
Adaptive Firefly Algorithm: Parameter Analysis and its
Application

Ngaam J. Cheung1., Xue-Ming Ding2., Hong-Bin Shen1*

1 Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of

Education of China, Shanghai, China, 2 School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China

Abstract

As a nature-inspired search algorithm, firefly algorithm (FA) has several control parameters, which may have great effects on
its performance. In this study, we investigate the parameter selection and adaptation strategies in a modified firefly
algorithm — adaptive firefly algorithm (AdaFa). There are three strategies in AdaFa including (1) a distance-based light
absorption coefficient; (2) a gray coefficient enhancing fireflies to share difference information from attractive ones
efficiently; and (3) five different dynamic strategies for the randomization parameter. Promising selections of parameters in
the strategies are analyzed to guarantee the efficient performance of AdaFa. AdaFa is validated over widely used benchmark
functions, and the numerical experiments and statistical tests yield useful conclusions on the strategies and the parameter
selections affecting the performance of AdaFa. When applied to the real-world problem — protein tertiary structure
prediction, the results demonstrated improved variants can rebuild the tertiary structure with the average root mean square
deviation less than 0.4Å and 1.5Å from the native constrains with noise free and 10% Gaussian white noise.
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Introduction

Firefly algorithm (FA) is a simple yet quite efficient nature-

inspired search technique for global optimization. Since FA was

developed, it has attracted a lot of attentions and becomes more

popular in solving various real-world problems [1–6]. FA is a

swarm-based intelligence algorithm, which mimics the flashing

behavior of fireflies [7]. A firefly flashes as a signal to attract others

for some purposes, e.g. predation or mating. Accordingly, this

biological phenomenon is formulated as a meta-heuristic algo-

rithm depending on following three rules [7,8]:

N All fireflies are attracted by each other without respect to their

sex;

N Attractiveness is proportional to its brightness, that is, the less

bright one will move towards the brighter one;

N If there are no brighter fireflies than a particular firefly, it will

move randomly in the space.

Similar to other heuristic algorithms, FA also has several control

parameters to be tuned, for instance, the light absorption

coefficient, the randomization control factor, and the population

size, for good performance on different problems. The values of

these control parameters greatly determine the qualities of the

achieved solutions and the efficiency of the FA algorithm.

Generally, it is a problem dependent task to select suitable control

parameters for FA. As to a complex problem, it will be a hard case

to deal with if the problem with numerous local optima, in which

most optimization algorithms will be trapped [9–11]. Although it

is highly important, there is no consistent methodology for

determining the control parameters of a FA variant. Mostly, the

parameters are fixed experientially or set arbitrarily within some

predefined ranges.

In FA algorithm, there are two important issues: (1) the

variation of light intensity; and (2) formulation of attractiveness

[7]. However, these parameters are either set constants or fixed

empirically in the traditional FA [7], which may make the

algorithm inefficient for the problems with complex landscapes

[3]. Researchers have made numerous contributions to the

improvement of FA considering the alteration of the control

parameters. For example, Gandomi et al. applied several chaos

mechanisms to tune light absorption coefficient and attractiveness

coefficient [12]. In ref. [1], a geometric progression reduction

scheme for the randomization parameter was introduced in FA to

enhance the solution quality. Coelho and Mariani adopted

Gaussian distribution probability functions to tune the light

absorption coefficient and the randomization parameter [3]. In

ref. [2], a chaotic mapping operator and a chaotic component
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were used to generate initial solutions and replace the random

component of the standard FA, respectively. The former was to

improve the quality of the initial population, while the latter was to

perform ergodic search of the solution space.

Although much progress has been achieved on the FA-based

algorithms since 2008, more efforts are required to further

improve their performance:

N Providing the sufficient analysis for the control parameter

settings;

N Efficient strategies or mechanisms for the selections of the

control parameters;

N Employing heterogeneous search rules to enhance the

performance of FA.

In this paper, the contributions are to develop several

mechanisms and strategies for improving standard firefly algo-

rithm, involving: (1) distance-based light absorption coefficient and

gray coefficient for adaptively altering the attractiveness and

enhancing difference information sharing, respectively; (2) five

strategies for controlling the randomization parameter; and (3)

employing heterogeneous search rules supported by the adaptively

altering control parameters, to enhance the search ability of the

original FA. The control parameters are adjusted over time or

depending on heuristic rules, which employ the evolutionary

information among the fireflies.

Methods

Firefly algorithm
The firefly algorithm (FA) is a nature-inspired optimization

method [7], which maintains a population of fireflies to find the

global optimum of an optimization problem.

In FA, the distance between any two fireflies i and j at xi and xj ,

respectively, can be defined as the Euclidean distance rij , which is

formulated as follows,

rij~Exi{xjE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

D

d~1

(xi,d{xj,d )
2

v

u

u

t ð1Þ

where D is the dimension of an optimization problem.

Indeed, the larger the distance rij is, the less light the fireflies can

see from each other. Accordingly, it is necessary to define

monotonically decreasing functions for light intensity and attrac-

tiveness, respectively. They are presented in Eqs. (2) and (3).

I(r)~I0e
{cr2 ð2Þ

where I0 is initial light intensity, and c is the light absorption

coefficient, which controls the decrease of light intensity.

Accordingly, the attractiveness b of a firefly is defined as shown

in Eq. (3).

b(r)~b0e
{cr2 ð3Þ

where b0 is a constant, which is the attractiveness at r~0.

The step of a firefly i is attracted to move to another more

attractive (brighter) firefly j is determined by

Dxi(t)~b:(xi(t){xj(t))za(et{c) ð4Þ

where c is a constant vector ½0:5,0:5, . . . ,0:5�D and t is the time

step, et is drawn from a normal distribution N(0,1). Dx is the step

size of the ith firefly moving. The first term is the attraction from

the jth firefly, while the second term is randomization controlled

by a, which is a constant in the range of (0,1). Therefore, the

update of the ith firefly is formulated as follows,

xi(tz1)~xi(t)zDxi(t) ð5Þ

The Eqs. (4) and (5) show that the ith firefly will move towards

the jth firefly, which is a more attractive one.

The procedure of FA algorithm is summarized as follows

(Algorithm S1):
The selections of parameters are crucially important in FA, such

as the light absorption coefficient c in Eq. (3) and the

randomization parameter a in Eq. (4), but the values of the

control parameters are chosen in predefined ranges dogmatically

[13]. During the search process, traditional FA does not alter the

values of the control parameters or only use constant parameters

throughout the whole process. Also the information of the search

or the knowledge achieved by the fireflies are not taken into

account in the selections of parameters. All these static designs

may be optimal for one problem, but not efficient or even fail to

guarantee convergence for another one [13]. Proper selections of

these parameters highly determine the quality of the solution and

the search efficiency. Although researchers have proposed many

improved FA variants [1,14–16], premature convergence can still

occur in the original firefly algorithm and its variants. FA may be

easily trapped in local regions when it is used to deal with the

complex problems with numerous local optima if the randomness

is reduced to quickly [3]. To overcome these weaknesses in FA, we

develop five variants of FA based on two main mechanisms, which

will be described in details in following sections.

Adaptive firefly algorithm
The standard FA employs three parameters for solving the

optimizations, and the parameters may result in significantly

different performance of FA, such as the absorption coefficient c
and the randomization parameter a. Proper selections of these

parameters can be a useful way to improve the search ability of

FA. However, considering different problems with distinguish

features, it is difficult to manually tune the parameters. To

enhance FA, two main mechanisms and five strategies are

Figure 1. The relationship among Ac, s and r. As s and r increase,
Ac will decrease while the value of Ac will sharply increase when s and
r are very small (or large).
doi:10.1371/journal.pone.0112634.g001
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employed to avoid the premature convergence of the classical FA.

Accordingly, five variants of FA are yielded to balance the

exploitation (local search) and exploration (global search), which

are denoted as AdaFa-Ss (s~1,2, � � � ,5). The two main mecha-

nisms are distance-based adaptive mechanism for different

information sharing and gray-based coefficients for efficiently

enhancing the heterogeneous search. All the two mechanisms are

adaptive to exchange messages and applied to tune the control

parameters in FA. Additionally, we also propose five different

strategies for the selection of the randomization parameter a in Eq.

(4).
Distance-based adaptive strategy. The motivation for us

to investigate a distance-based strategy is that the adaptive

absorption coefficient can efficiently deal with different problems

whatever their landscape are, while the traditional FA uses a

constant one throughout the search process.

It is obvious that there are two limited cases for a constant light

absorption coefficient c [4], which can be concluded as follows:

N The attractiveness of other fireflies will be a constant when c
approaches 0. That is, a firefly can be seen by all the other

ones. In this case, FA is the same as a classical PSO.

N If c??, the attractiveness will be equal to 0. All the fireflies

cannot take their bearings to move but in random flight. In this

case, FA becomes a pure random search algorithm.

As can be seen, the parameter c is crucially important in

characterizing the variations of the attractiveness, and the speed of

the convergence is also dependent on c [12]. As a result, the

performance of FA will be significantly constrained when a

constant c is used to solve the optimization problems as done in

traditional FA. As is well known, the attractiveness should be

linked with the distance among the fireflies, and it should also vary

with the different distances among the population during the

search process. The information of the distances is useful for

promising search adaptively. Hence, we propose to use the

distance to adaptively adjust the trajectories of the fireflies. The

mean distance of the ith firefly to the other fireflies is calculated as

follows,

disi~
1

N{1

X

N

j~1, j=i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

D

k~1

(xki {xkj )
2

v

u

u

t ð6Þ

where N is the number of the fireflies.

Based on the distance calculated in Eq. (6), we then define the

distance ratio as follows,

Dr~
disopt{dismin

dismax{dismin

ð7Þ

where disopt is the distance from the ith firefly to the global best

firefly. dismax and dismin are the maximum and the minimum

distances from the ith firefly to other fireflies, respectively.

Accordingly, we define an adaptive absorption coefficient based

on the distance ratio, which is to adaptively track the promising

flight direction. It is defined as follows,

Ac~
1

1zse{r:Dr
ð8Þ

where s denotes as amplitude factor, which controls the amplitude

of Ac. r is called contraction index. The relationship between Ac

and the two factors is illustrated in Fig. 1.

In Fig. 1, the value of Dr is set to 1, which does not have effect

on the lower and upper boundaries of Ac. As can be seen, the

larger the values of s and r are, the smaller the value of Ac is; vice

versa. If we remove the effect of Dr, that is Dr~1, then Ac will be

a constant. As a result, it is greatly difficult to deal with the balance

between exploration and exploitation. Because the light absorption

coefficient is determined by the distance information adaptively,

the fireflies are able to adjust their flight directions for promising

search.

Then, the constant light absorption coefficient c in traditional

FA is replaced by the adaptive coefficient Ac for efficient search.

The new attractiveness is obtained in Eq. (9).

t~Dr
:e{Acr

2
ð9Þ

Gray-based coefficients. Gray relational analysis (GRA) is a

similarity measure for finite sequences with incomplete informa-

tion [17]. Let y~(y1,y2,y3, . . . ,yD) be the reference sequence, and

xi~(xi1,xi2, . . . ,xiD),i~1,2,3, . . . ,N be the ith comparative

sequence, then the gray relational coefficient between y and xi
can be defined as

GRC(yj ,xij)~
dminzj:dmax

dijzj:dmax

ð10Þ

where dij~Dyj{xij D, dmin~mini minj dij , dmax~maxi maxj
dij , and j[(0,1� is employed to distinguish dmax from dmin and

called as distinguishing constant. Based on Eq. (10), we can

calculate the corresponding gray relational grade as follows

GRG(y,xi)~
X

N

j~1

lj :GRC(yj ,xij)
� �

ð11Þ

where lj is a weighted constant of the gray relational coefficient

GRC(yj ,xij) and subjects to
Pn

j~1 lj~1.

To properly use the gray relational analysis, the new best firefly

xopt is employed as the reference sequence, while all the fireflies

are the comparative ones. Base on these assumptions, we can use

the gray relational analysis to measure the similarity between

them. Let the gray relational grade between the new best firefly

xopt and the ith firefly xi be GRGi. As can be seen from Eq. (11),

the closer the new best firefly xn and the ith firefly are, the larger

the GRGi is. Accordingly, the relational grade GRGi can be used

to control the diversity of the firefly population. Since the gray

relational grade involves the information of population distribu-

tion, we define a gray coefficient g to satisfy the requirement of

diversity as follows,

g~
(gmin{gmax)

:GRGizgmaxGRGmax{gminGRGmin

(GRGmax{GRGmin)
ð12Þ

where gmax and gmin are the upper and the lower

boundaries, which ensure the population can converge in finite

time. GRGmax~maxfGRGiDi~1,2...,N
g and GRGmin~min

fGRGiDi~1,2...,N
g.

Update rules. Fireflies in the traditional FA and most of its

modifications, follow the same search law and share similar

information throughout the search process. Due to the same

search characteristics, the fireflies cannot always exhibit diverse

and useful information for promising search. In an optimization

Adaptive Firefly Algorithm
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algorithm, it is important to balance the exploration and

exploitation. The algorithm should make contribution to explo-

ration initially, while focusing on exploitation and convergence in

the later search process [3,18]. To accomplish the task, we

introduce heterogeneous update rules to improve the search

abilities of the fireflies. Two updating equations are defined and

selected randomly in the search process, which are presented in

Eq. (13).

xi(tz1)~

(1{t):xi(t)zt:xj(t)zxr(tz1) randw0:5,

NG{t

NG

(1{g):xi(t)zg:xopt else,

8

<

:

ð13Þ

where NG is the maximum number of generations. xr is the

randomization term, which is defined based on new a-strategies as
follows,

xr(tz1)~a(tz1):(rand{c):DUb{LbD ð14Þ

where Ub and Lb are the upper and lower boundaries,

respectively.

In FA, the strategy (S0) for a is

a(tz1)~a(t):
10{4

0:9

� �

1
NG

ð15Þ

As can be seen from Eq. (15), a decreases linearly depending on

the generation number, and it does not always work well for

different problems. As an important parameter controlling the

randomization step, a has significant effect on the performance of

FA. To enhance its search ability, we propose five different

strategies for a, which all decrease dynamically with the generation

number, population size and the size of the optimized problem.

These designs promise AdaFa to deal with different types of

problems, and all of them increase the range of a. The strategies

are presented in Eq. (16)–Eq. (20).

N strategy S1

a(t)~
ed(NG{t)

t:E

� �M

, ð16Þ

where d is constant defined by user to clamp a, and E is also a

constant, which is 10{6.

N strategy S2

a(t)~exp d
NG{t

t

� �1
t

 !M

, ð17Þ

N strategy S3

a(t)~ edt{
N
D

� �

M(NG{t)

NG , ð18Þ

where N and D are the population size and the size of an

optimization problem, respectively.

Figure 2. The relationship between the two factors (s and r) and the performance of AdaFa.
doi:10.1371/journal.pone.0112634.g002
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N strategy S4

a(t)~ t(N
P
{1)

:(NG{t)
h iM

, ð19Þ

where P is the power of population size N.

N strategy S5

a(t)~t

M(NzD)(NG{t)

NG
: ð20Þ

In Eq. (16)–Eq. (20), M~{exp {
NG{t

t

� �

. From Eq. (16)–Eq.

(20), a varies with time t non-linearly, and the analysis of the

parameters in the strategies are presented in following section.

Based on the designs of different adaptive mechanisms and

strategies discussed above, the fireflies are allowed to learn more

useful information from others and adjust the flight directions

adaptively. The AdaFa algorithm is summarized in (Algorithm S2).

Results

In this section, we demonstrate the performance of AdaFa

variants over twelve benchmark functions F1–F12 summarized in

Table S1 of Supplementary Materials (more details can be referred

to the study [19,20]) and apply AdaFa variants to rebuild protein

tertiary structure. Firstly, we conduct numerical experiments for

parameters analysis and then compare AdaFa with standard

particle swarm optimization (SPSO) [21], adaptive particle swarm

optimization (APSO) [19], grey particle swarm optimization

(GPSO) [20] and FA [8]. In numerical experiments, we analyze

Figure 3. The relationship between g and performance of AdaFa.
doi:10.1371/journal.pone.0112634.g003

Figure 4. Different strategies for a: (a) strategy S1, (b) strategy S2, (c) strategy S3 varying with different d.
doi:10.1371/journal.pone.0112634.g004
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the parameter sensitivity, provide the parameter settings of each

algorithm, present the results of the numerical experiment, and

analyze the numerical results.

Parameter sensitivity analysis
In this section, we analyze four parameters in AdaFa including

the amplitude factor s, the contraction index r, gmin and gmax.

The different selections of the four parameters may have influence

on its performance. To investigate the impacts of these param-

eters, we conducted the experiments on functions F1–F2, F5, and

F9–F11, which are Sphere, Schwefel, Rosenbrock, Rastrigin,

Ackley and Griewank functions, respectively. The maximum

number of generations was set to 1,000, and the population size

was 10 (This is similar to ref. [8], where the authors analyzed the

effect of population size on the optimization problems). The

averages of best-so-far values were used to measure the

performance of AdaFa.

To investigate the amplitude factor s and the contraction index

r, gmin and gmax were set to gmin~0:05 and gmax~0:95,

respectively. AdaFa was performed 20 times with different s and

r. s was varied from 0:1 to 2:5 with an increment of 0:2, while r
was changed from 1 to 3 in the same increment. Fig. 2 reveals that

Figure 5. In strategy S4, the relationship between a and the population size N varying with different power value P.
doi:10.1371/journal.pone.0112634.g005

Figure 6. In strategy S5, the relationship between a and the size of problem D with different population size N .
doi:10.1371/journal.pone.0112634.g006
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the relationship between the best-so-far and the two factors. As can

be seen, the optimal s and r were around 1:5 and 2:5,

respectively. Hence, in this study s~1:5 and r~2:5 were used

for all the following experiments.

In the gray strategy, we employ a gray coefficient g to trade-off

between the ith firefly and the best firefly. As shown in Eq. (12), it

is necessary to clamp g in a fixed interval, such as

gmin ƒ gƒ gmax. To fix gmin and gmax, we conducted trial tests

on the same six benchmark functions, and the maximum number

of generations was also set to 1,000. gmin and gmax were set in

gmin[½0,0:5� and gmax[½0:6,1:1�, respectively, with the same

increment of 0:05. Fig. 3 shows the relationship between g and

performance of AdaFa. From Fig. 3, AdaFa will perform well

when gmin&0:1 and gmax&1:0. Hence, in this study, we use

gmin~0:1 and gmax~0:95 to conduct the experiments.

In strategies S1 S2 and S3 of a (Eq. (16)–Eq. (18)), d can be

defined by user before the optimization. How to select d is

important to a. We thus analyze the relationship between d and a,
which is illustrated in Fig. 4. As shown in Fig. 4, the larger d is, the
larger the range of a is. It is interesting to note that there is a tail in

strategy S3 at the latter of generations, which can enhance the

search abilities of the fireflies in exploitation region at latter search

process.

In strategy S4 and strategy S5, the values of a are dependent on

the population size N and the size D of an optimization problem,

and we also analyze the relationship among them. As illustrated in

Fig. 5, in strategy S4 the smaller P is, the more similar the

trajectories of a are. As well as strategy S1–S3, the range of a is

enlarged with the increment of the value of P and population size

N . In strategy S5, as shown in Fig. 6, although the trajectories of a
are different from each other varying with D, they all converge to

similar points. These points are independent of the population size

N .

In Fig. 7, different strategies of a are compared, where the

ranges of a of all proposed strategies are larger than the strategy in

standard FA. The larger ranges allow the fireflies with stronger

exploration and exploitation abilities throughout the search

process.

Parameters settings
Experiments were conducted to compare different algorithms

on 12 benchmark functions with 30 dimensions. In these

experiments, the maximum number of generation was set to

2,000, and the population of each algorithm was set to 40.

According to previous analysis, the parameter settings are listed as

follows:

N SPSO [21]: v~
1

2log(2)
, c1~c2~0:5zlog(2).

N APSO [19]: vstart~0:9, c1~c2~2:0.

N GPSO [20]: j~1, vmin~0:4, vmax~0:9, cmin~1:5,

cmax~cfinal~2:5

N FA [8]: a~0:5, bmin~0:2, c~1:0.

N IFA: w~0:05, a~0:5, b0~1:0, bmin~0:2, c~1:0.

N AdaFa-S1: d~8, s~1:5, r~2:5, gmin~0:1, gmax~0:95.

N AdaFa-S2: d~80, s~1:5, r~2:5, gmin~0:1, gmax~0:95.

N AdaFa-S3: d~700, s~1:5, r~2:5, gmin~0:1, gmax~0:95.

N AdaFa-S4: P~0:75, s~1:5, r~2:5, gmin~0:1, gmax~0:95.

N AdaFa-S5: s~1:5, r~2:5, gmin~0:1, gmax~0:95.

Numerical Results
The experimental results over the twelve benchmark functions

are presented in this section. Table 1 shows the mean values and

the standard deviation of the results over 30 independent trials of

each algorithm, and the success rate. The best are highlighted in

bold, and the mean values are also illustrated in Fig. S1 in File S1

to compare the convergence of each algorithm (more details can

be found in Supplementary Materials).

As illustrated in Table 1 and Fig. S1 in File S1, the five versions

of AdaFa achieved better results than the other four algorithms on

eight benchmark functions (F2–F5, F7, and F9–F11), which can be

also observed from Fig. S1 in File S1. SPSO achieved the target

solution on function F1, although the five versions of AdaFa did

not as well as SPSO, they obtained the comparable results to each

other, and the results were better than APSO, GPSO and FA.

AdaFa-S3 was better than AdaFa with other four different

strategies on function F2–F4, while other algorithms were all

trapped and failed to obtain good results. It is easy to solve

function F6 by the FA-based methods as shown in Table 1, as

shown FA and five variants of AdaFa all found the target solutions

to the problem. Due to the complex landscape of function F8,

GPSO was the sole algorithm that found a most approaching

results to the target. Similarly, AdaFa-S1 and AdaFa-S4 were the

only ones that achieved sharp result than the compared algorithms

on functions F11 and F9, respectively. Although AdaFa-S2, AdaFa-

S3 and AdaFa-S5 were all trapped into the local regions on

function F9, they performed so well that they all highly better than

the three variants of PSO and FA on functions F10 and F11. FA

was good for the function F12, on which it was superior to others,

but the rest possessed similar convergent characteristic as

illustrated in Fig. S1 in File S1.

Comparison of CPU efficiency
To compare the computational efficiency, we use CPU time to

measure the complexity of each algorithm. For each algorithm, the

computational efficiency is formulated as follows,

p~
Te( f )

Ttot( f )
|100% ð21Þ

where Te is the computational time of an algorithm on the

benchmark function f , while the Ttot is the total time of all the

algorithms on function f .

In Fig. 8, the computational efficiency is illustrated. As can be

seen, APSO is the fastest among all the algorithms, and it is

followed by FA. Their computational efficiency are quite similar to

each other over each benchmark function. The costs of the

proposed five versions of AdaFa are also similar to each other, and

they are all comparable to those of SPSO. However, all the five

Figure 7. The comparison of different strategies for the
randomization parameter a.
doi:10.1371/journal.pone.0112634.g007
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version of AdaFa are worse than FA in terms of computational

time due to several new mechanisms have been employed.

Statistical analysis
Generally, it is necessary to use the non-parametric tests to

analyze the experimental results. In this section, the Friedman,

Aligned Friedman and Quade tests [22] were used to validate the

performances of all the algorithms.

Table 2 presents the average rankings calculated from the

Friedman, Aligned Friedman, and Quade tests. Each algorithm

and its score are listed in ascending order. The statistics and the

corresponding p-values are shown at the bottom of the table. In

terms of computed p-values, there exists significant differences

among the algorithms with the 5% significance level.

Simulations on trans-membrane protein helix
Optimization approaches have been widely used in computa-

tional biology, for instance, immune algorithm (IA) was applied to

discover a protein conformation with minimal energy based on

lattice models [23]. Estimation of distribution algorithms (EDAs)

[24] was used to solve the PSP in simplified models. Also based on

simple protein models, Islam and Chetty employed memetic

algorithm (MA) with several features to accomplish the structure

prediction [25]. One important step of ab initio PSP methods is to

reconstruct the tertiary structure of a protein by some optimization

algorithms. Many methods reconstruct the tertiary structure of a

protein depending on the residue contact maps, which can be

solved in the framework of optimizing NP-hard problem [26], for

example, in [27], a stochastic method based on simulated

annealing (SA) was developed to derive a three-dimensional

structure from a contact map. Vassura et al. used the a heuristic

method and contact map to accelerate the process [28]. As we

know, the aim of PSP is to obtain the Cartesian coordinates of all

the atoms, which are bonded together by inter-atomic forces called

chemical bonds. It has been observed that the bond lengths subject

to a Gaussian distribution with a small standard deviation in high

resolution protein structural data [29], and contain the essential

information to determine the backbone structure of a protein [30].

Hence, given the torsion angle and bond length constrains,

conformation of the geometry of the global protein structure is also

Figure 8. The comparison of computational efficiency of each algorithm on the test functions.
doi:10.1371/journal.pone.0112634.g008

Table 2. Average Ranks of all compared algorithms over all benchmark functions.

Average Friedman Aligned Friedman Quade

Rank Algorithm Score Algorithm Score Algorithm Score

1 AdaFa-S4 3.3333 AdaFa-S4 43.1667 AdaFa-S4 3.2756

2 AdaFa-S3 3.375 AdaFa-S3 43.2083 AdaFa-S3 3.5833

3 AdaFa-S1 3.75 AdaFa-S5 43.8333 AdaFa-S5 3.891

4 AdaFa-S5 3.8333 AdaFa-S1 46 AdaFa-S1 3.9167

5 AdaFa-S2 4.3333 AdaFa-S2 46.5833 AdaFa-S2 4.4551

6 GPSO 6.5 APSO 59.2917 APSO 6.109

7 APSO 6.5417 GPSO 66 GPSO 6.3462

8 FA 6.625 FA 69.4583 SPSO 6.7115

9 SPSO 6.7083 SPSO 72.9583 FA 6.7115

Statistic 30.35556 10.088976 3.022701

p-value 0.000183 0.2588364 0.004785

doi:10.1371/journal.pone.0112634.t002
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an optimization problem, where the final structure resolution is

significantly dependent on the algorithms.

In this study, we applied the developed AdaFa variants on the

protein structure prediction problem with focus on the transmem-

brane helix proteins (TMHP). Membrane proteins account for

30% of the whole genome and more than 70% known drug

targets. However, because of the hydrophobic environment of

TMHP, they are the extreme difficult targets for the experimental

structure biology studies [31,32].

In high resolution protein structural data, it has been

investigated that the bond lengths and angles subject to Gaussian

distribution with a small standard deviation [33]. Here, we try to

rebuild the tertiary structure directly from the bond lengths and

angles with AdaFa. The data set of TMHP is filtered from the

RCSB protein data bank (PDB) benchmark with 30% sequence

identity cutoff, and it is released after Jan. 1st, 2010. We use 30

TMHPs for the tests, where the number of the residues (Res. No.)

is less than or equal to 100, and the atomic resolutions of all the

proteins are better than 2.5Å, without missed internal residues and

sequence redundancies. These benchmark proteins are presented

in Table 3.

Table 3. Information of Trans-membrane protein helix.

PDB ID Res. No. PDB ID Res. No. PDB ID Res. No.

1afoA 40 2c0xA 50 2kdrA 28

1bzkA 42 2gofA 19 2l0eA 31

1eq8A 23 2h95A 18 2l6wA 39

1javA 19 2hacA 33 2lk9A 24

1lb0A 13 2htgA 27 2lx0A 32

1lcxA 13 2jtwA 25 2xkmA 46

1pjdA 15 2jwaA 44 3c9jA 25

1wazA 46 2k9jA 42 3e86A 70

1z65A 30 2k9yA 41 3hroA 37

2beqA 36 2ka1A 35 3mraA 25

doi:10.1371/journal.pone.0112634.t003

Figure 9. The kernel smoothing density estimate of (a) TM-Score, (b) GDT-TS-Score, (c) GDT-HA-Score, and (d) RMSD achieved over
the native constrains. AdaFa-S1–AdaFa-S5 were represented by red solid line, black dotted line, blue dotted dashed line, magenta dashed line,
and green solid line, respectively.
doi:10.1371/journal.pone.0112634.g009
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From the 30 PDB structural data set, we extract only the angles

of protein backbone including bond angles and torsion angles,

which will be used as the constrains of the construction by the

proposed AdaFa. In the experiments, the coordinate of the first

backbone Ca atom was set randomly, the second one was

determined by the standard bond length, the third one was fixed

by two standard bond lengths and a bond angle, and the fourth

one was calculated by the former three bond lengths, two bond

angles and a dihedral angle. From the fifth Ca atom, the

coordinates were determined by the same constrains involving

four bond lengths, three bond angles and two dihedral angles.

When considering the whole process as an optimization problem,

we define the objective function as an energy, which is to calculate

the distance between the undetermined Ca atom and its former

four fixed Ca atom. For example, there are four determined

coordinates of Ca atoms (Ci, i§ 4), and we need to determine the

coordinate of the (iz4)th Ca atom using the bond lengths, bond

angles, and dihedral angles among the Ca atom Ci, Ciz1, Ciz2

and Ciz3 in the backbone of a chain. We transform the obtained

knowledge into distance-based constrains in geometrical respect,

and the distances can be denoted as di,j , diz1,j , diz2,j and diz3,j

(j~1, 2, 3, 4). Accordingly, the energy can be formulated as

E~
P4

j~1 (di,j{do
i,j), where do

i,j is transformed from the native

constrains. The energy is used as the criterion of the proposed

AdaFa in the optimization process. Hence, the backbone of a

protein can be achieved by AdaFa iteratively. We then use the

entire backbone of a protein chain as input of the PULCHRA [34]

to determine the other atoms, such as hydrogen atoms and

nitrogen atoms.

As illustrated in Fig. S2 in File S1, the tertiary structures of the

proteins listed in Table 3 were predicted by AdaFa with high

accuracy from the native constrains of each protein. In the

experiments over 30 proteins, the averaged RMSDs of AdaFa-S1–

AdaFa-S5 are 0:3074Å, 0:2960Å, 0:3043Å, 0:3079Å, and

0:2838Å, respectively. To validate the robustness of AdaFa, the

native constrains with 10% Gaussian white noise were used to

predict the tertiary structures. According to the results in Fig. 9

and Fig. S3 in File S1, it can be seen that AdaFa variants (AdaFa-

S1–AdaFa-S5) are able to construct the tertiary structure of the

protein with high accuracy and good robustness, where the

averaged RMSDs of AdaFa-S1–AdaFa-S5 are 1:4425Å, 1:164Å,
1:2946Å, 1:0354Å, and 1:3508Å, respectively.

The different scores (TM-Score [35], GDT-TS-Score [36] and

GDT-HA-Score [37]) and RMSD are illustrated by kernel

smoothing density estimate [38] in Fig. 9 (More details can be

found in Supporting Information). From Fig. 9 (a), the proposed

AdaFa with five various strategies achieved different TM-Scores,

in which AdaFa-S1, AdaFa-S4 and AdaFa-S5 were better than the

rest two variants of AdaFa. AdaFa-S4 was superior to the other

one in terms of GDT-TS-Score and GDT-HA-Score as shown in

Fig. 9 (b) and Fig. 9 (c), while the AdaFa-S2 was the worst one

among the variants of AdaFa over the protein benchmark dataset.

On the other hand, AdaFa-S1 and AdaFa-S3 exhibited a little

different and competed with each other in the two score items. In

respect of RMSD as shown in Fig. 9 (d), AdaFa-S5 occupied an

overwhelming position, which was far better than the other four

AdaFa variants, among which AdaFa-S1–AdaFa-S3 possessed

similar density estimation.

Conclusion

In this paper, we develop an adaptive firefly algorithm (AdaFa)

and its five variants to enhance the search ability of the original

FA. In AdaFa, we propose a distance-based technique to

overcome the two main drawbacks in using a constant light

absorption coefficient, which tunes the light among the fireflies

dynamically to control the sharing distance information leading to

the variation of the attractiveness. Simultaneously, the differences

among the fireflies can be adequately used to enhance the local

search ability of each firefly, hence we employ the gray relational

analysis to design a gray coefficient as another self-adaptively

altering parameter. According to the designed parameters, AdaFa

uses heterogeneous update laws to accomplish the balance

between the exploitation and the exploration throughout the

search process.

In the numerical experiments, we compared the performances

of all five proposed AdaFa variants with FA and other three PSO-

based algorithms, and the statistical results demonstrated the five

AdaFa variants were significantly better than the other four

algorithms with the 5% significance level. The experiments on the

reconstruction of the tertiary structure of the protein showed that

AdaFa had the potential ability in predicting the helix structures

with high accuracy and good robustness. Although AdaFa

exhibited good performance on either the numerical experiments

or real-world application on the prediction of the proteins’ tertiary

structures, it is still a challenging problem to deal with the

cooperation among the fireflies for further improving the

performance of FA, which is our future efforts. The codes of

AdaFa is available upon request at http://www.csbio.sjtu.edu.cn/

bioinf/AdaFa-PAA/.

Supporting Information

Algorithm S1 The FA algorithm.

(TXT)

Algorithm S2 The AdaFa algorithm.

(TXT)

File S1 Combined file of supporting figures and tables.

Figure S1: The mean value over the benchmark functions with 30-

dimensions. Figure S2: Simulation results over thirty proteins.

Figure S3: The kernel smoothing density estimates of different

measurement metrics. Table S1: Benchmark Functions.
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