κṙf + rf = r, rf (0) = 0

κ ˙̃Nf + Ñf = Ñ , Ñf (0) = 0

κṠf + Sf = S, Sf (0) = 0

κΦ̇f +Φf = Φ, Φf (0) = 0

κÜf + U̇f = U̇ , U̇f (0) = 0

(26)

where the filter coefficient κ ∈ R
+ should be set as a small

positive constant to retain fast convergence of the filter.

Then, according to the first equation of (26) and (22), it can

be derived:

ṙ =
r − rf

κ
= Ñf +WTΦf +

1

ms

U̇f − Sf − rf + εf (27)

where εf is the filtered variable of the FLS approximation

error ε.

Moreover, we design the following auxiliary filter matrices

H ∈ R
γ×γ ,G ∈ R

γ×1 and O ∈ R
γ×1 as:











Ḣ = −ℓH+ΦfΦ
T
f , H (0) = 0

Ġ = −ℓG +ΦfV, G (0) = 0

O = HŴ − G
(28)

where V = (r − rf ) /κ− Ñf − 1
ms

U̇f +Sf +rf , and ℓ ∈ R is

also a positive design parameter to guarantee the boundedness

of H,G.

The solution of H and G can be calculated from (28) as:














H (t) =

∫ t

0

e−ℓ(t−λ)Φf (λ) Φ
T
f (λ) dλ

G (t) =

∫ t

0

e−ℓ(t−λ)Φf (λ)V (λ) dλ

(29)

From the definition of of H,G and O given in (28) and

(29), we have:

O = HŴ − G = HŴ −HW + χ = −HW̃ + χ (30)

where χ = −
∫ t

0
e−ℓ(t−λ)Φf (λ) εf (λ) dλ denotes the residu-

al error stemming from the inherent FLS approximation error,

which is bounded, since the filtered FLS approximation error

εf and regressor vector Φf are all bounded. Therefore, we

have that χ is bounded fulfilling the condition supt≥0 ‖χ‖ ≤ χ̄
for a positive constant χ̄ > 0.

It is shown in (30) that the online calculated vector O based

on the derived variables r,Φ, S, U, Ñ with filter operations

given in (26) and (27) contains information of the estimation

error W̃ . Therefore, the use of this derived variable O in the

adaptive law can enhance the performance of parameter es-

timation. Now, the following finite-time parameter estimation

algorithm Proj(·) with projection operation can be designed

to online update the FLS weights:

˙̂
W = ΓProj (Φr −M) (31)

The novel leakage term M including a sliding mode type

term with O to achieve finite-time convergence is given by

M = LO +
LHO
‖O‖ (32)
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where Γ ∈ R and L ∈ R are positive learning gains. Proj (•)
is a smooth projection operation such that the estimated FLS

weights Ŵ can be always ensured within a convex set E as

stated in [25].

The practical implementation of the proposed approach for

the studied active suspension system (1) can be described as

the following algorithm:

Algorithm 1 Control Implementation for Active Suspension

System

Step 1: Initializing the fuzzy logic system topology and

choosing proper membership functions;

Step 2: Measuring the system state xi, choosing positive

constants K,Λ and feedback gain ks to design controller U
based on (23);

Step 3: Adjusting the learning gains L and Γ for online

updating unknown FLS weights Ŵ with the proposed adaptive

algorithm (31);

Step 4: Employing the designed controller U derived from

(23) for the active suspension system (1).

Remark 3: The implementation of the above control (23)

is straightforward as shown in (24). The first term from the

FLS, ŴTΦ, is used to address the lumped unknown dynamics,

and the second term is the error feedback calculated based

on (15). To achieve satisfactory suspension performance and

estimation convergence , the filter coefficients κ, ℓ should be

set as small positive constants. Moreover, the feedback gain ks,

filter coefficients K,Λ, and adaptive learning gains Γ,L should

be selected properly. In general, large gains ks,K,Λ contribute

to improving the suspension error rate, while too large gains

may make the system sensitive to noise and disturbances.

Moreover, large learning gains Γ and L can improve the

parameter estimation convergence speed, but can result in

oscillations of control actions.

Remark 4: In most existing adaptive fuzzy control literature,

the traditional adaptive law (the first term of (31)) with σ-

modification is used to update the FLS weights, which means

that the estimation error W̃ and control error r can be proved

to be uniformly ultimately bounded only, while the transient

control response may be poor due the sluggish convergence

of this adaptive law. In this paper, a novel leakage term M,

containing the parameter estimation error information W̃ , is

imposed on the traditional adaptive law
˙̂
W = ΓΦr as in (31),

which can improve the parameter estimation convergence and

the control error. In particular, a sliding mode term given in

(32) is used, such that the finite-time convergence of W̃ can

be guaranteed as shown in next subsection.

C. Closed-loop System Stability

In this subsection, we will focus on the stability analysis of

the proposed control system with control action (24) and finite-

time parameter estimation algorithm (31). We first present the

following Lemma:

Lemma 2 [38]: The matrix H defined in (28) is positive

definite provided that the FLS regressor Φ given in (17) is

persistently excited (PE). This fact implies that its minimum

eigenvalue satisfies λmin (H) > ̺ > 0 with ̺ ∈ R being a

positive constant.

Now, the following theorem can be presented:

Theorem 1: Consider the active suspension system (3)

with the proposed controller (24) and finite-time parameter

estimation algorithm (31), then all signals in the closed-loop

system are bounded, and the vertical displacement x1 will

exponentially converge to a small residual set around zero.

Proof : We choose a Lyapunov function V as follows:

V = V1 + V2 (33)

where the first term V1 is selected as:

V1 =
1

2
e21 +

1

2
S2 +

1

2
e2u +

1

2
r2 (34)

and the second term V2 is designed as:

V2 =
1

2
W̃TΓ−1W̃ + PLK +RLK (35)

where PLK ,RLK ∈ R are the Lypunov-Krasovskii function-

als, which are used to tackle the input delay. Hence, PLK and

RLK are give as follows:

PLK =
1

ms

∫ t

t−τ

‖U̇ (λ) ‖2 dλ (36a)

RLK =

∫ t

t−τ

(

∫ t

s

‖U̇ (λ) ‖2 dλ
)

ds (36b)

Based on (33), (34) and (35), the following inequality can

be verified for the Lyapunov function V :

1

2
‖Y‖2 ≤ V (Y) ≤ ‖Y‖2 (37)

where Y =
[

z, W̃ ,
√
PLK ,

√
RLK

]

The time derivative of V1 can be calculated as:

V̇1 =e1ė1 + SṠ + euėu + rṙ

=e1 (S −Ke1) + S (r − ΛS−eu) +
eu
ms

(

U̇ − U̇τ

)

+rÑ + rε+ rW̃TΦ− (ks + 2) r2 − rS
(38)

By using the Young’s inequality, the following inequalities

can be obtained:

e1S ≤ 1

2
e21 +

1

2
S2, e1r ≤ 1

2
e21 +

1

2
r2

−Seu ≤ 1

2
S2 +

1

2
e2u

eu(U̇ − U̇τ ) ≤
1

2
‖eu‖2 +

1

2
‖U̇ − U̇τ‖2

‖U̇ − U̇τ‖2 ≤ 2‖U̇‖+ 2‖U̇τ‖2

(39)

Then, equation (38) can be reformulated by using (39) as:

V̇1 ≤−
(

K − 1

2

)

e21 − (Λ− 1)S2 +
1

2

(

1 +
1

ms

)

‖eu‖2

− (ks + 1) r2 +
1

2
ζ2 (‖z‖) ‖z‖2 + 1

2
ε2b

+ W̃TΦr +
1

ms

‖U̇‖2 + 1

ms

‖U̇τ‖2

(40)
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By using the Leibniz-Newton Rule, the derivative of PLK

and RLK with respect to time t can be deduced as:

ṖLK =
1

ms

‖U̇‖2 − 1

ms

‖U̇τ‖2 (41a)

ṘLK = τ‖U̇‖2 −
∫ t

t−τ

‖U̇ (λ) ‖2 dλ (41b)

Hence, the time derivative of V2 can be obtained along with

(35) and (41a)-(41b) as:

V̇2 =− W̃TΦr + W̃TLO +
W̃TLHO

‖O‖ +
1

ms

‖U̇‖2

− 1

ms

‖U̇τ‖2 + τ‖U̇‖2 −
∫ t

t−τ

‖U̇ (λ) ‖2 dλ
(42)

Consider the fact that the estimated FLS weights Ŵ are

bounded by using the proposed adaptive law (31) with projec-

tion operation, hence as analyzed in [17], [18], one can deduce

that the control U̇ in (24) can be upper bounded by:

‖U̇‖ ≤ β +M‖r‖ (43)

where β and M are positive constants.

Note that O = −HW̃+χ and λmin (H) > ̺ > 0. Therefore,

equation (42) can be further rewritten as:

V̇2 =− W̃TΦr + W̃TL
(

−HW̃ + χ
)

+
L
(

χT −OT
)

O
‖O‖

+
1

ms

‖U̇‖2 − 1

ms

‖U̇τ‖2 + τ‖U̇‖2 −
∫ t

t−τ

‖U̇ (λ) ‖2 dλ

≤− W̃TΦr − ζ (L) ̺‖W̃‖2 + 1

2
ζ (L)

(

‖W̃‖2 + ‖χ‖2
)

+ ζ (L) ‖χ‖+ 1

ms

(β +M‖r‖)2 − 1

ms

‖U̇τ‖
2

+ τ (β +M‖r‖)2 −
∫ t

t−τ

‖U̇ (λ) ‖2 dλ

≤− W̃TΦr −
(

ζ (L) ̺− 1

2
ζ (L)

)

‖W̃‖2 + C1r2

− 1

ms

‖U̇τ‖
2 −

∫ t

t−τ

‖U̇ (λ) ‖2 dλ+ β2C1 + C2
(44)

where C1 = 1
ms

(1 + τms)
(

1 +M2
)

and C2 = 1
2ζ (L) χ̄2 +

ζ (L) χ̄ are all positive consants. ζ (•) and ζ (•) represent

the maximum and minimum singular value of the associated

matrix.

By combining V̇1 given in (38) and V̇2 given in (44), we

can obtain that

V̇ =V̇1 + V̇2

≤−
(

K − 1

2

)

e21 − (Λ− 1)S2 +
1

2

(

1 +
1

ms

)

‖eu‖2

− (ks + 1− C1 − C3) r2 −
(

ζ (L) ̺− 1

2
ζ (L)

)

‖W̃‖2

+
1

2
ζ2 (‖z‖) ‖z‖2 −

∫ t

t−τ

‖U̇ (λ) ‖2 dλ+
1

2
ε2b

+ (C1 + C3)β2 + C2
(45)

where C3 = 1+M2

ms

is also a positive constant.

Given the fact that eu = 1
ms

∫ t

t−τ
U̇ (λ) dλ is true, hence

the Cauchy-Schwarz inequality can be used to establish the

following bound:

‖eu‖2 ≤ τ

m2
s

∫ t

t−τ

‖U̇ (λ) ‖2 dλ (46)

In addition, the upper bound of RLK can be obtained as:

RLK ≤ τ sup
s∈(t−τ,t)

(

∫ t

s

‖U̇ (λ) ‖2 ds
)

≤ τ

∫ t

t−τ

‖U̇ (λ) ‖2 dλ
(47)

Hence, the following inequalities can be yielded by using

(36a), (36b), (46) and (47):

−1

3

∫ t

t−τ

‖U̇ (λ) ‖2 dλ ≤ −m2
s

3τ
‖eu‖2 (48a)

−1

3

∫ t

t−τ

‖U̇ (λ) ‖2 dλ = −ms

3
PLK (48b)

−1

3

∫ t

t−τ

‖U̇ (λ) ‖2 dλ ≤ − 1

3τ
RLK (48c)

Therefore, the bound of V̇ can be further derived by using

(48a)-(48c) as:

V̇ ≤−
(

K − 1

2

)

e21 − (Λ− 1)S2 −
(

m2
s

3τ
− 1

2

− 1

2ms

)

‖eu‖2 − (ks + 1− C1 − C3) r2 −
(

ζ (L) ̺

− 1

2
ζ (L)

)

‖W̃‖2 − ms

3
PLK − 1

3τ
RLK

+
1

2
ζ2 (‖z‖) ‖z‖2 + 1

2
ε2b + (C1 + C3)β2 + C2

≤−
(

α

2
− 1

2
ζ2 (‖z‖)

)

‖z‖2 − α

2
‖z‖2

−
(

ζ (L) ̺− 1

2
ζ (L)

)

‖W̃‖2 − ms

3
PLK − 1

3τ
RLK

+
1

2
ε2b + (C1 + C3)β2 + C2

≤−A‖Y‖2
(49)

for any Y satisfying

‖Y‖ ≥
√

ε2b + 2β2 (C1 + C3) + 2C2
2

(50)

where α, A are defined by

α = min

{(

K − 1

2

)

, (Λ− 1) ,

(

m2
s

3τ
− 1

2
− 1

2ms

)

, (ks + 1− C1 − C3)
}

A =
1

2
min

{

α

2
,

(

ζ (L) ̺− 1

2
ζ (L)

)

,
ms

3
,
1

3τ

}

(51)

According to the analysis given in [44] and the definition

of Lyapunov function, we can conclude that z, r, e1, eu, W̃
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and U are all bounded. Moreover, one can verify from

V̇ ≤ −AV (Y) that V (t) ≤ V (0)e−At is true, which

implies that V (t) and thus the vertical displacement x1 will

exponentially converge to a compact set defined by Ω =
{

x1 (t)
∣

∣|x1| ≤
√

ε2b + 2β2 (C1 + C3) + 2C2
}

.

Remark 5: The PE condition is necessary to guarantee the

parameter estimation convergence, which has been well-known

in the system identification field. For the studied vehicle

suspension system (1), the PE condition is generally satisfied

because of the continuously injected road disturbance zr from

the irregular road roughness. Moreover, the online validation

of the PE condition is usually a challenging task, which also

remains as an open problem. Based on Lemma 2, an intuitive

approach is suggested by numerically calculating the minimum

eigenvalue of the designed auxiliary matrix H and then testing

for the condition λmin (H) > 0, which can be conducted

online feasibly.

Remark 6: As shown in the above proof, we introduce

Lyapunov-Krasovskii functionals PLK ,RLK as inspired by

[16] to address the effect of input delay τ , such that the

stability of the proposed closed-loop system with the controller

given in (23) can be strictly guaranteed. Moreover, apart from

the performance requirement PR1 as guaranteed in Theorem

1, the analysis of the other two performance requirements

follows a similar procedure given in [7], which consists of two

steps: 1) prove the boundedness of x3, x4 based on Lyapunov

theory and the boundedness of system signals; 2) calculate and

quantify the bounds of dynamic tire and suspension stroke.

Due to the page limit, we refer to [7] for the detailed analysis.

D. Finite-Time Parameter Convergence

In this subsection, we will further prove the finite-time

convergence of the estimated FLS weights Ŵ with adaptive

law given in (31) and (32). The main result of this subsection

is given as follows:

Theorem 2: The estimation error of the FLS weights W̃
with adaptive law given in (31) and (32) will converge to a

small set around zero (i.e. W̃ = H−1χ) in finite-time.

Proof : We first investigate the time derivative of H−1O.

Given the fact that H−1O = −W̃ +H−1χ, one can obtain:

∂H−1O
∂t

= − ˙̃W +
∂H−1

∂t
χ+H−1χ̇ =

˙̂
W + χ′ (52)

where χ′ = −H−1ḢH−1χ + H−1χ̇ is a bounded variable,

which can be verified by considering the fact that the regressor

matrix H and the residual FLS error χ are all bounded.

Select the Lyapunov function V3 as:

V3 =
1

2
OTH−1H−1O (53)

Recalling (30)-(32) together with (53), the time derivative

of V3 can be obtained as:

V̇3 =OTH−1 ∂H−1O
∂t

= OTH−1Γ ((Φr −M) + χ′)

=OTH−1ΓΦr −OTH−1ΓLO
− ΓL‖O‖+OTH−1Γχ′

≤−
[

ζ (Γ) ζ (L)− ζ (Γ) ‖H−1‖‖Φ‖‖r‖

− ζ (Γ) ‖H−1χ′‖
]

‖O‖

≤ −
√
2

ζ (H−1)

[

ζ (Γ) ζ (L)− ζ (Γ) ζ
(

H−1
)

‖Φ‖‖r‖

− ζ (Γ) ζ
(

H−1
)

‖χ′‖
]

√

V3

(54)

Because r will converge to a small compact set as proved in

Theorem 1 and the FLS regressor vector Φ is bounded, then

there exists a time T1 and large learning gain L, such that for

all t > T1 it can be claimed that

ζ (Γ) ζ (L) > ζ (Γ) ζ
(

H−1
)

(‖Φ‖‖r‖+ ‖χ′‖) (55)

Thus, there is a time instant T2 and a constant ǫ > 0,

such that the condition V̇3 ≤ −ǫ
√
V3 is true for all t > T2.

Therefore, based on the stability analysis of sliding mode

control in [45], the finite-time convergence of the estimation

error H−1O to zero can be claimed. Consequently, by recalling

the fact H−1O = −W̃+H−1χ, the FLS weights error W̃ will

converge to a small compact set defined by H−1χ, of which

the size depends on the excitation level (e.g. the amplitude

of H−1), and the FLS inherent error ε leading to χ. Thus the

finite-time parameter estimation performance can be achieved.

This completes the proof.

Remark 7: The main aim of the current study is to propose

a new compensator to address the input delay in the active

suspension systems, which can be incorporated into adaptive

fuzzy control design with guaranteed convergence and thus

enhanced suspension response. Moreover, it is noted that

different actuators (e.g. electrical motors, hydraulic cylinder)

can be used in the active suspension systems. Hence, the

dynamics of actuator used to generate the required force are

not considered explicitly in this paper.

IV. SIMULATION STUDIES

In this section, we provide numerical simulation results to

exemplify the proposed control method in terms of suspen-

sion displacement response and ride comfort. To cover more

realistic applications, a professional simulation software for

vehicle systems, Carsim (Version 8.1), is employed to generate

realistic driving road conditions collected from the realistic

experimental data, which are then used to build a combined

dynamic simulator together with Matlab/Simulink.

The unknown and nonlinear dynamics of the spring, damper

and tire are chosen as described as [5]:

Fd (x2, x4) = bs (x2 − x4)

Fs (x1, x3) = ks (x1 − x3) + ksn (x1 − x3)
3

Ft (x3, zr) = kt (x3 − zr) , Fb (x4, żr) = bt (x4 − żr)

(56)

where bs denotes the damping coefficient of the suspension

components; ks and ksn represent the stiffening coefficients of
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the spring; kt and bt are the stiffness and damping coefficients

of the tire. The parameters of the quarter-car model shown

in Fig.1 and (56) are chosen as [5]: ms = 600 kg,mu =
60 kg, bs = 2500 Ns/m, ks = 18000 N/m, ksn =
1000 N/m, kt = 200000 N/m, bt = 1000 N/m and the control

input time delay is τ = 40 ms.

The two riding road conditions generated from Carsim are

simulated: a) bumpy and random road condition; b) straight

lane with example road roughness, whose corresponding pro-

files are given in Fig.4. Note that the adopted road condition

a) in this paper has more realistic dynamic excitations, and is

different with the widely used ones in the existing literatures,

e.g. [3], [5], [8], [10]. Those previous adopted road elevations

have neither consistent shocks nor vibrations, but only a bump

signal appearing in the first few seconds is simulated. The

initial system conditions are chosen as x1 (0) = 0.06 and

xi (0) = 0, i = 2, 3, 4. For the FLS used to accommodate the

unknown nonlinearities, we choose −4,−3, 3, 4 as the central

points and 80 as the stand derivations of regressor function,

and the initial FLS weights are chosen as Ŵ (0) = 0. The

unknown FLS weights are then updated by the designed FT

parameter estimation algorithm (31). The control gains are

chosen as K = 10,Λ = 10, ks = 100. The parameters of

filter operation are set as κ = 0.001, ℓ = 1 and the adaptive

gains are Γ = 30diag [I]64×64 and L = 0.01diag [I]64×64

in the road condition a). In road b), the adaptive gains are

slightly modified to achieve better desired convergence, i.e.

Γ = 80diag [I]64×64 and L = 0.06diag [I]64×64, while the

other parameters in the FLS, filter operation and control gains

are the same as used for the road condition a).
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)
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−0.01

−0.005

0

0.005

0.01

Time (s)

z
r
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)

Straight Lane with Example Road Roughness

Fig. 4. Ground road elevation of two tested road conditions.

Figs. 5-7 show the comparative simulation results of vehi-

cle motion displacements and other suspension performance

requirements. Fig.5 provides the profiles of vertical displace-

ments with different control approaches. One can find from

Fig.5 that the proposed control with both the FT adaptive law

and the traditional e-modification method is able to isolate the

uninterrupted vibrations/shocks transmitted from the irregular

road roughness effectively, and maintain the stability of the

vehicle body. In particular, less fluctuations and lower peaks

are obtained compared with the passive suspension systems.

Moreover, from the bottom subfigure of Fig.5, one can find

that the proposed control with new FT adaptive learning

scheme can provide superior capability to regulate the vertical

displacement around zero over the traditional e-modification

method. This is attributed to the faster and smoother con-

vergence of the FLS weights derived by using the proposed

FT algorithm (31). The acceleration responses of the vehicle

body under two different riding road conditions are given in

Fig.6. As shown in Fig.6, it is obvious that the magnitude

of the vehicle body acceleration can be greatly reduced with

the proposed adaptation in comparison with the e-modification

method. In this sense, the proposed new learning algorithm

can also help to provide better ride comfort, i.e. smaller

acceleration values.

The results of other vehicle performance requirements (i.e.

PR2 and PR3) under the given road condition b) are also

plotted in Fig.7. It can be found from the top subfigure of

Fig.7 that the dynamic tire loads are all guaranteed within

the limitation 0.1 m with the two different methods. The

bottom subfigure of Fig.7 shows the suspension stroke re-

sponses, which indicates that the suspension movements with

the two controllers are all strictly limited within the allowable

maximum zmax = 0.15 m. However, it is evident that the

new FT adaptation algorithm suggested in this paper provides

smaller tire deflections and faster convergence responses,

which implies that this new learning approach has better ability

in ensuring the driving safety for drivers and/or occupants.

Consequently, we can conclude that although the two control

methods can ensure the required suspension performance (i.e.

PR1, PR2 and PR3), the suggested new learning algorithm

has superiority over conventional learning method, thereby

improving the overall active suspension performance. Similar

simulation results and conclusions can be observed in bumpy

and random road conditions, which are not presented again.
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Fig. 5. Vehicle displacement under different road conditions.

To demonstrate the efficacy of the proposed FT parameter

estimation algorithm (31) more concretely, the profiles of the

estimated FLS weights under the road condition b) are de-

picted in Fig.8. The convergence response of the FLS weights
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Fig. 6. Comparative results of acceleration responses.
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updated with the proposed FT algorithm (31) is provided in the

top subfigure of Fig.8, and the estimated FLS weights by using

the e-modification method is given in the bottom subfigure of

Fig.8. We can observe from Fig.8 that the FLS weights Ŵ
are convergent with a faster rate and smoother steady-state

response by using the proposed FT method (31), while the FLS

weights Ŵ with e-modification based learning algorithm can

hardly achieve convergence though they are bounded. Hence,

we can conclude that the convergence of FLS weights can

be significantly improved via the new parameter estimation

algorithm, which in turn contributes to improving the control

performance.

Finally, the effectiveness of the developed input delay

compensation strategy with (14) is shown in Figs. 9-10.

The responses of vehicle displacement under different in-

put delay values are presented in Fig.9, without using the

input delay compensation (we can set eu = 0 in (15)).

We can see that with the increase of input delay value

(i.e. τ = 10ms, 20ms, 30ms, 40ms), the control without eu
gradually looses the ability to regulate the vertical motion
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Fig. 8. Profiles of FLS weights Ŵ with different adaptations.
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displacement, and thus fails to strictly ensure the ride comfort

and driving safety due to the exaggerated vehicle motion. In

Fig.10, comparative results regarding the vertical suspension

displacement x1 and its corresponding control input force U
with/without the input delay compensation eu are provided.

As it is shown in Fig.10, with the help of the proposed delay

compensation strategy, not only the vertical displacement x1

can be regulated within a small region around zero (i.e.

x1 → 0), but also the required control force can be retained

within a feasible bound. Thus, the proposed control actions

with delay compensator can be implemented by practical

actuators. From these comparative results, we can claim that

the proposed control method with FT learning algorithm and

input delay compensator can effectively handle the effect of

input delay and unknown dynamics, thereby making the active

suspension systems work safely and reliably.

V. CONCLUSION

In this paper, we proposed a new adaptive fuzzy control

approach for uncertain nonlinear active suspension systems

subject to input time delay and unknown nonlinear dynamics.

An appropriate input delay compensation strategy is first

introduced to obtain a delay-free term to eliminate the effect

of input delay in the control system. Then an FLS was used as

the function approximation, and incorporated into the adaptive

control design, such that the uncertain dynamics and unknown

nonlinearities can be addressed. Unlike existing conventional

adaptive control designs, a novel finite-time parameter estima-

tion algorithm driven by the parameter estimation error was

developed to online update the FLS weights, such that the

estimated FLS weights converge to a small neighbourhood

around their ideal values in finite-time. The closed-loop system

stability analysis was carried out based on the Lyapunov-

Krasovskii functional. Simulation results in terms of a dy-

namic simulator consisting of a commercial software, Carsim,

and Matlab illustrated that the proposed control method can

handle both the input delay and uncertainties, and the new

learning method suggested in this paper also obtained superior

performance in terms of both control and parameter estimation

responses. Future work will focus on exploiting the proposed

adaptive control for active suspension systems subject to time-

varying input delay and unknown actuator dynamics.
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