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ABSTRACT

An adaptive forgetting-factor inverse square-root
recursive least squares (AF-iQRRLS) with inverse of
correlation matrix updating is presented for per-tone
equalisation in discrete multitone-based systems. The
proposed inverse covariance update of the square-root
covariance Kalman filter is introduced to prepare for
the signal flow graph (SFG). This reduced derivation
of adaptive inverse square-root recursive least squares
algorithm can modify via SFG. In order to reduce the
computational complexity, the forgetting-factor pa-
rameter for each group called per-group forgetting-
factor (PGFF) approach based on AF-iQRRLS algo-
rithm is introduced. The forgetting-factor from the
middle of each group is selected as a representative in
order to find an optimal forgetting-factor parameter
by using AF-iQRRLS algorithm. After convergence,
it is fixed for remaining tones of whole group. Simu-
lation results reveal that the trajectories of modified
PGFF of the proposed algorithm for each individual
tone can converge to their own equilibria. Moreover,
the performance of the proposed algorithms are im-
proved as compared with the existing algorithm.

Keywords: Discrete Multitone (DMT), Adaptive
Algorithm, Per-Tone Equalisation (PTEQ), Adap-
tive Forgetting-Factor Algorithm, Adaptive Inverse
Square-Root Recursive Least Squares (iQR-RLS) Al-
gorithm, Per-Group Forgetting-Factor (PGFF) Ap-
proach, Signal Flow Graph (SFG)

1. INTRODUCTION

Discrete multitone (DMT) is a digital implemen-
tation technique widely used for high speed wired
multicarrier transmission such as asymmetric digi-
tal subscriber lines (ADSLs) [1], [2] and [3]. The
cyclic prefix (CP) is inserted between DMT symbols
to provide subchannel independency to eliminate in-
tersymbol interference (ISI) and intercarrier interfer-
ence (ICI). The so-called shortened impulse response
(SIR) which is basically the convolutional result of a
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(real) time-domain equaliser (TEQ) and channel im-
pulse response (CIR) is preferably be shortened as
most as possible.

By employing a TEQ, the performance of a DMT
system is less sensitive to the choice of length of CP.
However, TEQs have been introduced in DMT sys-
tems to alleviate the effect of ISI and ICI in case of
the length of SIR or shorter than a CP [4]. The target
impulse response (TIR) is a design parameter char-
acterising the derivation of the TEQ.

In addition to TEQ, a complex one-tap frequency-
domain equaliser (FEQ) is applied subsequently for
each tone separately to compensate for the amplitude
and phase of distortion [2]. An ultimate objective of
most TEQ designs is to minimise the mean square
error (MSE) between output of TEQ and TIR. This
implies that TEQ and TIR are optimised in the mean
square error (MSE) sense [4] and [5].

In order to improve the signal to noise ratio
(SNR) and bit rate performance, a complex multitap
frequency-domain equaliser structure, called per-tone
equalisation (PTEQ) has been proposed in [6]. It can
optimise the SNR for each tone separately and obtain
the achievable bit rate. A technique based on trans-
ferring the (real) TEQ-operations to the frequency-
domain is suggested. The sensitivity of the synchro-
nisation delay and the size of PTEQ are reduced for
the same performance.

Based on the fast convergence, the resursive least
squares (RLS)-based algorithm is to provide the con-
siderable improvement in convergence speed. Basi-
cally, the problem of RLS algorithm is the divergence
when the inverse matrix loses its property of Her-
mitian symmetry [7]. The inverse square-root RLS
(iQR-RLS) algorithm based on QR-decomposition
performs especially triangularisation operation on the
inverse correlation matrix [8]. In [9], a significant
part of fast and cheap adaptive RLS-based compu-
tations with inverse updating can be shared among
different tones leading to sufficiently low initialisation
complexity. This direct initialisation is computation-
ally intensive.

In order to reduce initialisation complexity, a per-
group approach has been considered in [10] and [11].
In [10], the frequency-domain equalisation has been
presented with tone grouping. Then, the per-group
equalisation with the bit rate maximising for time-
domain equaliser has been applied for DMT-based
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Fig.1: Block diagram of a discrete multitone system.

systems in [11].

However, the mean square error for the parame-
ter estimates depending on the time-variations and
on the forgetting-factor has been discussed in [12].
It is difficult to find an optimal forgetting-factor for
different tones to provide good tracking in dealing
with large model variations [13]. Therefore, the opti-
mal forgetting-factor of RLS-based PTEQ should be
adapted automatically in order to gain the bit rate
improvement [14].

In this paper, we introduce how to modify the
adaptive mechanism for tuning the forgetting-factor
parameter based on iQR-RLS algorithm in forms of
signal flow graph (SFG) that a significant part of
RLS-based computations can be shared between the
different tones. The advantage of using iQRRLS-
based formulation is that it preserves precisely the
fast convergence of standard RLS algorithm [15].
Moreover, the symmetrical LU-decomposition of in-
verse covariance matrix also befits to parallel im-
plementation by means of systolic array [16] and
SFG [17].

The paper is organised as follows. The system
model and notation are described in Section 2.. The bit
rate expression is calculated in Section 3.. Section 4.
introduces the modified AF-iQRRLS per-tone equal-
isation in details and in forms of SFG. In order to
reduce the computational complexity, the forgetting-
factor parameter for each group so-called per-group
forgetting-factor (PGFF) scheme is selected from the
middle of its group based on AF-iQRRLS algorithm.
The computational complexity of proposed PGFF-
AFiQRRLS algorithm is given in Section 5.. Simula-
tion results and conclusion are presented in Section 6.
and Section 7., respectively.
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2. SYSTEM MODEL AND NOTATION

The basic structure of the DMT transceiver is il-
lustrated in Fig.1. The incoming bit stream is like-
wise reshaped to a complex-valued transmitted sym-
bol for mapping in the quadrature amplitude mod-
ulation (QAM) and then split into N parallel paths
that are instantaneously fed to the modulating the in-
verse fast Fourier transform (IFFT). After that, IFFT
outputs are transformed into serial symbols includ-
ing cyclic prefix (CP) between symbols and then fed
through the channel.

The time-domain received signal is also trans-
formed into the frequency-domain received signals
without the cyclic prefix, which are fed to the slid-
ing fast Fourier transform (FFT). Then the demod-
ulating outputs of the sliding FFT are fed to a set
of T-tap PTEQ. The parallel of received symbols are
eventually converted into serial bits in the frequency-
domain. The data model and notation based on
an FIR model of the transmission channel is pre-
sented in (1), where l determines the first consid-
ered sample of the k-th received DMT symbol vector
yk,i:j = [yk,i · · · yk,j ]T and the subscripts i : j will
be omitted for conciseness. The N × 1 transmitted
vector xk,N = [xk,0 · · ·xk,N−1]

T . The vector nk,i:j

is a sample vector with the additive white Gaussian
noise (AWGN) and near-end crosstalk (NEXT). The
vector h̄ is the channel impulse response (CIR) vec-
tor h in reverse order and h̄ is the CIR vector h in
reverse order. The operators ⊗ and ⊙ denote as the
Kronecker product and a componentwise multiplica-
tion, respectively.

The matrix F∗
N = FH

N is the N ×N (I)FFT ma-
trix, where Fn = [1 e

j2πn
N · · · e

j2π(N−1)
N ]. The ma-

trix (N + ν)×N Pν which adds the CP of length ν.
The parameter ∆ is a synchronisation delay and I
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is an n × n identity matrix. The matrices 0(1) and
0(2) are also the zero matrices of size (N − l)× (N −
L+2ν +∆+ l) and (N − l)× (N + ν −∆). Other
parameters are as follows. The parameter n is a tone
index. The nc is of a number of the middle tone of
each group index, where pg is a number of tones per
group index and Ng is a number of group index. The
parameter N is the (I)FFT size. The t is the index
of T, where T is a number of PTEQ taps. The pa-
rameter k is the DMT-symbol index of a block and K
is the total size of the DMT-symbol of a block. The
Nd is the range of active tones starting at tone 38 to
256 for downstream ADSL standard. The length of
s = N +ν is the length of symbols adding with cyclic
prefix ν. The vector x̃k,n is a frequency-domain com-
plex symbols vector at symbol k on tone n for n ∈ Nd.

The matrix Ỹn is the complex demodulated output
for tone n after the sliding FFT for tone n [18] as

Ỹn =FNY , (2)

FN · Y(:,⊔+∞)= (FN · Y(:,⊔))⊙ z + [∞ · · · ∞]
T

·(yk·s+ν−(t−1) − yk·s+s−(t−1)),(3)

z=
[
α0α1 · · ·αN−1

]
, (4)

α= e−ȷ2π(1/N). (5)

Y=


yk·s+ν+1 yk·s+ν · · · yk·s+ν−T+2

yk·s+ν+2 yk·s+ν+1 · · · yk·s+ν−T+3

...
. . . . . .

...
y(k+1)·s y(k+1)·s−1 · · · y(k+1)·s−T+1

 , (6)

for t = 1, · · · ,T− 1

where Y is a Toeplitz matrix. The symbol
yk·s+ν−(t−1) is the first element of the (t + 1)th col-
umn and yk·s+s−(t−1) is the last element of the (t)th

column of Y in (6), respectively.
The n-th sliding FFT output ỹk,n[t], t ∈ [0,T− 1]

on tone n are related by the following recursion as

ỹk,n[t] = αnỹk,n[t− 1] + (yk,−t − yk,N−t)︸ ︷︷ ︸
∆yk,−t

, (7)

∆yk = [(yk,−T+1−yk,−T+N+1) · · · (yk,−1−yk,N−1)]
T

= [∆yk,−T+1 · · ·∆yk,−1]
T

, (8)

ỹk,n =
[
∆yT

k ỹk,n
]


1 α̃n · · · α̃T−1
n

0
. . . . . .

...
...

. . . . . . α̃n

0 · · · 0 1


T

(9)

where t = 1, . . . ,T− 1 and α̃n = e−ȷ2π(n−1)/N
√
N

.

The vector x̂k,n is the output vector after
frequency-domain equalisation for tone n ∈ Nd as
x̂k,n = pH

n ⊗ ỹn, where pn is the complex T-tap per-
tone equaliser (PTEQ) on tone n. According to the
concept of PTEQ, we refer the readers to [18] for more
details.

Some notation will be used throughout this pa-
per as follows: the operator (·)H and (·)∗ denote as
the Hermitian and complex conjugate operator, re-
spectively. A tilde over the variable indicates the
frequency-domain. The vectors are in bold lowercase
and matrices are in bold uppercase.

3. BIT RATE EXPRESSION

We start from the bit rate expression (BR) de-
cribed in [19], where the actual number of bits trans-
mitted for each tone is given by

BR =
N−1∑
n=0

fs bn , (10)

and

bn = log2

(
1 +

SNRn

Γn

)
for n ∈ Nd , (11)

where fs denotes as the sampling rate. The number
bn is the actual number of bits per transmitted sym-
bol that is transferred on tone n and Γn is the SNR
gap on tone n in dB.

The SNR on tone n (SNRn) can be determined as

SNRn=
desired signal energyn

energy in (received signal- desired signal)n
.

(12)

Therefore, the solution of SNR model can be ex-
pressed to the optimisation problem in PTEQ param-
eters as

SNRn =
σ2
n,x̃n

min
pn

∥ϵ̂n∥2
, (13)

ϵ̂n = x̃n −
(
pH
n ⊗ ỹn

)︸ ︷︷ ︸
x̂n

, (14)

where σ2
n,x̃n

is the variance of x̃n. The vector pn

is the complex-valued tap-weight PTEQ on tone n.
The noise margin is a safety factor that accounts for
unmodeled noise sources, such as nonlinearities and
impulse noise [20].

4. ADAPTIVE FORGETTING-FACTOR IN-
VERSE SQUARE-ROOT RLS (AF-IQRRLS)
PER-TONE EQUALISATION

In this section, we introduce the adaptive
forgetting-factor inverse QR-RLS (AF-iQRRLS) al-
gorithm which optimises the cost function Jk,n with
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the method of the exponentially weighted least
squares as described in [8] for n ∈ Nd.

Jk,n =
1

2

K∑
k=1

λK−k
n |x̃k,n − p̂H

k,nỹk,n|2 , (15)

where λn denotes as the forgetting-factor at tone n.
The parameter x̃k,n is the kth transmitted DMT-
symbol on tone n. The vector p̂k,n is the complex
T-tap estimated PTEQ on tone n at symbol k.

4.1 Adaptive inverse QR-RLS Algorithm

We then describe briefly the adaptive inverse
QR-RLS (iQR-RLS) algorithm, which is a QR
decomposition-based RLS algorithm operated on the
inverse correlation matrix. Considering the step-by-
step among the Kalman and RLS variables, the iQR-
RLS algorithm is a fundamentally square-root covari-
ance Kalman algorithm as given in [21], which ex-
hibits good numerical property.

Following [8], the inverse autocorrelation Ωk,n may
be expressed as

Ωk,n=λ
−1
n Ωk−1,n−λ−2

n Ωk−1,nỹk,nγ
−1
k,nỹ

H
k,nΩk−1,n , (16)

where
γk,n = 1 + λ−1

n ỹH
k,nΩk−1,nỹk,n . (17)

We then introduce the block matrix M, its result
consists of the matrix product of right-handed on (16)
using the Cholesky factorisation as

M = AAH ,

=

[
1 ζk,n

0 λ
− 1

2
n Ω

1
2

k−1,n

][
1 0T

ζH
k,n λ

− 1
2

n Ω
H
2

k−1,n

]
,

(18)

where
ζk,n = λ

− 1
2

n ỹH
k,nΩ

1
2

k−1,n . (19)

Based on the QR decomposition, we may set the
prearray A to resulting postarray B transformation
using the QR update procedure as

AΘ = B[
1 λ

− 1
2

n ỹH
k,nΩ

1
2

k−1,n

0 λ
− 1

2
n Ω

1
2

k−1,n

]
Θ =

[
γ

1
2

k,n 0T

k̃k,nγ
1
2

k,n Ω
1
2

k,n

]
,

(20)

where Θ is a unitary rotation.
The Kalman gain vector k̃k,n and the square-root

inverse autocorrelation matrix Ω
1
2

k,n, therefore, are
readily obtained from the entries in the first and sec-
ond column of the postarray B in (20) by

k̃k,n = (k̃k,nγ
1
2

k,n)γ
− 1

2

k,n . (21)

Note that Ω
1
2

k,n in (20) is the upper triangular ma-
trix. Accordingly, the inverse autocorrelation ma-
trix Ωk,n may be defined with its factor as Ωk,n =

Ω
1
2

k,n Ω
H
2

k,n , in virtue of the product of square-root
matrix and its Hermitian transpose is always a non-
negative matrix as described in [21].

Therefore, the tap-weight estimated vector p̂k,n for
n ∈ Nd in the recursion form may be computed by
[22]

p̂k,n = p̂k−1,n + k̃k,nξ
∗
k,n , (22)

ξk,n = x̃k,n − p̂H
k−1,nỹk,n , (23)

where ξk,n is the a priori estimation error at symbol
k on tone n.

4.2 Adaptive Forgetting-factor iQR-RLS al-
gorithm

Following [8], we demonstrate the derivation of
adaptive forgetting-factor algorithm for the proposed
iQR-RLS algorithm. By differentiating Jk,n in (15)
with respect to λk,n and equating the gradient to zero,
we form the stochastic approximation equation for
λk,n as

λk,n = λk−1,n + α ℜ{ΨH
k,n ỹk,n ξ∗k,n} , (24)

where ℜ{·} indicates as the real operator and α is the
adaptation parameter for λk,n.

The derivation of Ψk,n =
∂p̂k,n

∂λk,n
is defined by

Ψk,n = ( I − k̃k,n ỹH
k,n )Ψk−1,n + Sk−1,n ỹk,n ξ∗k,n ,

(25)

and

Sk,n = λ−1
k,n(I − k̃k,nỹH

k,n)Sk−1,n(I − k̃
H

k,nỹk,n)

+ λ−1
k,n(k̃k,nk̃

H

k,n)− λ−1
k,nΩk,n , (26)

where Sk,n is the derivative of Ωk,n with respect to
λk,n.

4.3 Modification of proposed AF-iQRRLS al-
gorithm for SFG

Unfortunately, the matrix (I − k̃
H

k,nỹk,n) of AF-
iQRRLS algorithm can not be used directly on the
signal flow graph (SFG). We present how to trans-
form the matrix (I − k̃k,nỹH

k,n) for modified SFG of
proposed AF-iQRRLS PTEQs which is introduced in
the next section.

From [8], the matrix (I − k̃k,nỹH
k,n) of Sk,n and

Ψk,n in the AF-iQRRLS algorithm as

Sk,n = λ−1
k,n(I − k̃k,nỹH

k,n)Sk−1,n(I − k̃
H

k,nỹk,n)

+ λ−1
k,n(k̃k,nk̃

H

k,n −Φ−1
k,n) , (27)

Ψk,n = ( I − k̃k,n ỹH
k,n ) Ψk−1 + Sk,n ỹk,n ξ∗k,n . (28)
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Using the definition of the gain vector k̃k,n

k̃k,n = Φ−1
k,n ỹk,n , (29)

where

Φk,n = λk,nΦk−1,n + ỹk,nỹ
H
k,n . (30)

Multiplying both sides of (30) by Φ−1
k,n, we get

I −Φ−1
k,nỹk,nỹ

H
k,n = λk,nΦ

−1
k,nΦk−1,n . (31)

Substituting (29) into the matrix (I − k̃k,nỹH
k,n)

and comparing with (31), we get

I − k̃k,nỹH
k,n = λk,nΦ

−1
k,nΦk−1,n . (32)

In a similar fashion, the matrix (I − k̃
H

k,nỹk,n) is
derived by

I − k̃
H

k,nỹk,n = λk,nΦ
−H
k,nΦ

H
k−1,n . (33)

Therefore, we introduce to redefine Sk,n in (27)
and Ψk,n in (28) using (32) and (33) which are pre-
pared for modified SFG as

Ψk,n = λk,nΦ
−1
k,nΦk−1Ψk−1,n + Sk−1,nỹk,nξ

∗
k,n ,

(34)

Sk,n = λk,nΦ
−1
k,nΦk−1,nSk−1,nΦ

−H
k,nΦ

H
k−1,n

+ λ−1
k,n(k̃k,nk̃

H

k,n −Φ−1
k,n) . (35)

4.4 Modified AF-iQRRLS PTEQs in DMT-
based system

A recursive initialisation based on the inverse QR-
RLS algorithm [23] which stores and updates the
upper triangular of square-root inverse matrix Lk,n

where Φ−1
k,n = Lk,n LH

k,n. The inverse QR-RLS algo-
rithm preserves Hermitian symmetry of the inverse
autocorrelation matrix [24], [25] in order to improve
the computational efficiency and operates in the par-
allel implementation [9]. It is well suitable for appli-
cations.

We then introduce the modified AF-iQRRLS
PTEQs that adjust adaptively their forgetting-factors
and solve the following cost function for tone n ∈ Nd,
where Nd is the active tones as

min
p̂k,n

|ξk,n |2 = min
p̂k,n

|x̃k,n − p̂H
k−1,n ỹk,n |2 . (36)

The following pseudocode constitutes the algo-
rithm for the proposed modified AF-iQRRLS PTEQs.

Adaptive Algorithm: modified AF-iQRRLS
For n ∈ Nd

For k = 1, . . . ,K
Initialise the tone independent L0,p0 and ẽ0.

1. Form the matrix-vector product as:

a = ỹH
k,n · Lk−1,n .

2. Determine Givens rotation [8] Qt for t = 1, . . . , T
as: [

0
δ

]
⇐ QTQT−1 . . .Q1 ·

[a
1

]
.

3. Update Lk,n as:

[
L̂k,n

δ · k̂k,n

]
⇐ QT−1 . . .Q1 ·


L̂k−1,n︷ ︸︸ ︷

Lk−1,n(1 : T − 1, 1 : T − 1)

0

 ,

[
L̃k,n

γ̃ · k̃k,n

]
⇐ QT ·


L̃k−1,n︷ ︸︸ ︷

Lk−1,n(T, 1 : T )[
δ · k̂k,n 0

]
 ,

Lk,n ⇐
[
L̂k,n L̃k,n

]
,

L̂k,n ⇐ λ−1
k−1,n · L̂k,n ,

L̃k,n ⇐ λ−1
k−1,n · L̃k,n .

4. Update p̂k,n as:

p̂k,n ⇐ p̂k−1,n + (
γ̃ · k̃k,n

γ̃
) · ξ∗k,n .

5. Update λk,n as:

Φ−1
k,n ⇐ Lk,n LH

k,n ,

Ψk,n ⇐ λk−1,n (Φ−1
k,n Φk−1,n) Ψk−1,n

+ Sk−1,n (ỹk,n ξ∗k,n),

Sk,n ⇐ λk−1,n(Φ
−1
k,nΦk−1,n)Sk−1,n(Φ

−H
k,nΦ

H
k−1,n)

+ λ−1
k−1,n(k̃k,nk̃

H

k,n −Φ−1
k,n) ,

λk,n ⇐ λk−1,n + α ℜ{ΨH
k,nỹk,n ξ∗k,n} .

end
end

By applying this algorithm to T-tap complex-
valued PTEQ vector, the modified SFG is illustrated
in Fig. 2 with the building blocks described in Fig. 8.
The summary of proposed AF-iQRRLS PTEQs for
modified SFG is presented in Table 2. Every used
tone has a T-tap PTEQ vector which its input is the
complex sliding-FFT output for that tone and T− 1
difference terms [9].

The matrix Lk,n is stored and updated that can be
used to adapt the forgetting-factor for every symbol.
The update of weight-vector p̂k,n is also performed
separately for each tone by means of modified adap-
tive forgetting-factor mechanism and inverse square-
root decomposition operated on the inverse autocor-
relation matrix of RLS-based algorithm.
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Fig.2: Block diagram of the modified SFG of the proposed AF-iQRRLS PTEQs.

4.5 Per-group forgetting-factor AF-iQRRLS
algorithm

In order to reduce initialisation complexity, we
then apply to search adaptively forgetting-factor
parameter per group by using the modified AF-
iQRRLS algorithm. Thus, a per-group forgetting-
factor (PGFF) AF-iQRRLS algorithm is presented
for PTEQs. The idea is that the centre tone of
each group is computed to find an optimal forgetting-
factor, then this PTEQs of each group is used this
forgetting-factor for this whole group, which is the
extension of proposed AF-iQRRLS algorithm.

We apply to combine tones to find a forgetting-
factor per group, i.e. λc1 for group n1. Thus, the
real-valued λc1 of group n1 is computed using the
modified AF-iQRRLS algorithm with the considered
DMT-symbols of the middle tones c1 of this group.
After convergence, we use this forgetting-factor λc1

on middle tone c1 to attain the overall complex-valued
PTEQs for each tone with the adaptive iQR-RLS al-
gorithm for group n1. Block diagram of proposed
AF-iQRRLS PTEQ using per-group forgetting-factor
approach is introduced in Fig. 4.

Following [6], the 11-combining tones for each
group is presented to compute for λcn with the
method of proposed AF-iQRRLS algorithm is defined
as

λk,cn = λk−1,cn + α ℜ{ΨH
k,cn ỹk,cn ξ∗k,n} , (37)

where cn = 11nc − 5 ;nc = 1, 2, · · · , ( n
11 ) and

λcn = [λc1 · · · λcn ] . (38)

Therefore, the updated tap-weight PTEQ vector
p̂k,n using the per-group forgetting-factor λcn for
each group and the adaptive iQR-RLS algorithm for
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each tone is presented with the method of mod-
ified signal flow graph (SFG) of proposed PGFF-
AFiQRRLS PTEQs shown in Fig. 3. The basic build-
ing blocks of modified SFG is depicted in Fig. 8. The
summary of proposed PGFF-AFiQRRLS PTEQs for
modified SFG is presented in Table 4.

5. COMPUTATIONAL COMPLEXITY

In this section, we investigate the complexity of
the proposed PTEQs based on an iQR-RLS approach
measured in number of real multiplication [9]. We
consider that a multiplication of two complex num-
bers is counted as 4-real multiplications and 2-real
additions. A multiplication of a real number with
a complex number is computed by 2-real multiplica-
tions.

Therefore, the computational complexity of the
proposed AF-iQRRLS and PGFF-AFiQRRLS algo-
rithms for PTEQs are given in Table 1, where T is
the number of taps of PTEQ. It is shown that the
proposed PGFF scheme can reduce significantly com-
pared with AF-iQRRLS approach when each group is
combined with M tones.

Table 1: The computational complexity per symbol.
Algorithm Number of multiplications

PGFF-AFiQRRLS (4T2 + 10T + 6) + M(2.5T2 − 15.5T + 3)

AF-iQRRLS M(6.5T2 − 5.5T + 9)

iQR-RLS [9] M(2.5T2 − 15.5T + 3)

6. SIMULATION RESULTS

We performed ADSL downstream transmission
simulations that comprises 512 coefficients of chan-
nel impulse response to compare the proposed AF-
iQRRLS algorithm with complex-valued conventional
complex RLS [26] PTEQs on the parameters shown
in Table 3. The carrier serving area (CSA) loop no.
2 was a representative of simulations with all 8 CSA
loops [27].

The CSA#2 is a representative loop of 26 and 24
gauge loop of length of 3000 and 700 ft., with 26 gauge
bridged taps of length of 700 ft. at 3700 ft. and of 24
and 26 gauge loop of length of 350 and 3000 ft. with
26 gauge bridged taps of length of 650 ft. at 7050 ft.
detailed in [19].

Other parameters of proposed PGFF-AFiQRRLS
algorithm were pg = 11, δ = 0.03 and ∆ = 28. The
adaptation parameter α of forgetting-factor parame-
ters λk,cn was fixed at 5.25 × 10−5 and λ(0) = 0.95
for all active tones Nd. This proposed algorithm for
p̂k,n can be calculated with the soft-constrained ini-
tialisation starting at tone 38 to 255 for downstream
ADSL standard and the NEXT from 24 ADSL dis-
turbers was included.

Fig.5 depicts the sum of squared error curves of the
proposed PGFF-AFiQRRLS algorithm for the sam-
ples of all active tones as 40, 120, 200 and 250, re-

Table 2: Summary of the proposed AF-iQRRLS
PTEQs for modified signal flow graph (SFG).

• Starting with soft-constrained initialisation as :

p̂(0) = 0; Φ−1(0) = δ−1I;S(0) = I;Ψ(0) = 0.

• Do for n = 1, 2, . . . , Nd.

for k = 1, 2, . . . ,K.
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)(
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+Sk,nỹk,nξ
∗
k,n,

λk,n = λk−1,n + α ℜ
{
ΨH

k,nỹk,nξ
∗
k,n

}
.

spectively. It is noted that they are converged to the
MMSE.

Fig.7 shows that the trajectories of forgetting-
factors λk,cn of center tones of each group can con-
verge to their values for each individual tone. Ap-
proximately 100 symbols are appeared to converge
to their steady-state conditions for the proposed AF-
iQRRLS PTEQs with the method of modified adap-
tive forgetting-factor approach.

Fig.6 illustrates the bit rate learning curves of
the proposed PGFF-AFiQRRLS and AF-iQRRLS al-
gorithms as compared to the complex conventional
RLS [26] algorithm. At approximate 120 and 140
symbols, the proposed PGFF-AFiQRRLS and AF-
iQRRLS PTEQs converge to steady-state, respec-
tively. It is shown that the good performance is
obtained with the proposed PGFF-AFiQRRLS algo-
rithm with lower complexity. We notice that the RLS
algorithm converges rapidly to steady-state lower bit
rate performance than the proposed algorithms.
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Fig.3: Modified SFG for the proposed PGFF-AFiQRRLS PTEQs.
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Table 3: The standard ADSL system for simulation.

Asymmetric Digital Subscriber Line (ADSL) Specifications

number of tap (T) 32 CP (ν) 32
Input power 19.83 dBm fs 2.208 MHz
FFT size (N) 512 Noise margin 6 dB
TX-DMT block (M)400 Coding gain 4.2 dB
TX sequence M×N SNR gap (Γ) 9.8 dB
Input impedance 100 Ω AWGN power -140 dBm/Hz

Table 4: Summary of the proposed per-group
forgetting-factor AFiQR-RLS (PGFF-AFiQRRLS)
PTEQs for modified SFG.
• Starting with soft-constrained initialisation as :

p̂(0) = 0;Φ−1(0) = δ−1I;S(0) = I;
Ψ(0) = 0;

• For n = 1, 2, . . . , Nd
pg

.

cn = (pg · n)− (
pg−1

2
).

for k = 1, 2, . . . ,K.
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end

for ng = 1, 2, . . . , pg .
for k = 1, 2, . . . ,K.
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Fig.4: Block diagram of proposed per-group
forgetting-factor AF-iQRRLS (PGFF-AFiQRRLS)
PTEQs.

7. CONCLUSION

In this paper, we have introduced the modified
corresponding SFG for proposed AF-iQRRLS and
PGFF-AFiQRRLS PTEQs for DMT-based systems.
We have described concisely how to define the up-
dated tap-weight PTEQ p̂k,n vector and per-group
forgetting-factor scheme with the method of AFiQR-
RLS algorithm. The trajectories of adaptive per-
group forgetting-factor parameters are also shown to
be aligned adaptively for each individual tone. The
learning curves of sum of squared error of proposed
AFiQR-RLS algorithm are shown to be converged
slowly to MMSE at high tone bins. The bit rate per-
formance of proposed PGFF-AFiQRRLS algorithm
can be improved in comparison with the RLS algo-
rithm.

The proposed PGFF-AFiQRRLS algorithm has
also been introduced in forms of modified SFG. The
adaptive forgetting-factor of the center tone of each
group is selected as the representative. After con-
vergence, it is fixed for remaining tones of the whole
group for PTEQs. These promising results suggest
how the proposed algorithm can be designed with re-
duced computational complexity.
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