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Abstract

In this paper we develop a finite volume adaptive grid refinement method for the
solution of distributed parameter estimation problems with almost discontinuous coef-
ficients. We discuss discretization on locally refined grids, as well as optimization and
refinement criteria. An OcTree data structure is utilized. We show that local refine-
ment can significantly reduce the computational effort of solving the problem, and that
the resulting reconstructions can significantly improve resolution, even for noisy data
and diffusive forward problems.

1 Introduction

In this paper we study an efficient method for the solution of distributed parameter estima-
tion problems of the form

min
m,u

1

2

n
∑

j=1

‖Qjuj − dj‖2 + β

∫

Ω

ρ(|∇m|) dx (1.1a)

s.t A(m)uj − bj = 0, j = 1, . . . , n. (1.1b)

Here m is the sought model, uj are the fields obtained for a given model as the solutions
of (1.1b), A(m) is a (typically elliptic) PDE operator, dj are some discrete measured data
which correspond to the jth field, and Qj is a projection operator that projects uj to its
measurement locations. The rightmost term in (1.1a) is a regularization functional, where β
is a regularization parameter. We are particularly interested in regularization operators with
functions ρ(·) that do not over-penalize rapid profile changes in the model; see e.g. [15, 5].

Numerical optimization problems of this kind are often solved in geophysics [23], medical
physics [14], computer vision [12] and other fields which involve data fitting. To be more
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concrete we motivate this paper using the following 3D model problem which arises in Direct
Current resistivity, where one attempts to invert for the log-conductivity m = ln σ (see for
example [37, 32, 36] and references therein) the elliptic problems associated with

A(m)uj = −∇ · (em∇uj) = bj, j = 1 . . . n. (1.2)

For simplicity, we assume that Neumann boundary conditions are prescribed for these PDEs,
but other boundary conditions could be easily incorporated. The model problem has multiple
right hand sides, which is typical to many other inverse problems (e.g. [25]).

Even for the relatively simple forward problem defined by (1.2) the computational cost
can be substantial. This is because each PDE can be time consuming to solve in 3D, especially
when the coefficient function m varies rapidly. In the case that m is outright discontinuous,
it is not always clear that this highly ill-posed inverse problem can be meaningfully solved
[5, 1]. In such a case it is particularly advantageous to use additional a priori information if
possible. Additional restrictions to the solution space can be in the form that m is allowed
to take at each spatial location only one of two values, which turns the problem into one
of shape optimization [19, 39, 13]. More generally, however, no such information may be
available, and we do not assume it in the present article. If m varies rapidly but smoothly
then we can seek to resolve regions of such rapid variation using a very fine grid. Practically
solving the inverse problem then becomes rather challenging, and advanced computational
techniques are needed.

One option to achieve major computational savings is by using a multilevel approach
[3, 4, 19]. Such an approach is particularly beneficial in this context because it enables us
to obtain a good approximation to the regularization parameter, β, as well as the solution
m on coarse grids, reducing the number of more expensive fine grid iterations. Nevertheless,
the cost of the algorithm is dominated by the fine grid problem [3]. For problems on regular
orthogonal grids this can be expensive because no adaptivity is used and the overall number of
unknowns is large. It is therefore advantageous to use adaptive grids which can dramatically
reduce the number of the unknowns in the discrete problem.

There are several options for the design of adaptive grids. One could use unstructured
grids and finite elements which are naturally designed for adaptivity. In our experience such
an approach, although conceptually attractive, is potentially slow due to significant overhead
and the uneasy transfer of data blocks from memory into cache. The following related
difficulties arise. Since the parameter function m is changing through the optimization
problem, re-gridding is often needed. However, re-gridding for large scale 3D problems is a
computationally intensive task by itself (see for example [34]). Moreover, the stiffness matrix
(i.e. the assembled discrete version A of A(m)) must be re-evaluated when m changes. This
is also a time consuming process, especially when comparing with the standard structured
grid approximations. Finally, derivatives are required, and this also necessitates element-by-
element computations.

A different approach is to use orthogonal finite difference or finite volume methods,
allowing only a very restricted form of local refinement. Thus, in 1D a grid subinterval may
only be refined into two equal halves, and this principle of local refinement is extended to
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grids in higher dimensions, resulting in a QuadTree in 2D or an OcTree data structure in 3D
(see e.g. [24, 30], or just google ’octree’ for much, much more). Such an approach has the
advantage that gridding is almost trivial, and it yields re-usable sparse matrices. Also, it has
been demonstrated that such an approach can deal with adaptivity in the forward problem
[18, 17, 28].

While adaptive grid refinement is certainly not a new field, little such work has been
done in the general context of inverse problems, and even less attention has been given to
recovering rapidly varying coefficient functions. A framework for adaptive finite elements for
inverse problems has been presented in [7]. Similar work in the context of finite elements is
reported in [8, 9, 2, 26, 10]. Some work using finite differences is reported in [11]; see also
[29, 42] for a different approach. The above work assumes quadratic regularization operators
and obtains smooth model solutions. No previous work on adaptive finite volume methods
for inverse problems is known to us.

The goal of this article is to develop highly efficient finite volume solvers for inverse
problems of the form (1.1), exploring and generalizing adaptive refinement on orthogonal
nested grids. Such adaptation is particularly interesting if the regularization operator al-
lows for very steep solutions. In this case, adaptivity facilitates “zooming into” potentially
increasing resolution without much increase in computational cost.

The transition from uniform grids to nonuniform ones, and from smooth model solutions
to models that admit abrupt changes, yields several issues that this paper addresses. In
Section 2 we discuss a finite volume discretization on OcTrees for the forward and inverse
problems, as well as the choice of the function ρ in the regularization functional. In Section
3 we describe an optimization technique to solve the inverse problem given a particular grid.
Following this, in Section 4 we present an adaptive multilevel refinement strategy, and in
Section 5 we perform numerical experiments that demonstrate the advantage of our approach.
The latter two are the major sections of this article: we show that rather significant gains can
be made provided that the regularization operator is adequately formulated and evaluated.
Finally, in Section 6 we summarize our findings.

2 Problem discretization

In this section we discuss the discretization of the problem (1.1). As in [3] we envision a
uniform underlying coarse orthogonal grid with cell width hc and a uniform underlying fine
orthogonal grid of size 2N1 × 2N2 × 2N3 with cell width hf = 2−nlevelhc. The fine grid is
determined by our desire for high resolution, and the coarse grid is inexpensive to work
with while still producing a solution with coarse resolution that is accurate enough for our
application. The difference from [3] is that the local grid width varies between hc and hf ,
allowing for a larger number of levels nlevel while still maintaining efficiency.

Next we review the OcTree data structure and explain how to effectively discretize for-
ward and inverse problems on it. While the discretization of the forward problem on OcTrees
is common using finite differences (see for example [38]), we take here a different, variational
approach, mimicking finite elements and arriving at a finite volume method. This is well
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known on uniform grids, but the details for more general grids, particularly those that can be
implemented by an OcTree, do not appear to be available, so a short exposition is warranted.
The discretization of the inverse problem is then developed in a similar manner.

2.1 OcTree data structure

The Quad/OcTree representation is an efficient way to compress gridded data, storing a finer
solution detail in parts where large changes occur. Our grid is composed of N square/cube

(a)

S(:, :, 1) =

(

2 0 1 1
0 0 1 1

)

S(:, :, 2) =

(

0 0 1 1
0 0 1 1

)

(b)

Figure 1: (a) OcTree and (b) its representation as a 2× 4× 2 (sparse) array. Each entry in
the array is the cell size.

cells of different widths. Each cell can have a width h = 2−lhc, for some 0 ≤ l ≤ nlevel.
To make the data structure easier to handle and the discretization more accurate we allow
only a factor of 2 change between adjacent cells. This obviously leads to a tree structure
depicting the refined grid, where each node has up to 4 children in a QuadTree and up to
8 in an OcTree. The data is then stored as a sparse array. The size of each cell is stored
in the upper left corner of the array. This allows us to quickly find neighbors, which is a
major operation in the discretization process. This data structure is closely related to the
one suggested in [24]. An example of a small 3D grid is plotted in Figure 1.

Given a particular OcTree grid one has to decide where to discretize the different variables.
Here, similar to [3] we choose to use staggered discretization and discretize u at the nodes
and m at cell centers. As shown in [4] this discretization of the optimization problem is
h-elliptic. For the importance of h-elipticity, see [38].
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2.2 Discretization of the forward problem

To discretize the forward problem on the OcTree grid we consider its Ritz form

min
u

∫

Ω

[σ

2
|∇u|2 − ub

]

dx, (2.3)

rather than the PDE directly. To demonstrate, let us use a 2D example; the extension to
3D is straightforward.

u1

u2 u3

u4

u5

cellj

(ux2
)1

(ux2
)2

(ux2
)3

(ux1
)1

(ux1
)2

Figure 2: Discretization of ∇u

Consider the QuadTree cell plotted in Figure 2. The quantity ∂u
∂xi

is naturally discretized
to second order accuracy along the centers of the xi-edges of each cell, i = 1, 2. For the
QuadTree in Figure 2 we can write

(ux1
)
2

= (2h)−1(u3 − u2) +O(h2)

(ux1
)
1

= (2h)−1(u4 − u1) +O(h2)

(ux2
)
1

= (2h)−1(u1 − u2) +O(h2)

(ux2
)
2

= h−1(u4 − u5) +O(h2)

(ux2
)
3

= h−1(u5 − u3) +O(h2).

Using this simple, second order difference we can discretize the gradient of u on the
Quad/OcTree. To discretize the optimization formulation (2.3) we write

∫

Ω

σ

2
|∇u|2dx =

∑

cells

∫

cell

σ

2
|∇u|2dx.

We assume that σ is constant over each of the cells, which is consistent with mixed finite
element formulations. Next, we approximate the integral over each cell using the edge
approximations for the derivatives of u. For regular cells (with neighbors of the same size)
only 4 edges need to be considered.
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In the case of an irregular cell such as the one plotted in Figure 2, we average the square
of the gradient to cell center, that is

σcell

∫

cell

(ux1
)2 dx =

σcellVcell

8h2

(

(u4 − u1)
2 + (u3 − u2)

2
)

+O(h2),

σcell

∫

cell

(ux2
)2 dx =

σcellVcell

8h2

(

1

2
(u4 − u5)

2 +
1

2
(u5 − u3)

2 + (u1 − u2)
2

)

+O(h2),

where Vcell is the cell’s volume. The corresponding term
∫

cell
ub dx is discretized by simple

averaging of node values over the cell. Summing over all of the cells we obtain an O(h2)
approximation to the optimization problem (2.3).

In our view, it is useful to express the above formulas in a “matrix friendly” form. To
this end we define the matrix GRAD as the difference matrix which computes the gradient
of u on the edges of the cells. We also let Ac

e = diag {Ac
e1,A

c
e2} be an averaging matrix from

the edges to the cell center of each cell. Also, let Ac
n be an averaging matrix from the nodes

of the grid to the cell center grid. Then the integral in (2.3) can be approximated by

∫

Ω

1

2

[

σ|∇u|2 − ub
]

dx =
1

2
v⊤diag (σ)Ac

e ((GRADu)⊙ (GRADu))− v⊤Ac
n(b⊙ u) +O(h2),

where u and b are nodal OcTree grid functions, σ is a cell-center grid function, and v is a
vector that contains the volume of each cell. After some algebra this can be rearranged into
a more familiar form

min
u

1

2
u⊤GRAD ⊤

(

diag ((Ac
e)

⊤σ)diag (v)
)

GRADu − u⊤ diag
(

(Ac
n)⊤v

)

b. (2.4)

Finally, to obtain the discrete system for the forward problem we differentiate with respect
to u to obtain

GRAD ⊤
(

diag ((Ac
e)

⊤σ)diag (v)
)

GRADu = diag
(

(Ac
n)⊤v

)

b. (2.5)

Note that given a particular grid, the matrices GRAD,Ac
n and Ac

e are computed only
once. We can then reuse them for different grid functions σ in order to quickly assemble the
forward modeling matrix.

2.3 Discretization of the regularization operator

For the regularization operator we require the discretization of the gradient of cell centered
variables. Although our code is for problems in 3D, it is again worthwhile to follow the
discretization in 2D for simplicity.

There are various ways to define the discrete cell centered gradient operator. First, it
is important to note that the gradient of cell centered variables is naturally defined on cell
faces. One simple way to define the gradient is to use a short difference. This approximation
has been investigated by [18] and recently used in [31].
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m1

m2

m3

m4

cellj

(mx1
)1

(mx1
)2

(mx1
)3

x0

Figure 3: Discretization of ∇m

Consider the arrangement in Figure 3 and let x0 be the grid location where (mx1
)2 is

discretized. With h the width of the smaller cell the approximation is

∂m

∂x1

(x0) ≈
m2 −m1

h
. (2.6a)

For subdomains with uniform cells this is a second order approximation, but for areas where
adjacent cells are nonuniform this approximation is only O(1) pointwise, because it cor-
responds to approximating m by a constant throughout the large square in Figure 3, and
this O(h) approximation gets divided by h when forming derivative approximations. As-
suming that m is piecewise constant is consistent with our forward discretization (Section
2.2). Moreover, differentiating a piecewise constant function in the context of ODE mesh
refinement has been known and used for years [6]. But here the resulting approximation
appears in the objective function and the grid is adaptively refined based on computational
quantities, so we opt to be more careful.

A better pointwise approximation to the derivative at the cell’s edge is

∂m

∂x1

(x0) ≈
m2 + m3 − 2m1

3h
. (2.6b)

It is easy to see that this one is O(h) accurate. The extension to 3D is straightforward.
Approximations to the gradient of m in any other direction are obtained in a similar way.

Next we replace the integral of ρ(|∇m|) by its approximation at the cell center multiplied
by the cell volume

∫

cell

ρ(|∇m|) =

∫

cell

ρ(
√

m2
x1

+ m2
x2

) dx =

Vcellρ







√

1

2

(

m2 + m3 − 2m1

3h

)2

+
1

2

(

m4 −m1

2h

)2

+ approx (mx2
)2







+O(h).
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Once again, we rewrite the expression using matrices and vectors. For this, let GRADc

be the cell centered gradient matrix and let Ac
f be an averaging matrix from the grid faces

to the cell centers. Then the discrete regularization operator can be expressed as

R(m) = v⊤ρ
(√

Ac
f (GRADcm)2

)

. (2.7)

2.4 Discretization of the optimization problem

To create the discrete version of the optimization problem (1.1), we must discretize n+1 grid
functions, namely, the fields uj, j = 1, . . . , n, and the model m. First, note that we need not
have a single grid for all uj and m, so assume that uj is discretized on a grid Suj

while the
model m is discretized on the grid Sm. We further assume that each of the uj-grids is either

finer or the same as the m-grid. This discretization results in n grid functions shaped into
vectors uj for uj and a grid function likewise shaped into a vector m for m. We also use an
interpolation matrix Pj in order to transfer m to the grid Suj

. With these grid functions we
can now discretize the optimization problem.

Using the discrete forward problem (2.5), we approximate A(m)uj = −∇ · (em∇uj) in
our model problem (1.2) with

GRAD ⊤
(

diag ((Ac
e)

⊤ exp(−Pjm))diag (v)
)

GRADuj = A(Pjm)uj = bj. (2.8)

To make the forward modeling unique we also require that the integral of uj vanish, which
leads to the discrete constraint v⊤uj = 0, where v is a vector that contains the volume of
each cell on our grid.

The regularization functional in (1.1a) employs a function ρ(|∇m|). For this we use a
Huber function depending on a switching parameter γ

ρ(τ) =

{

τ, τ ≥ γ

τ 2/(2γ) + γ/2, τ < γ
. (2.9)

The parameter γ was selected adaptively in [5] based on resolution considerations with the
overall desire to stay as close as it makes sense to total variation. Here the purpose is
somewhat different because the local grid refinement may be viewed as stretching steep
gradients on a local scale, and we select γ depending on the finest expected grid scale. We
do not modify ρ during the grid refinement process.

The discretization of the misfit term is straightforward. Given the approximate field
vector u we use linear interpolation to approximate it at the measurement location.

Collecting the above discretized quantities we obtain a discrete optimization problem

min
m,u

1

2

n
∑

j=1

‖Qjuj − dj‖2 + βv⊤ρ
(
√

A⊤
f (GRADcm)2

)

(2.10a)

s.t A(Pjm)uj − bj = 0, j = 1, . . . , n, (2.10b)

v⊤uj = 0, j = 1, . . . , n. (2.10c)
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3 Solving the optimization problem

In this Section we quickly review solution techniques for the optimization problem. For a
more in-depth discussion see [22].

We use variants of Reduced Hessian Sequential Quadratic Programming. The Lagrangian
can be written as

L =
1

2

n
∑

j=1

‖Qjuj − dj‖2 + βv⊤ρ
(
√

A⊤
f (GRADm)2

)

(3.11)

+
n

∑

j=1

p⊤

j diag(v)(A(Pjm)uj − bj).

Upon differentiation we obtain the following system of equations:

A(Pjm)⊤pj = Q⊤

j (dj −Qjuj), j = 1, . . . , n, (3.12a)

A(Pjm)uj = bj, j = 1, . . . , n, (3.12b)
∑

k

P⊤

k G(Pkm,uk)
⊤pk + β GRAD⊤ Σ(m) GRADm = 0, (3.12c)

where for a grid function w

G(w,uj) =
∂(A(w)uj)

∂w
,

and Σ(m) is an approximation to the Hessian of the regularization term. Here we use the
lagged diffusivity approach, see [40, 5].

We can then use an inexact Newton method for the solution of the system. For details
on the linear systems and preconditioning of the Newton iteration, see [21, 20].

When facing a very large number (thousands) of sources and a limited computer memory
one may consider working with a reduced space approach rather than the full space approach.
The reduced space approach implies that uj and pj are eliminated first, and then we solve for
m. The advantage of a reduced space approach, for this particular problem structure, is that
we are able to store only a single uj and pj at a time. To see this note first that we are able to
compute the solution of the forward problem (3.12a) and the adjoint problem (3.12b) without
any communication between the two or between any other forward or adjoint problems. The
reduced gradient is then obtained by substituting the fields uj and the Lagrange multiplier
functions pj in (3.12c). We define the reduced gradient of the data misfit

g =
∑

k

P⊤

k G(m,uk(m))⊤pk(m).

To evaluate g, observe that we can break the computation over each term in the sum.
Starting from g = 0, assume that the kth forward and adjoint problems have been solved.
We can then calculate the product gk = P⊤

k G(m,uk)
⊤pk and set

g← g + gk.
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After evaluating gk we can write over both uk and pk in order to compute the next field
and Lagrange multiplier function. Finally, adding the regularization term completes the
evaluation of the reduced gradient.

Unfortunately, one must store uj when a product of the reduced Hessian and a vector
is evaluated. Therefore, the reduced Hessian approach is not as attractive in this case and
one would benefit working with an all-at-once approach. Nevertheless, if we are limited in
memory, given the reduced gradient, it is possible to effectively use Quasi-Newton techniques
without the necessity of excessive storage. In our applications we often need to deal with a
very large number of sources. We therefore use the reduced space L-BFGS [33] approach.

4 Adaptive multilevel refinement

The cost of the optimization process is directly impacted by the size of the problem and
our initial guess for the solution. Adaptive multilevel refinement methods are targeted to
achieve a good, low-cost starting guess by using coarse grids, and to reduce the size of the
discrete fine grid problem by using adaptive nested grids that refine only in areas where
the error in the solution is too large to be acceptable. Unfortunately, finding a unique
refinement criterion that works for different problems is rather difficult (e.g. [38]). As we see
next, further complications can arise from the fact that we solve a constrained optimization
problem with noisy data.

Before describing our refinement strategy, let us first discuss the choice for our grids.
The solution of the optimization problem requires solving the discretized Euler-Lagrange
equations (3.12) for the unknowns uj, m and pj. At least in principle, it is possible to
envision different grids for each of these variables. While different grids could be used and
they may be cheaper for solving each of the Euler-Lagrange equations, this may give rise to
other difficulties.

• If the grids for the fields uj and for the Lagrange multipliers pj are not identical then
the forward operator A is not the adjoint of the discrete operator for the Lagrange
multiplier. This implies a loss of symmetry in the saddle point equations. Indeed, it
may happen that no discrete objective function is decreased, thus causing even simple
unconstrained optimization algorithms to potentially fail. We therefore keep the grids
for pj and uj identical.

• If the grid for the model m is strictly finer than the grid for uj then homogenization
is needed in order to accurately evaluate A(m) on the uj grid. It is well known
that homogenization is not a trivial process [16, 27]. In fact, some of the better
homogenization processes are highly nonlinear with respect to the coefficients. This can
generate further complications when solving the optimization problem. We therefore
insist that the uj grid contain the grid for m.

• It is possible, and can be desirable, to have a coarser grid for m than for uj and
pj. In fact, one may claim that if a field uj is relatively flat then we cannot obtain
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“real” information from it about m. Nevertheless, structure in m may appear even in
areas where uj is flat, forced by the regularization term. Since the regularization term
describes crucial a priori information about our highly ill-posed problem, we should
attempt not to dilute it by using a very coarse grid. Thus, the grid for the fields may
contain refinement regions that would not normally arise if it were not for the present
inverse problem context.

In the next subsections we discuss our refinement criteria for each of the variables.

4.1 Refinement criteria for m

Let us assume for the moment that we have sufficiently fine grids for the fields and concentrate
on refining a grid for the model m alone. We next develop a refinement algorithm using two
termination parameters, ζ and ν. Since the discretization for m is based on the evaluation
of integrals in an optimization functional, we derive the refinement based on the estimated
errors in those integrals.

Assume first that m(x), and therefore ρ(|∇m(x)|), are known functions. Then, for the
solution of the inverse problem we need to estimate the integral

∫

Ωj

ρ dx,

where Ωj is an OcTree cell centered at xj.
Let us use the shorthand ρ̂(x) = ρ(|∇m(x)|). We can first write

∫

Ωj

ρ̂(x) dx =

∫

Ωj

[

ρ̂(xj) +∇ρ̂(ξ(x))⊤(x− xj)
]

dx

= Vj ρ̂(xj) +

∫

Ωj

∇ρ̂(ξ(x))⊤(x− xj) dx,

where ξ is a point within the domain Ωj and Vj is the volume of the cell. Thus, we can
estimate the integral by Vj ρ̂(xj) and bound the error of integration at each OcTree cell by

∣

∣

∣

∣

∣

∫

Ωj

ρ̂ dx− Vj ρ̂(xj)

∣

∣

∣

∣

∣

≤ Vj max
x∈Ωj

‖x− xj‖ max
x∈Ωj

|∇ρ̂(x)| =
√

3

2
hjVj max

x∈Ωj

|∇ρ̂(x)|, (4.13)

where hj is the length of the cell edge.
From the error expression we see that if |∇ρ(|∇m|)| is large then the integral is inaccurate.

Since the solution of the optimization problem depends on the accurate evaluation of the
integral we would like to refine in areas that |∇ρ(|∇m|)| is large. To estimate it we use the
computed m, denoted mh. Thus, in areas where |∇hρ(|∇hmh|)| > ζ we refine the grid. In
other areas the approximation to ρ is relatively flat so no further refinement is needed. The
refinement process is terminated when |∇hρ(|∇hmh|)| ≤ ζ for all cells.
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Note that ζ bounds the truncation error in our approximation of the regularization term.
If we allow a large ζ then the evaluation of the regularization term could be rather inaccurate.
If, on the other hand, we choose ζ too small then the integral evaluation is accurate but may
not benefit the overall estimation of m.

The other parameter, ν, checks convergence with respect to successive m refinements,
see Algorithm 1.

4.2 Initializing and refining the grid for u and p

Having a good criterion for the refinement of the model is insufficient: further complications
arise because the problem is strongly coupled with respect to the fields. We now discuss how
to refine the uj grids given the m grid.

There are two different but related issues when designing an appropriate refinement
criterion to the u grid. For the optimal model, m∗, and a u grid S, we can compute the
simulated data d(S, m∗). We can then write

d− d(S, m∗) = measurement noise + numerical noise.

While we are able in principle to control the numerical noise, the measurement noise is part
of the given problem.

If the measurement noise level in the data is not very small then the discretization for u
on the grid S should approximate the data well below the noise level. That is, given ξ < 1,
at the solution, the u-grid is required to satisfy

‖d(S, m)− d‖ ≤ ξ‖measurement noise‖. (4.14)

Such a choice guarantees that we are able to pull out most of the information from the
given data without polluting it with numerical noise. However, this requirement can lead
to over-discretization if the data is very accurate. Indeed, for the noiseless case the u grid
width must go to 0.

Assume now that the numerical noise dominates the measurement noise, hence the u

grid should be refined. We now suggest an approach to the discretization of the u-grid that
allows a gradual improvement of the misfit.

Assume that at the kth iteration we have a model mk and its discrete approximation
mk. Let m∗ = mk + δm, let Sk represent the grid for u and p, and let A(mk; Sk) be
the discretization of the forward problem for mk on Sk. Further, assume for simplicity
that the number of sources is n = 1 and that Q is the identity in (1.1a). Finally, let
d(mk, Sk) = A(mk; Sk)

−1b. We can write

δd = d− d(mk) = δd(Sk) + (d(mk, Sk)− d(mk)),

where δd(Sk) = d − d(mk, Sk) and d(mk) is the simulated data for the continuous model
mk (i.e. the data obtained without numerical errors). Since we evaluate our solution on
the grid Sk the term d(mk, Sk) − d(mk) can be interpreted as the numerical noise in our
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evaluation of the data difference δd. Thus, if ‖d(mk, Sk) − d(mk)‖ > ‖δd(Sk)‖ we have
added a substantial amount of highly correlated noise to the problem and there is no chance
to recover a good approximation to δm. Therefore, our strategy for the choice of the grid
for u and p is to require that

‖d(mk, Sk)− d(mk)‖ ≤ ξ‖δd(Sk)‖. (4.15)

Equation (4.15) is similar to (4.14) and it requires that on the current grid we are able to
evaluate a meaningful approximation to the simulated data. Evaluating the left hand side
of (4.15) may not be trivial. In a few cases d(mk) is known analytically, but in most cases it
requires the numerical evaluation of u given mk, which can be done by standard adaptive grid
refinement techniques for the forward problem (see for example [38] and references therein).

We summarize our approach for adaptive grid refinement in Algorithm 1.

Algorithm 1 Adaptive Grid Refinement

given m0 evaluate m0 and the m grid Sm
0 ;

set ξ, ζ, ν < 1
for k = 0, 1, 2, . . . do

evaluate Sk such that

• Sm
k ⊆ Sk

• ‖d(mk, Sk)− d(mk)‖ ≤ ξ‖δd(Sk)‖

if mk is an acceptable model and ‖d(mk, Sk)− d(mk)‖ ≤ ξ‖noise‖ then

return

end if

Solve the optimization problem on grid Sk and obtain mk+1

if ‖mk+1 −mk‖∞ ≤ ν then

return

end if

given mk+1 obtain Sm
k+1 with tolerance ζ

end for

4.3 Discussion

Unfortunately, our multilevel refinement requires three parameters. However, these param-
eters have a rather intuitive meaning.

ζ: Controls the truncation error in the discretization of the regularization operator. In
many cases this parameter can be estimated by a priori knowledge about the model
we are after.
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ξ: Controls the error level in the approximated data. If the data contains large amount
of noise then setting ξ below the noise level is desired. In (mainly synthetic) cases
where the noise level is negligible, setting ξ to the finest discretization error prevents
attempting to obtain computed data that are too accurate.

ν: Controls the change in the recovered model. In most cases it is easy to pick this param-
eter by understanding the dynamical range of the model. For example, in geophysical
setting where m is the log conductivity a change of less than 0.1 is considered not
meaningful.

Next we choose the initial grid in our numerical experiments. When we start with a
constant m0, d0 is known analytically. We have found it sufficient to then use 2 or 3 levels
of refinement close to the sources and receivers as an initial grid S0. We have further found
that this grid hardly needs to be refined in order to obtain very low levels of data accuracy.

5 Numerical experiments

In this section we experiment with our algorithm and show that using adaptive grids is
beneficial in the context of inverse problems. We generate data for different models on a
fine 1283 uniform grid and add 1% Gaussian noise to it. To avoid “inverse crimes” we
allow in the sequel only grid refinements of up to 643. We also set γ = .01 in (2.9) for
all experiments, which is commensurate with the width h of the finest grid. We then use
Algorithm 1 to recover the model. Unless stated otherwise the following choice of parameters
is employed: ξ = 0.1, ν = 0.05, ζ = 0.01. For each optimization problem on different grids,
the optimization process terminates if the norm of the gradient is reduced by two orders of
magnitudes from its initial value. We use L-BFGS(20) for the solution of each optimization
problem. All optimization problems have converged to the specified tolerance in less than
50 steps. The experiments are conducted on a 2.5 intel GHz processor with 2Gb of RAM.

5.1 Experiment I

In our first experiment we use 4 dipole sources located at

s+
1 = [0.1.0.1.0.1], s−1 = [0.9, 0.9, 0.9]

s+
2 = [0.1.0.9.0.1], s−2 = [0.9, 0.1, 0.9]

s+
3 = [0.9.0.1.0.1], s−3 = [0.1, 0.9, 0.9]

s+
4 = [0.9.0.9.0.1], s−4 = [0.1, 0.1, 0.9].

We sample using 1000 points equally spaced in [0.2, 0.8]3. Here, the model has a nontrivial
shape presented in Figure 4 top left. Note that this shape is well represented on a 1283

uniform grid which the data is generated from.
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5.1.1 Experiment I - regular grid

In order to have a point of comparison to the adaptive grid refinement we solve the problem
using the method described in [4] on uniform grids. Our coarsest grid is set to 163 for the
u, p grids and to 83 for the m grid. Our finest grid is 643 for all unknowns. We then save
the final model obtained and record the CPU time to be compared against adaptive grid
techniques.

5.1.2 Experiment I - adaptive grid

Here the grid for u and p is set by choosing a uniform 163 grid as the coarsest one and
refining twice close to the sources. When comparing the data obtained on this first grid
with a half space data [41] we find an agreement to roughly 0.1%, which is within the noise
levels. To initialize the grid for m we use an 83 uniform grid. We then solve the problem
on a sequence of grids and use the refinement criteria specified above for the model m. The
resulting m on different grids is presented in Figure 4. Interestingly, each of the models
within the multilevel process fits the data to within 1% error. Thus, from a data fitting
point of view all these models are valid! Nevertheless, while the 83 grid does not yield a
satisfactory result, locally refining it, even though the data does not justify doing so, does give
better reconstructions. This is because the regularization adds valid and useful information
to the inverse problem. For this example, the information provided by the regularization
gives a more accurate reconstruction of the model we are after. In Figure 4 we also plot the
recovered model obtained on a uniform 643 grid. It is evident that the finest OcTree model
gives virtually the same result. When comparing the 2 norm of the interpolated OcTree
model to the one obtained on uniform grids we find that

h3‖muniform −mOcTree‖ = 8.2× 10−3.

Thus, our locally refined grid has allowed good approximation to the results obtained on the
uniform 643 grid.

Comparing the computational effort, we find that for this reconstruction the 643 uniform
grid requires roughly 397 minutes while the adaptive mesh refinement takes only 25 CPU
minutes.

The OcTree for m for different levels is plotted in Figure 5. The number of unknowns for
each level is summarized in Table 1. Note that although our final resolution is equivalent to
the one obtained on a 643 grid we used roughly a factor of 13 fewer cells!

5.1.3 Experiment I - adaptive grid with different parameters

In this set of experiments we test the sensitivity of our results to the different parameters
of the adaptive algorithm. We vary all the parameters and record the number of cells and
the difference between the solutions obtained at the finest level. When doing so we vary one
parameter and leave the rest fixed in their default values. The results are displayed in Table
2.

We now discuss the results for each parameter.

15



True model 643 uniform grid 163 OcTree

323 OcTree 643 OcTree

Figure 4: True and Recovered models on different grids.

L2 L3 L4

Figure 5: Grids for m at different levels. The 3D grid is visualized by slicing it along the z
axis. The grid on the first level is equidistant.
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Level u grid m grid
L1 6448 512
L2 6910 946
L3 8974 3095
L4 19547 15170

Table 1: Number of unknowns on different levels

ζ ‖m−m∗‖ u grid m grid
10−1 6.4× 10−2 13312 5194
10−2 8.2× 10−3 19547 15170
10−3 1.1× 10−3 33682 27322
10−4 2.7× 10−4 62856 42257

ξ ‖m−m∗‖ u grid m grid
10−1 8.2× 10−3 19547 15170
10−2 7.9× 10−3 21332 16005
10−3 7.9× 10−3 21332 16005
10−4 7.9× 10−3 21332 16005

ν ‖m−m∗‖ u grid m grid
10−1 9.2× 10−3 14322 12180
10−2 8.3× 10−3 24357 16172
10−3 7.8× 10−3 28981 19345
10−4 7.8× 10−3 28981 19345

Table 2: Sensitivity of the results with respect to the different parameters

17



• Sensitivity with respect to ζ: This parameter controls the accuracy of the dis-
cretized regularization and therefore the smaller it is, the finer the m grid is. We
observe that as the m grid gets refined the error in the model is smaller. However,
for most practical applications a very accurate representation of m∗ is not required.
This is because the optimal model, m∗, is rarely a very good approximation to the true
model, so only a rough estimation of this model is needed.

• Sensitivity with respect to ξ: This parameter controls the discretization of u such
that the simulated data is sufficiently accurate. Note that when ξ < 10−2 we obtain
the same results as for ξ = 10−2. This is because although we have more information
in the data, it is insufficient to generate changes in the recovered models.

• Sensitivity with respect to ν: This parameter terminates the iteration if the dif-
ference between models on two consecutive OcTrees is small. As expected, when ν is
smaller more cells are required. However, for ν < 10−3 we obtain the same results as
for ν = 10−3. This is because |∇ρ| was smaller than ζ.

5.2 Experiment II

In our second experiment we demonstrate how a better resolution can be obtained by using
many sources. Of course, this is obtained at the price of a substantial increase in compu-
tational cost to solve the problem. Our experimental setting is similar to the field setting
presented in [35], where sources are placed in boreholes and data is measured on the surface
of the earth. In our setting we have a grid of 642 receivers on the surface of the earth. We
decree the existence of 4 boreholes, where 40 sources are placed. The total number of data
from this experimental setting is 642 × 40 = 163, 840. A sketch of the experimental setting
is given in Figure 6.

In this case the model is a tilted cube that does not coincide with the axes and is generated
by the function

m(x, y, z) = (atan(a(x + y + 0.75))− atan(a(x + y − 0.75)))×
(atan(a(x− y + 0.75))− atan(a(x− y − 0.75)))×
(atan(a(z + 0.75))− atan(a(z − 0.75)))

where −3 ≤ {x, y, z} ≤ 3 and a = 500.
We start by solving the problem on a uniform 163 grid for m and an OcTree of 8756 cells

for u. The OcTree for u is obtained again from the known analytical solution of the problem.
We then continue to refine the grid. Figure 7 displays the models obtained using 3 levels of
refinement.

Once again, all models on all grids fit the data within 1% of the noise level. Therefore,
if our interest was data fitting only then there is no preference to the fine resolution model
over the coarse resolution one. However, since the regularization operator is appropriate for
this particular problem, using finer grids and letting the regularization operator ”sharpen”
the model yields very pleasing results.
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Figure 6: The model and the experimental setting of our second experiment. The model
is a block tilted in a 45 degree angle with respect to the grid. The sources are placed in
boreholes and the receivers on a plain above.

True model 643 uniform grid 163 OcTree

323 OcTree 643 OcTree

Figure 7: True and Recovered models on different grids.
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Level u grid m grid
L1 5656 4096
L2 10356 6014
L3 21342 16199

Table 3: Number of unknowns on different levels

In Figure 8 we plot the m grids obtained in the second experiment. We can observe
that the code has automatically refined the grid close to the cube edges to obtain higher
resolution.

OT on 323 OT on 643

Figure 8: OcTree grids for m obtained for the second experiment. The 3D grids for the
model are visualized by slicing along the z axis.

In Table 3 we present the number of unknowns obtained on each level. The number of
unknowns on the finest grid is roughly 12 times smaller than the number of unknowns we
would obtain by using the full 643 grid. Since the overhead of the OcTree is relatively small
compared to the time required for the solution of the forward problem, we obtain an order
of magnitude improvement in the computational time.

To evaluate the computational saving obtained using adaptive mesh we solve the problem
on a uniform 643 grid and compare the results. Once again, the error in the recovered model
is very small

h3‖muniform −mOcTree‖ = 1.1× 10−2.

The computational saving here are significant: while the computation on the full grid took
roughly 123 hours, the computation on the OcTree grid took only 13 hours.
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6 Discussion and Summary

In this paper we have developed an adaptive multilevel refinement method for the solution
of distributed parameter estimation problems using a finite volume approach. Both forward
and inverse problems are carefully discretized on OcTree grids, and a Tikhonov-type reg-
ularization with a Huber switching function on the magnitude of the model’s gradient is
applied.

We have experimented with the DC resistivity problem. Our experiments reveal that
substantial computational savings can be obtained using the proposed multilevel adaptive
refinement strategy. In particular, the total computational time can routinely be reduced by
an order of magnitude compared to a uniform grid with the same resolution.

Most ingredients from which our algorithm is constructed may look very familiar at first,
but their composition in the present context leads to potential surprises. In particular we
note the following:

• the suitable grids one ends up composing for the model can improve the reconstructed
model without necessarily improving the fit to the data;

• a good choice of the Huber switching parameter γ is more suitable, in principle as well
as in practice, than either the least squares or total variation options from which (2.9)
is constructed;

• contrary to common folklore, detailed models may better be reconstructed on locally
fine grids, where coarse uniform grids are not sufficient, even though the forward prob-
lem is diffusive.

The latter point is particularly interesting. It demonstrates that using adaptive grid
refinement one is able to learn data vs regularization driven features in the model. If one
obtains a satisfactory data misfit on a coarse grid then we conclude that any further local
resolution is obtained by the regularization operator. Thus, adaptation can be beneficial
also as a tool to study the resolution of the problem.

Next, we plan to combine our grid refinement tools with level sets for shape optimization.
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