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Abstract. Dynamical systems have been increasingly studied in the last
decade for designing locomotion controllers. They offer several advan-
tages over previous solutions like synchronization, smooth transitions
under parameter variation, and robustness. In this paper, we present an
adaptive locomotion controller for four-legged robots. The controller is
composed of a set of coupled nonlinear dynamical systems. Using our
controller the robot is capable of adapting its locomotion to the phys-
ical properties of the robot, in particular its resonant frequency. Our
approach aims at developing an on-line learning system that attempts
to minimize the energy necessary for the gait. We have implemented the
model both in a simulated physical environment (Webots) and on a Sony
Aibo robot. We present a series of experiments which demonstrate how
the controller can tune its frequency to the resonant frequency of the
robot, and modify it when the weight of the robot is changed.

1 Introduction

Nonlinear dynamics is ubiquitous in the physical and in the biological world.
Nonlinear dynamics theory has provided us with new tools to understand com-
plex phenomena that were difficult to explain before. It can be used to model
competition in predator-prey systems, emergent behavior in collective systems,
growth of biological organisms, the production of rhythmic patterns in the heart
[10] and in the spinal cord for locomotion [9, 7], to name a few examples.

In this article, we explore how a nonlinear dynamical system implemented as
a system of coupled oscillators can be designed (1) to control walking gaits of
compliant four-legged robots, and (2) to continuously tune important parameters
such as the frequency of oscillations to (possibly time-varying) properties of the
body. In particular, we aim at designing adaptive controllers in which the adap-
tive process is embedded in the dynamical system (i.e. expressed as differential
equations) rather than in a separate learning or optimization algorithm.

To produce locomotion, a controller must be capable of generating a rhythmic
and coordinated behavior. Nonlinear dynamical systems such as systems of cou-
pled oscillators present several advantages over alternative approaches (e.g. gait
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tables or sine-based trajectory generators) to generate gaits for a robot. They
allow to harmoniously interact with the environment, they can create limit cycle
behavior, they allow smooth modulations of the trajectories, and they make the
emergence of new behaviors possible. Moreover, some dynamical systems, like
Adaptive Frequency Oscillators (AFOs) [5, 15] are interesting because of their
adaptive properties.

The controller we propose is suitable for robots with compliant (i.e. elastic)
components. It adapts the walking frequency to resonant frequencies of the robot
in order to minimize the amount of energy required to move forward. Hopf
oscillators and adaptive frequency oscillators are used as building blocks in the
controller. Adaptation is embedded in the dynamical systems, and no external
optimization is required. Moreover, adaptation is not a batch process, and the
controller adapts its parameters online using proprioceptive signals.

The robot locomotion is based on two different kinds of joints: knees - pas-
sively controlled by springs, and hips - actively controlled by servos. The robot
swings on the knees behaving like an inverted pendulum. A Hopf oscillator [11]
controls each hip. Each of these oscillators is coupled to the other hips for inter-
limbs gait coordination. Moreover, each hip is coupled in phase to the relative
knee. This movement coordination permits to recycle the potential energy of the
knee springs to push the robot forward. Furthermore, an Adaptive Frequency
Oscillator (AFO) tunes its frequency to the knee oscillations, and this frequency
is used for the hip oscillators. This controller has two feedback loops: one per-
mits phase synchronization to proprioceptor signals and the second frequency
adaptation.

In the rest of the article, we describe our implementation of this system for a
simulated and a real Aibo robot (Section 2). Experiments in simulation (Section
3) and in the real world (Section 4) demonstrate how the system is capable of
producing efficient walking gaits that are tuned to the resonant frequency of the
robot, and that are continuously adjusted to changing body properties.

2 Adaptive Four Legged Locomotion Model

In this section we describe the main elements of our model. First, we explain what
properties make a good locomotion controller and our approach to building one.
Second, we describe the mechanical specifications the robot shall satisfy. Third,
we introduce our CPG (Central Pattern Generator), a central component in our
locomotion model. Eventually, we elaborate on the adaptive equations, which
evolve the walking frequency parameter depending on the physical properties of
the robot.

2.1 Mechanical Model

We propose a locomotion controller for four legged robots. Every limb has two
joints: the upper one (hip) and the lower one (knee). Every hip is actively con-
trolled and is composed of: a servo (actuator), and an encoder (angle sensor).
Every lower joint is passively controlled and is composed of: a spring-damper
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system (actuator), and an encoder (angle sensor). The controller receives infor-
mation from the knee and only controls the hip angle to produce locomotion.
The body behaves like an inverted pendulum. Our controller does not explicitely
deal with: inertial forces, moments of inertia, static and dynamic forces, and con-
tact ground areas. We will call this mechanical framework ”elastic locomotion
framework.” The ideas introduced by Blickhan [2] and by Fukuoka [8] inspired
this framework.

Our controller reproduces a walking gait. Walking is easy to implement in
this framework, and seems to be the most energy efficient gait compared to trot
and gallop [12]. For reasons of stability the terminal limbs are oriented in forward
direction, as in Figure 1. In fact, if the limbs were turned backwards, the four
legged robot would tumble and fall during the swing phase. A spring-damper
rotational system produces in the knee torques proportional to two components:
the angle (γ, i.e. the spring torque) and the the angular velocity (γ̇, i.e. the
viscous damping force): T = kγ − dγ̇, where k and d are positive spring and
damper coefficients.

2.2 Approach to learning

A good controller to be used in the elastic locomotion framework allows to recycle
the potential energy stored in the knee spring during the step cycle, converting
it into kinetic energy. Our challenge was to build and tune a controller for a
general four legged robot without specific body information, that satisfies the
following properties: (1a) knees and hips should move at the same frequency
and with a constant phase shift; (1b) the four hips move with a fixed phase
shift depending on the gait; and (1c) the knee resonant frequency depends on
the weight of the robot as well as on the constant of the knee spring (k). The
weight can change during the robot life, and the controller should be able to
adapt to it. Our approach is based on nonlinear dynamical systems. There are
two kinds of dynamical systems of interest to us: (2a) Hopf oscillators [11, 16],
which are interesting because of their limit cycle behavior with the possibility of
phase synchronization; and (2b) ”Adaptive Frequency Oscillators” (AFOs) [5,
15], which are capable of synchronizing their frequency and phase to an external
oscillating signal. In earlier contributions [6] it has been shown that such systems
in a feedback loop with the mechanical system can indeed adapt to the resonant
frequency of the body. Thus, our controller should satisfy constraints (1a), (1b),
and (1c) using dynamical system (2a) and (2b) as building blocks.

2.3 CPG with feedback

Our controller is composed of a fully connected network of four oscillators in-
spired by animal CPGs [4] (see Figure 1). A continuous arrow means that the
signal of the source oscillator at time t is rotated by means of a rotational matrix
(R) and summed to the differential equations of the target oscillator. The phase
shifts (ρji) introduced by the rotation matrix are constant and correspond to
the one specified by the walking gait. The coupling values are as in Table 1.
Each connection adds a perturbation to the target oscillator that contributes to
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the amplification of the signal. We have used a fully connected network because
it permits to have a very stable CPG system. In such an architecture, any per-
turbation is quickly absorbed by the system, and, moreover, we have a reduced
influence of the noise. A discontinuous arrow also adds a perturbation, but this
time the source is the knee angle value, and it is rotated by a constant angle
(ξ). Eqs. 1–2 describe each oscillator in the network. x, y are the state variables
describing the oscillator, µ is a parameter which determines the amplitude of os-
cillations, k is a damping constant, ω is the intrinsic frequency of the oscillator,
and a is a global coupling constant, finally to keep the expressions shorter we
use r2

i = x2
i + y2

i .

ẋi = (µ − kr2
i )xi + ωyi + a

∑

∀j∈I∧j 6=i

Rx(ρji, xj(t), yj(t)) + cRx(ξ, si(t), 0) (1)

ẏi = (µ − kr2
i )yi − ωxi + a

∑

∀j∈I∧j 6=i

Ry(ρji, xj(t), yj(t)) + cRy(ξ, si(t), 0) (2)

[

Rx(α, x, y)
Ry(α, x, y)

]

=

[

xcos(α) − ysin(α)
xsin(α) + ycos(α)

]

I = {LF,RF,LH,RH}

Fig. 1. (Left) Feedback system. In the figure each oscillator corresponds to one of the
four hips. The arrows identify the phase coupling. (Right) Aibo limbs orientation in
the absence of external forces, we have chosen an angle of 30 deg for the knee, and an
angle of 0 deg for the hips.

2.4 Adaptive CPG

We have defined a mechanical framework and a walking controller in the previous
section. Now we want to reduce the number of parameters to make the CPG
frequency adaptive. As explained in Section 2.2, we aim at making the walking
frequency adaptive to the resonant properties of the body. As input we use the
knee angles. Hence, we compute the signal of the knee angle for every leg. The
signal is periodic (but not sinusoidal) and has a similar shape in all legs. The
four legs create similar oscillatory signals shifted by a constant phase difference
defined by the hip oscillator connections. However the signals slightly differ from
the specified phase and shape of the signal. We have to find a means to extract
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Table 1. Default parameter values, inter-limbs coupling phase difference, upper limb
joints moving range on Aibo platform

parameter value

µ 0 (bifurcation point)

k 0.15

ω 8 [rad/s]

a 1

c 5

ξ 0.2 [rad]

ρ LF RF LH RH

LF 0 −π − 3

2
π −π

2

RF π 0 −π

2

π

2

LH 3

2
π π

2
0 π

RH π

2
−π

2
−π 0

MIN ANGLE MAX ANGLE

Front limbs 0.0 [rad] 0.6 [rad]

Hind limbs -0.1 [rad] 0.3 [rad]

the frequency information of these signals despite these differences. This can be
achieved with an adaptive frequency oscillator (AFO) [5, 15]:

ẋ = (µ − kr2)x + ωly + c
∑

∀j∈I Rx(βj , sj(t), 0)

ẏ = (µ − kr2)y − ωlx

ω̇l = cη y

r

∑

∀j∈I Rx(βj , sj(t), 0)
(3)

The AFO (Eq. 3) has three state variables. Compared to a Hopf oscillator, it has
one additional state variable used for frequency adaptation and one additional
parameter used for learning. The state variable x will synchronize to the input
signal. Again, the variable ωl stands for the frequency [in rad/s]. Due to the
additional differential equation the frequency will adapt to one of the frequencies
of the input signal (see [15] for further discussion). The parameter η represents
the learning rate: a too high learning rate influences the stability of variable
ωl, and a too low learning rate does not permit the adaptation process. In our
experiment, we have varied η between 1 and 10.

As a first step, we have tested an intermediate solution where the controller
”learns” the main knee oscillation frequency (”Open Loop” solution). Our
system rotates (β ={0,−π,− 3

2π,−π
2 }) and sums the knee signals (sj) so that

the walking frequency becomes the most powerful frequency component1. This
signal is used to perturb a frequency adaptive oscillator (Eq. 3). As a result,
the oscillator smoothly learns the input frequency and maintains it, reaching a
steady state. After a few seconds of transition the dynamical system adjusts its
frequency and phase to the one coming from the perturbation signal. We will
discuss results showing this properties in Section 3.1.

Eventually, we have rendered the controller adaptive (”Closed Loop” so-
lution), as one can see in Figure 2. We have used the value of the state variable

1 If we sum the signals without rotating them, as the shapes of the signals are com-
parable and shifted among each other by about 90 deg, they are going to anni-
hilate each other (see Figures 3 and 5). In the following section we propose the
experimental results obtained with both ”un-rotated” (β ={0,0,0,0}) and ”rotated”
(β ={0,−π,− 3

2
π,−π

2
}) solutions, to support the choice of the ”rotated” solution.
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ωl instead of the parameter ω in the CPG of the walking controller (explained
in Section 2.3) making the system adaptive. These ideas permit a smooth adap-
tation of the walking frequency to the frequencies of the knee. Furthermore, the
dynamic formulation of the adaptation by means of dynamical systems allows to
adapt the frequency in the case of changes of the body properties or changes in
the environment (e.g. ground friction) during the robot life. The online adapta-
tion process also introduces a new feedback loop in the dynamical system. This
feedback loop is nonlinear and it is not clear from the outset that it will work.
It can however be expected from previous results in simulation [5, 6] and has
recently been treated analytically [3]. Even more, the presented experimental
results show how well and stable this solution works.

Fig. 2. Closed loop adaptive walking feedback system. In the figure the CPG presented
in Section 2.3 is integrated with the AFO and the CPG becomes adaptive.

3 Experimental Results (Simulation)

Webots [13] is an integrated environment for robot simulation, and the physics
is simulated using the ODE Library [14]. The robot platform chosen is a Sony
Aibo2. Aibo has advantages and drawbacks. The advantages are that one can
find a detailed model of Aibo in the Webots environment, and can test the
controller on a real Aibo robot. However, Aibo is not an optimal platform for
our ”Elastic Locomotion Framework” because the robot legs do not have a real
spring-damper system. Two different strategies have been applied to solve this
problem: in the simulation, a knee is controlled by a simulated spring, and, hence,
it is the most accurate model of a spring using the Webots simulator. In the real
Aibo robot springs are simulated using a PID and an active spring law control
to simulate the spring behavior.

All differential equations in our controller are numerically integrated using
the Runge-Kutta method with a fixed time integration step. The simulator in-
tegrates all the equations at every iteration, using a time step of 0.008 [s] of the
virtual simulation time.

2 Sony AIBO by Sony Corporation. “Aibo” is a registered trademark of Sony Corpo-
ration.



Preprint May 21, 2006 

To appear in Proceedings of The Ninth International Conference on the SIMULATION OF ADAPTIVE BEHAVIOR -- SAB’06

(c) MIT Press

Adaptive Four Legged Locomotion Control 7

3.1 Open Loop Results

First, we have successfully tested our CPG network, using the default parameters
shown in Table 1. Then, we have applied our adaptive component, Equation 3,
and plotted the learning curve of the knee signal starting from a range of initial
frequency values. In Figure 3, we plot an example of frequency learning using
as a perturbing signal the un-rotated (left) and the rotated (right) sum of the
knee angles. Comparing the graphs in Figure 3 with the Fourier spectrum (on
the right), one can see that the AFO converges to the higher power frequency
component and reaches a steady state. Furthermore, rotation provides a wider
basin of attraction.
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Fig. 3. In the first figure, a set of open-loop experiments (over the same signal) shows
the adaptivity properties of an AFO dynamical system (η = 1). Here the perturbing
signal is un-rotated in the left figure and rotated in the right one (Webots). The small
graphs are the power spectral density of the un-rotated and rotated signals.

3.2 Closed Loop Results

Second, we have substituted the parameter ω of the hip oscillators with the
AFO variable ωl. Consequently, the CPG parameter ω (walking frequency) has
become adaptive and equal to ωl. This new feature introduces new feedback in
the walking controller, as described in Section 2.4. In this system, eventually,
knee angles are used for tuning the walking phase and frequency. Moreover,
the Hopf oscillators as well as the AFO work at the bifurcation point (µ = 0),
which means that in the absence of a stimulus they will not oscillate. Hence,
in order to create a locomotion process, at the begin the spring system must
be stressed enough in order to create a chain reaction of oscillating stimuli, and
must be strong enough to maintain the oscillation without stopping it. To make
this possible, it is necessary that one chooses spring-damping parameters that
allow the signal to oscillate a few times (in experiments 3 or 4) before being
damped out. In other words, the damping parameter d of the knee must be high
enough to avoid instability in the dynamics of the spring-mass system, but small
enough to permit oscillations. It is expected that every instance implementing
the ”elastic locomotion framework” has this basic behavior.

We present two experiments: the first is a set of adaptation processes, and
the second shows the relation between four different experiments with the same
initial conditions but different robot weights.
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Fig. 4. (Left) closed loop frequency adaptation with different initial frequency but
same initial condition (η = 1). The controller converges if the initial frequency is
close to the asymptotic one (Webots). (Right) closed loop frequency adaptation with
different robot weights but same initial conditions (η = 1)(Webots). The two bottom
small plot show the average error (see text for definition) between the solution of our

controller and the spring-mass oscillating law
√

k

m
.

The first plot (Figure 4 left) shows a series of experiments with the same
initial conditions (environment, robot) but different initial frequency ω0={0.95,
1.11, 1.27, 1.90, 2.38}, in order to demonstrate how the final frequency purely
comes from the adaptive process. Furthermore, in the plot the variable ωl con-
verges to the same asymptotic value. In the plot, the first experiment (ω0 =
0.95Hz) shows that an initial condition too far from the one at the steady state
will never converge. Moreover, one can see how in every experiment in the first
few seconds the frequency drops because while the CPG synchronizes the move-
ments of the four legs, the AFO is perturbed by the signal coming from the
knees, and this signal is not yet stabilized. After these few seconds the variable
ωl converges. Moreover, the AFO initial conditions give to the dynamical sys-
tem an initial moving input. As the oscillators parameter µ is equal to zero,
without an initial input the system remains inactive. Hence, the initial condi-
tions must bring the AFO to oscillate enough in order to maintain the initial
oscillation of the overall system. The two small graphs at the bottom of Figure
4 show the reduction of the difference between the walking frequency and the

frequency of the spring-mass oscillating law
√

k
m

. Where the error is defined as

e(t) = σ(S(t));S(t) =
∑

i

∑

j aij ; aij = ωi(t)
ωj(t)

−
√

mj

mi
where mi or mj stands for

the mass, ωi or ωj stands for the frequency of experiment i or j, and σ stands
for standard deviation.

The second plot (Figure 4 right) shows four experiments using the same
controller as in the previous experiment (Figure 4 left), with the following initial
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conditions: (1) the robot has an initial frequency of 1.1 Hz. (2) In each of the four
experiments the robot has a different weight (a) 0.6kg, (b) 0.9kg, (c) 1.2kg, (d)
1.5kg. The plot shows how a higher weight leads to a lower walking frequency.
This behavior respects the spring-mass law where the resonant frequency can

be calculated as
√

k
m

. These results lead to two conclusions: the robot behaves

like a spring-mass system, and it adapts its walking frequency to the resonant
frequency of the knee. This second experiment shows an interesting property of
our system: online adaptation to the physical properties of the robot. In other
words, the robot is able to adapt its walking following the weight change during
life (for ex. payload change).

Integrating the torque on the angle of the four hips and summing the four
values, we have computed the energy consumed by the robot. Then, to obtain the
efficiency, we have divided the energy over the distance covered by the robot. We
have proved in simulation that this adaptation permits to save energy (in com-
parison to non-adaptive CPG) when loading a payload of 0.6 Kg of about 15%
(data not shown). Our adaptive system does not maximize the walking speed
but seems to find a more efficient walking frequency. The frequency found seems
to optimize the conversion of the spring potential energy into kinetic energy
to propel the robot forward. Our adaptive system can help make the walking
locomotion more efficient. This is in line with earlier findings in simulations[6].

4 Experimental Results (Real World)

In this section, we show the experimental results on the Aibo robot. As outlined
in Section 3, the Aibo is not the optimal platform to implement the ”elastic lo-
comotion framework,” since it has activated knee joints, it does not have passive
springs in the knee joints. In order to simulate the spring law in the knee joints,
we have added controllers for the those joints such that the to a large extent the
knees behave like a spring, and thus the robot corresponds to the requirements
as stated in the ”elastic locomotion framework”. As in the case of the simulation,
the equations are numerically integrated with a Runge-Kutta algorithm with a
fixed time step of 0.008 [s]. The design of Aibo controller also takes care of fur-
ther implementation problems occurring when simulating a spring law such as
encoder resolution and accuracy, mechanical gear backlash, digital system delay,
system identification and other problems (cf. [1] for more details). In the follow-
ing two sections we have repeated the two simulation experiments on real world
Aibo.

4.1 Open Loop Results

As in the simulation, we have successfully tested our CPG network, using the
default parameters shown in Table 1. Then, we have applied our adaptive com-
ponent, Eq 3, and plotted the results in Figure 5. When the AFO is perturbed
using the rotated sum of the knee signals it quickly converges to a steady state, it
also happened when the initial conditions are not close to the steady state. The
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rotated solution, using Aibo real world robot signal, seems to have maintained
the convergence properties shown in the simulation results (Figure 3).
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Fig. 5. This experiment is equal to the ones in Figure 3, but on a real AIBO robot. Here
the perturbing signal is the un-rotated (left) sum of knees and the rotated one (right).
The plot shows how the noise introduced by a real environment produces unstable
solutions, in case of un-rotated signal, and very stable solutions in the case of rotated
signal (η = 1). The small graphs are the power spectral density of the un-rotated and
rotated signals.

4.2 Closed Loop Results

In the first experiment the initial frequency is ω0 = 0. The plot, in Figure 6,
shows how in this case using a higher learning parameter η = 10 the robot can
learn to walk from scratch. In this case, a (randomly applied) hand-made stress
on the knee joints provides the initial input to walking. Aibo quickly reaches a
steady state frequency.
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AFO x and s values

Frequency ω
l
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Fig. 6. The figure on the left shows how AIBO learns the walking frequency from
scratch (ω0 = 0) because of the learning parameter η = 10. On the right there are a
series of snapshot during the initial step of Aibo in simulation (from 1 to 12) and in
the real world (from 13 to 18). (cf. movies [1])

The second experiment, as described in Section 3.2, involves the parame-
ter adaptation in case of different weights. In this case, we have simulated a
real payload change application. The robot starts its life (weight 1.68 [Kg]), (1)
adapts its walk, then (2) once a steady state has been reached, (3) one can load



Preprint May 21, 2006 

To appear in Proceedings of The Ninth International Conference on the SIMULATION OF ADAPTIVE BEHAVIOR -- SAB’06

(c) MIT Press

Adaptive Four Legged Locomotion Control 11

0 10 20 30 40 50 60 70
−0.5

0

0.5

1

1.5

2

2.5

time [s]

F
re

q
u

e
n

cy
 ω

l [
H

z]

0 50 100 150 200

1

1.1

1.2

1.3

time [s]

F
re

qu
en

cy
 ω

l [H
z]

↓(1) Start Adaptation

↓(2) Unload Steady State

↑(3) Loading 0.4 [Kg]

↑(4) Load Steady State

↑(5) Unload

↓(6) Unload Steady State

Fig. 7. (left) This figure is the same experiment of Figure 4 (left) but in this case using
Aibo real robot. In this case AIBO uses a learning parameter η = 3. (right) This plot
shows the variable ωl and demonstrates the adaptability of our controller in a simple
load transport application (η = 10, plotted is the running average of the frequency:
ωl,p(t) = 1

50

∑

50

i=0
(ωl(t− i)) where dt = 0.008[s], further details are given in the text).

a payload weight (0.4 [Kg]) on the robot saddle, (4) the controller reaches a new
steady state adapting the frequency to the new weight, (5) in the end we unload
the payload, and (6) the robot returns to a frequency close to the initial one, see
Figure 7. This experiment resumes well the interesting autonomous adaptation
provided by our controller.

5 Conclusion

In biology, adaptation and memory are major properties of living systems. The
main ideas presented in this article are to develop a walking controller where
learning is embedded in the dynamics and not an offline optimization process.

The simulated and the real robot have different properties, but thanks to the
feedback loop introduced, the controller adapts well its behavior. This demon-
strates that the controller is flexible and not designed to work on a specific
mechanical system. Moreover, since the robot is autonomous, the controller per-
mits to adapt the walk using proprioceptive signals. Bio-mechanics suggests that
the gait of dogs and other quadrupeds can be compared to our elastic locomotion
framework. Moreover, the building blocks as well as the entire controller may
possibly find implementations in neuro-biological models. We have not dealt with
problems such as direction modulation, discontinuous terrain management, and
other classical locomotion issues. But we believe that our model is open and
flexible enough to be adapted to address these tasks.

We have tested the controller both in computer simulations and on a real
robot with successful results in both cases. Furthermore, the frequency adapta-
tion was shown to be useful to provide an efficient gait capable of recycling the
energy. Hence, the controller was proved useful for quadruped transportation
system applications.
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