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Abstract

To leverage deep learning for image aesthetics assess-

ment, one critical but unsolved issue is how to seamlessly

incorporate the information of image aspect ratios to learn

more robust models. In this paper, an adaptive fractional di-

lated convolution (AFDC), which is aspect-ratio-embedded,

composition-preserving and parameter-free, is developed

to tackle this issue natively in convolutional kernel level.

Specifically, the fractional dilated kernel is adaptively con-

structed according to the image aspect ratios, where the in-

terpolation of nearest two integer dilated kernels are used to

cope with the misalignment of fractional sampling. More-

over, we provide a concise formulation for mini-batch train-

ing and utilize a grouping strategy to reduce computational

overhead. As a result, it can be easily implemented by com-

mon deep learning libraries and plugged into popular CNN

architectures in a computation-efficient manner. Our ex-

perimental results demonstrate that our proposed method

achieves state-of-the-art performance on image aesthetics

assessment over the AVA dataset [18].

1. Introduction

This paper addresses image aesthetics assessment where

the goal is to predict the given image an aesthetic score. Au-

tomatic image aesthetics assessment has many applications

such as album photo recommendation, auxiliary photo edit-

ing, and multi-shot photo selection. The task is challeng-

ing because it entails computations of both global cues (e.g.

scene, exposure control, color combination, etc) and local-

ization information (composition, photographic angle, etc).

Early approaches extract aesthetic features according to

photographic rules (lighting, contrast) and global image

composition (symmetry, rule of thirds), which require ex-
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Figure 1: Image warping and cropping are widely used

for data augmentation, but they alter the object aspect

ratios and composition, causing different aesthetics per-

ceptions. Assigning the groundtruth aesthetic score of

the original image to the altered image may introduce

label noise and deteriorate the discriminative ability.

tensive manual designs [3, 5, 13, 19, 25, 28]. However,

manual design for such aesthetic features is not a triv-

ial task even for experienced photographers. Recent work

adopts deep convolutional neural networks for image aes-

thetics assessment by learning models in an end-to-end

fashion. The models mainly use three types of formulations:

binary classification labels [12, 15, 16, 29, 20, 33, 23],

scores [17, 27, 8], and rankings [14, 22].

In the aforementioned methods, the backbone networks

are usually adopted from an image classification network.

The data augmentation methods, i.e. image cropping and

warping, are widely used for preventing overfitting in the

image recognition task. However, a shortcoming is that

the compositions and object aspect ratios are altered, which

may introduce label noise and harm the task of aesthetics

assessment (Fig. 1). A succinct solution proposed in MNA-

CNN [16] is to feed one original-size image into the net-

work at a time during training and test (bottom stream in

Fig. 2). A major constraint of the approach is that im-
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ages with different aspect ratios cannot be concatenated into

batches because the aspect ratio of each image should be

preserved. Thus it slows down the training and inference.

In this paper, we aim to develop a novel adaptive frac-

tional dilated convolution that is mini-batch compatible. As

shown in the top row in Fig. 2, our network adaptively di-

lates the convolution kernels to the composition-preserving

warped images according to the image aspect ratios such

that the effective receipt field of each dilated convolution

kernel is the same as the regular one. Specifically, as illus-

trated in Fig. 3, the fractional dilated convolution kernel is

adaptively interpolated by the nearest two integer dilated

kernels with the same kernel parameters. Thus no extra

learning parameters are introduced.

The benefits of our method can be summarized as fol-

lows: (a) By embedding the information of aspect ratios to

construct the convolution layers adaptively, it can explic-

itly relate the aesthetic perception to the image aspect ratios

while preserving the composition; (b) It is parameter-free

and thus can be easily plugged into the popular network ar-

chitectures; (c) Through the deduction, we show that our

proposed method can be mini-batch compatible and easily

implemented by common deep learning libraries (e.g. Py-

Torch, Tensorflow); (d) A grouping strategy is introduced

to reduce the computational overhead for efficient train-

ing/inference; (e) We achieve state-of-the-art performance

for image aesthetics assessment on the AVA dataset [18].

2. Related Work

In this section, we provide a brief review of some of the

most relevant works on: (a) image aesthetics assessment;

(b) preserving image aspect ratios and compositions; (c) di-

lated convolution; (d) dynamic kernels.

Image Aesthetics Assessment. The existing methods on

image aesthetics assessment can be mainly categorized into

three formulations: (1) Binary (or mean) aesthetic label:

Kao et al. [12] propose a multi-task CNN, A&C CNN,

which jointly learns both the category classification and the

aesthetic perception. Mai et al. [16] address the composi-

tion problem in image aesthetics assessment and aggregates

multiple sub-networks with different sizes of adaptive pool-

ing layer. Ma et al. [15] feed the patches sampled from the

saliency map of the original image into VGG16 [24] with

an aggregation layer, where a layer-aware subnet consider-

ing path localizations is leveraged to get the final prediction.

Sheng et al. [23] assign adaptively larger weights to mean-

ingful training cropping patches according to the prediction

errors during the training and aggregate the multi-patch pre-

dictions during the test. Hosu et al. [8] propose to incorpo-

rate multi-level spatially polled features from the interme-

diate blocks in a computation efficient manner. (2) Ranking

score: Instead of classification or regression formulations,

a joint loss of Euclidean and ranking [14] is proposed and

a triplet ranking loss [22] is developed. (3) Score distri-

bution: To address the ordered score distribution, Hossein

Talebi and Peyman Milanfar [27] introduce Earth Mover’s

Distance as a loss function to train 10-scale score distri-

bution. Since the image aesthetics is a subjective property

and outlier opinions may appear, Naila Murray and Albert

Gordo [17] introduce Huber Loss to train 10-scale score dis-

tribution. Besides using the mean score of multiple raters,

Ren et al. [20] propose a sub-network to learn a personal

rating offset along with the generic aesthetic network and

output the personalized score prediction.

Preserving Image Aspect Ratios and Compositions.

Multi-patch sampling over the original images is used to

preserve the aspect ratios and proves to be effective [15, 23,

8]. A major concern is that sampling patches from the orig-

inal image may alter essential aesthetic factors (color his-

togram, object-background ratio) of the original image and

the complete aesthetics features are lost. In contrast, our

proposed method adaptively restores the original receptive

fields from the composition-preserving warping images in

an end-to-end fashion. The approach of MNA-CNN [16] is

the most related to ours, as they proposed to preserve image

aspect ratios and compositions by feeding the original im-

age into the network, one at a time. A major constraint of

the approach is that images with different aspect ratios can-

not be concatenated into batches because the aspect ratio of

each image should be preserved. Thus it tends to slow down

the training and inference processes. On the other hand, our

proposed method is mini-batch compatible and can be eas-

ily implemented by common deep learning libraries.

Dilated Convolution. Our adaptive fractional dilated con-

volution is motivated by the dilated convolution [31] and

atrous convolution [1] in semantic segmentation, but it dif-

fers from them in several aspects: (1) Our adaptive frac-

tional dilated convolution is to restore the receptive fields

for warped images to the same as regular convolution for

original images, while dilated convolution is proposed to

retrain the large receptive without down-sampling. (2) The

dilation rate can be fractional in our method. (3) The con-

struction of fractional dilated kernel is dynamic respecting

the aspect ratios.

Dynamic Kernels. Deformable convolution [2] is proposed

to construct the receptive fields dynamically and adaptively

by learning better sampling in the convolutional layer. Our

proposed method differs from deformable convolution in

two folds: (a) The deformable convolution is proposed to

learn better sampling in the convolutional layers, whereas

our method adapts the receptive fields into the original as-

pect ratios. Therefore, our proposed method is parameter-

free while the deformable convolution requires parameter-

ized layers to predict the sampling indices. (b) Our method

provides a concise formula for mini-batch training and it

can be easily implemented by the common deep learning
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Figure 2: Overview of adaptive fractional dilated CNN (above) and the comparison with vanilla CNN (below): Each

fractional dilated Conv (above) operated on wrapped input adaptively dilates the same receptive field as the vanilla

Conv (below) operated on the original image. It thus helps with the problems: (a) Becomes mini-batch compatible

by composition-preserving warping instead of feeding original-size image (b) Preserves aesthetic features related to

aspect ratios by adaptive kernel dilation.

frameworks. On the other hand, the deformable convolu-

tion needs to rewrite the convolution operation in CUDA

and tends to be slow due to the indexing operation.

3. Adaptive Fractional Dilated Convolution

In this section, we first introduce the adaptive kernel in-

terpolation to tackle the misalignment due to fractional sam-

pling in the proposed method. We then derive a concise for-

mulation for it in the setting of mini-batch and discuss their

computational overhead. Finally, we describe the loss func-

tion and an additional composition-aware structure for the

composition-preserving warping batch.

3.1. Adaptive Kernel Interpolation

As stated in Section 1, cropping modifies the composi-

tion of the original image and causes the loss of some crit-

ical aesthetics information. As a result, image cropping in-

troduces somewhat label noises in the training stage. To

preserve the composition, we firstly warp the image into a

fixed size. For network training, such a simple image warp-

ing approach suffers from the problem of overfitting due

to the absence of data augmentation. Motivated by SPP [6],

we adopt random-size warping during the training stage and

feed the mini-batch into the networks with global pooling

or SPP modules, which can naturally handle arbitrary-size

batch inputs. Overall, the random-size warping provides

effective data augmentation for training scale-invariant net-

works while preserving the image compositions.

To cope with the distortion induced by warping, the re-

ceptive field of the convolution kernel should be consistent

with the receptive field of the convolution kernel that is op-

erated on the image with original aspect ratio. Our pro-

posed approach tackles the distortion issue by adaptively

dilating the kernels to the original aspect ratio, as illustrated

h h

w w

h h

w w

Dilation Rate: ( 1,      )

h

w

h

h

Composition-Preserving Warping

Warped ImageOriginal Image

Original Kernel Adaptive Fractional Dilated Kernel  

Dilation Rate: ( 1, 2 )

Dilation Rate: ( 1, 1 )

Integer Dilated Kernels

Kernel Proividing 

Parameters

Linear

Interpolation

Figure 3: Illustration of kernel interpolation: linear in-

terpolation of the nearest two integer dilated kernels

shared same kernel parameters are used to tackle the

sampling misalignment from fractional dilation rates.

in Fig. 2. Since the aspect ratio could be fractional, the dila-

tion rate could be a fraction as well. To tackle the misalign-

ment of feature sampling, we use the linear interpolation of

two nearest integer dilation rates to construct the fractional

dilation kernel.

Suppose that w and h represent the width and height of

original images, respectively. If h > w and h
w is not a in-

teger, as illustrated in Fig. 3, AFDC (adaptive fractional

dilated convolution) kernel knAFDC in n-th layer is con-

structed as:

knAFDC = (⌈r⌉−r)kn(1,⌊r⌋) + (r−⌊r⌋)kn(1,⌈r⌉) (1)

where r = h
w . For any non-integer r, it is in the interval[

⌊r⌋, ⌈r⌉
]

whose length is equal to 1. ⌊r⌋ and ⌈r⌉ are two

integers nearest to r. kn(1,⌊r⌋) and kn(1,⌈r⌉) are two dilated

kernels with the nearest integer dilation rates ⌊r⌋ and ⌈r⌉
for nth layer, respectively. More specifically, as shown in

Fig. 3, r ∈ [1, 2], ⌊r⌋ = 1, ⌈r⌉ = 2. We note that both
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Figure 4: Illustration for mini-batch compatibility:

the distributive property of convolution operation (c.f .

Eq. (3)) makes the fractional dilated conv easily im-

plemented and compatible for mini-batch computation

with a zero-padded weight vector/matrix (c.f . Eq. (5))

kn(1,1) and kn(1,2) inherit the same learning parameters from

the original kernel.

Likewise, if w > h and w
h is not an integer, then we

choose:

knAFDC = (⌈r⌉−r)kn(⌊r⌋,1) + (r−⌊r⌋)kn(⌈r⌉,1) (2)

If r = h
w is an integer, it is enough for us to employ

integer dilated kernel.

Therefore, the fractional dilated kernel is adaptively con-

structed for each image with respect to w and h as shown in

Fig. 3. In addition, all the integer dilation kernels share the

same kernel parameters and thus no extra learning parame-

ters are introduced.

3.2. MiniBatch Computation and Implementation

To implement the dynamic kernel interpolation in Eq. (1)

and Eq. (2) directly, we need to rewrite the kernel-level code

due to the diverse kernels in mini-batch. However, through

the following deduction, we show that the proposed method

can be easily implemented by common deep learning li-

braries, e.g. PyTorch and TensorFlow.

Using the distributive property of convolution operation,

the transformation of the feature maps generated by the

adaptive fractional dilated Conv kernels in Eq. (1) can be

formulated as:

fn+1 = knAFDC ∗ fn

=

[
(⌈w

h ⌉−
w
h
)kn

(1,⌊w
h ⌋)

+ (w
h
−⌊w

h ⌋)k
n
(1,⌈w

h ⌉)

]
∗ fn

= (⌈w
h ⌉−

w
h
)kn

(1,⌊w
h ⌋)

∗ fn + (w
h
−⌊w

h ⌋)k
n
(1,⌈w

h ⌉)
∗ fn

(3)

where fn denotes the feature maps for the nth layer and ∗
denotes convolution.

In mini-batch training and inference, we can construct

multiple kernels with different dilation rates (rateik, rate
j
k)

from the same kernel parameters and then use a zero-padded

interpolation weight vector w to compute the operation

adaptively for each image as:

fn+1 = knAFDC ∗ fn

=
∑

k

w(ratei
k
,ratej

k
)k

n
(rateik,rate

j

k
)
∗ fn

= wf̃n

(4)

which is just the inner product of two vectors:

w = [w(ratei
1
,ratej

1
), ..., w(ratei

K
,ratej

K
)] (5)

and

f̃n = [kn
(ratei

1
,ratej

1
)
∗ fn, ..., k

n
(rateiK ,ratej

K
)
∗ fn]

⊤ (6)

where the number of dilation kernels is K. As shown in

Fig. 4, the interpolation weight w(ratei
k
,ratej

k
) for each in-

stance is either w(ratei
k
,1) or w(1,ratej

k
), defined as follows:

w(ratei,1) =





r − (ratei − 1), if ratei − r ∈ [0, 1)

(ratei + 1)− r, if ratei − r ∈ (−1, 0)

0, else

w(1,ratej) =





r − (ratej − 1), if ratej − r ∈ [0, 1)

(ratej + 1)− r, if ratej − r ∈ (−1, 0)

0, else

(7)

In mini-batch, suppose that batch size is B, then the n+1th

feature maps Fn+1 can be formulated as:

Fn+1 = [f1n+1, ..., f
B
n+1] = [w1

f̃
1
n, ...,w

B
f̃
B
n ] (8)

The computation of the above [̃f1n, ..., f̃
B
n ] can be done effi-

ciently in the mini-batch as:

[
kn
(ratei

1
,ratej

1
)
∗ Fn, kn

(ratei
2
,ratej

2
)
∗ Fn, . . . , kn

(rateiK ,ratej
K
)
∗ Fn

]⊤
(9)

We note that the activation function and batch normal-

ization are omitted in the formulas for concise illustration.

The formula in Eq. (8) can be interpreted as a dot pro-

duction followed by a sum reduction between interpola-

tion weight matrix W and Eq. (9), which thus can be effi-

ciently implemented by common deep learning frameworks

(Pytorch, Tensorflow, etc.). Each integer dilated Conv,

kn
(rateik,rate

j

k
)
∗ Fn in Eq. (9), is computed as a normal di-

lated Conv layer with the shared learning parameters.
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Figure 5: Grouping strategy to reduce computational

overhead: The integer dilated Convs can be shared by

properly grouped images according to aspect ratios.

Network #Params #Mult-Adds Speed (train) Speed (test)

VGG16 138M 15.3G 8.14 it/s 12.91 it/s

2-dilation 138M 30.7G 2.70 it/s 3.85 it/s

7-dilation 138M 109.1G 0.73 it/s 0.93 it/s

ResNet50 25.6M 3.5G 12.49 it/s 22.80 it/s

2-dilation 25.6M 5.6G 8.32 it/s 14.81 it/s

2-dilation* 25.6M 6.5G 6.20 it/s 9.88 it/s

7-dilation 25.6M 10.6G 3.22 it/s 5.28 it/s

7-dilation* 25.6M 18.8G 2.08 it/s 3.12 it/s

Table 1: Computation comparison: training batch size

is set to 16, test batch size is set to 32. The speed is the

average result for 100 iterations from the test on single

GTX 1080Ti. The fractional dilated Conv is embedded

for all BottleNets in ResNet50 while * denotes additional

embedding dilation for the first 7× 7 Conv layer as well.

Computational overhead The computational overhead is

determined by the number of integer dilated kernels and the

number of convolutional layers whose kernel sizes are not

1 × 1. As shown in Table 1, the BottleNet in ResNet50 [7]

contains two 1 × 1 kernels and one 3 × 3 kernel. Since

only 3 × 3 kernel introduces the computational overhead,

the computational cost for 2 integer dilations is roughly 1.5
times of the original model, while VVG16 [24] consists of

the majority of 3× 3 kernels and thus the computation cost

is approximately 2 times. Some additional computational

overhead is caused by the interpolation operation of differ-

ent dilation kernels.

Reducing overhead with a grouping strategy In prac-

tice, the aspect ratios, w
h , of most of images would fall

into [ 12 , 2], e.g. 97.8% of the training and testing images

in the AVA [18] dataset. Training efficiency can be op-

timized by grouping batches, e.g. training with three di-

lation kernels for the most batches, DilationRates =
{(2, 1), (1, 1), (1, 2)} for the images whose aspect ratios fall

into [ 12 , 2]. For the datasets with more diverse aspect ratios,

a more fine-grained grouping strategy could be applied. As

illustrated in Fig. 5, images with aspect ratio range [4, 3]
(above) and [ 12 , 1] (below) share the valid integer dilated

Convs in the grouped batches.

Parallel optimization The calculation of multiple integer

dilated kernels in each convolutional layer is equivalent to

broadening the output channel size by the number of dila-

tion kernels. In another words, the computation of dilated

Conv group, {kn
(rateik,rate

j

k
)
∗Fn}, can be optimized through

parallel computing. WideResNet [32] claims that increas-

ing the width of Conv layers is more accommodating to the

nature of GPU computation and helps effectively balance

computations more optimally. However, from Table 1, the

actual training and testing speeds are approximately linearly

correlated with # Muti-Adds, which could be attributed to

the current implementation of the framework (TensorFlow)

and can be improved by further parallel optimization.

We note that many base networks are stacked mainly

with the permutation of 1 × 1 and 3 × 3 kernels and they

can be applicable to embed AFDC in terms of the training

and inference speed, i.e. [7, 11, 10, 32, 30] in ResNet stream

and [9, 21, 34] in MobileNet stream. Besides, the adapta-

tion is easy because our method is parameter-free. Overall,

the random-size warping preserves the composition of the

original image and also provides data augmentation to train

the network with scale invariance. AFDC can adaptively

construct fractional dilated kernels according to the spatial

distortion information in a computation-efficient manner.

3.3. CompositionAware Structure and Loss

The commonly-used network structures for the task of

image classification usually incorporate global pooling be-

fore the fully connected layers [30, 7, 11, 26, 10]. The

global pooling eliminates spatial variance which is help-

ful for the task of image recognition by training the net-

works with spatial invariant ability, but it causes the loss

of localization information for image aesthetics assessment.

Motivated by spatial pyramid pooling [6], MNA-CNN-

Scene [16], several efforts are made to learn the informa-

tion of spatial image compositions. First, we use multiple

adaptive pooling modules [6] to output gi∗gi grids and feed

them into the fully-connected layers (c.f . Fig. 2). The local-

ization factors for image aesthetics assessment are highly

correlated with the image symmetry and the overall image

structure. Then, we aggregate the outputs after the fully-

connected layers by concatenation. To limit the number of

model parameters and prevent from overfitting, the module

of each adaptive pooling layer outputs
numfeatures

numgrids
chan-

nels.

Following the work in [27], we train our network to pre-

dict 10-scale score distribution with a softmax function on

the top of the network. To get both the mean score pre-

diction and the binary classification prediction, we calcu-

late the weighted sum of score distribution
∑10

i=1 i · pi.
We use the ordered distribution distance, Earth Mover Dis-

tance [27], as our loss function:

EMD(p, p̂) = ( 1
N

∑N
k=1 |CDFp(k)− CDFp̂(k)|

r)1/r (10)

where CDFp(k) is the cumulative distribution function as

14118



network cls. acc. MSE EMD SRCC LCC

NIMA(VGG16)[27] 0.8060 - 0.052 0.592 0.610

NIMA(Inception-v2)[27] 0.8151 - 0.050 0.612 0.636

NIMA(ResNet50, our implementation) 0.8164 0.3169 0.0492 0.6166 0.6388

Vanilla Conv (ResNet50) 0.8172 0.3101 0.0481 0.6002 0.6234

AFDC (random-size cropping pretrain) 0.8145 0.3212 0.0520 0.6134 0.6354

AFDC (aspect-ratio-preserving pretrain) 0.8295 0.2743 0.0445 0.6410 0.6653

AFDC + SPP 0.8324 0.2706 0.0447 0.6489 0.6711

Table 2: Test result comparison on AVA [18]: The evaluation metrics are following [27]. Reported accuracy values(cls.

acc.) are based on binary image classification. MSE(mean squared error), LCC (linear correlation coefficient) and

SRCC (Spearmans rank correlation coefficient) are computed between predicted and ground truth mean scores. EMD

measures the closeness of the predicted and ground truth rating distributions with r = 1 in Eq. (10). AFDC (random-

size cropping) transfers the model trained with widely used data augmentation method in ImageNet, while AFDC

(aspect-ratio-preserving pretrain) transfers the model trained with aspect-ratio-preserving data augmentation.

∑k
i=1 pi. As stated in Section 1 and the results in [27], pre-

dicting the score distribution can provide more information

about image aesthetics compared to the mean scores or bi-

nary classification labels.

4. Experimental Results

Following [27, 17, 15, 16, 12], we have evaluated our

proposed method over AVA dataset [18]. The AVA contains

around 250,000 images and each image contains the 10-

scale score distribution rated by roughly 200 people. For

a fair comparison, we use the same random split strategy

in [27, 22, 17, 15, 16, 18] to generate 235,528 images for

training and 20,000 images for test.

4.1. Implementation Details

We use ResNet-50 [7] as the backbone network due to its

efficiency on computation and graphic memory as discussed

in Section 3.2. We replace all the 3 × 3 Conv layers in

each BottleNet with our proposed adaptive fraction dilation

Conv layers. It is easy to plug AFDC into the common CNN

architectures since it does not introduce any extra model

parameters. We use the same EMD loss in Eq. (10) with

r = 2 for better back propagation. To accelerate training,

we use the grouping strategy discussed in Section 3.2. For

the first 12 epochs, we train the model with three dilation

kernels, 1 × 2, 1 × 1, 2 × 1 on the grouped images since

the aspect ratios for 97.8% training and validation images

fall between [ 12 , 2]. Then we train the model with seven

dilation kernels, 1 × 4, 1 × 3, 1 × 2, 1 × 1, 2 × 1, 3 ×
1, 4 × 1, for the remaining 6 epochs and select the best

model from the results in the validation dataset. We note

that the training and test speed could be further accelerated

by a more fine-grained grouping strategy. We transfer the

network parameters (pre-trained on ImageNet) before the

fully connected layer and set the initial learning rate to 0.01
for the first 6 epochs. Then we dampen the learning rate

to 0.001 for the rest of the training epochs. We find that

setting initial learning rate to 0.001 with a decay rate 0.95
after every 10 epochs can produce comparable results but

converges more slowly. The weight and bias momentums

are set to 0.9.

4.2. Ablation Study

In this section, we introduce the steps to build the fi-

nal model and analyze the effects of each module step by

step: (1) Replacing random cropping with composition-

preserving random warping; (2) Replacing vanilla Conv

with AFDC in the aspect-ratio-preserving pre-trained model

on ImageNet; (3) Adding SPP modules to learn image com-

position.

Random Warping. For the data augmentation, input im-

ages in NIMA [27] are rescaled to 256 × 256, and then a

crop of size 224 × 224 is randomly extracted. They also

report that training with random crops without rescaling

produces the results that are not compelling due to the in-

evitable changes in image compositions. In order to pre-

serve the complete composition, we replace the random-

cropping with random-size warping by randomly warping

each batch into square size in [224, 320] during each iter-

ation. The network suffers from overfitting without using

random warping. We note that non-square-size warping

may further help with generalization and potentially train

AFDC more robustly.

From Table 2, we generate slightly better results (Vanilla

Conv (ResNet50)) compared with NIMA [27]. We use the

same loss (EMD loss) and network (ResNet50, our imple-

mentation) as NIMA [27]. Comparable results have shown

that random warping is an effective data augmentation al-

ternative and it preserves the image composition.

Aspect-Ratio-Preserving Pretrain. We replace the vanilla

convolution layers with AFDC in ResNet50. In our ex-

periments, we find that, fine-tuning the fractional dilated

convolution network results in similar validation accuracy

compared to the original network (c.f . AFDC (random-size

cropping pretrain) in Table 2). Compatible validation re-
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Figure 6: The cropping results for the model trained with

global pooling (left) and SPP (right). The two cropping

samples are obtained by using a sliding window with the

lowest score (green) and the highest score (red). The im-

age is firstly resized to 256. A sliding window search

with size 224 and stride 10 is applied.
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Figure 7: The comparison of learning curves: the back-

bone networks here are all ResNet-50 [7].

sults might be attributed to the pre-trained model which has

a distortion-invariant ability. The widely used data augmen-

tation [26] for network training on ImageNet contains ran-

dom cropping on a window whose size is distributed evenly

between 8% to 100% of the original image area with the as-

pect ratio constrained to [ 34 ,
4
3 ]. The model is trained with

distortion invariance, which has the opposite interest of our

method that tries to preserve the original aspect ratio.

For better transfer learning, we pre-train the

ResNet50 [7] on ImageNet [4] without distortion aug-

mentation. Specifically, we sample the 8% to 100% crop

size to the image area with a square window, which is

slightly modified comparing to the data augmentation

method in [26]. As in Table 2, transferring the model

from the aspect-ratio-preserving pre-train, we improve

the overall test results (AFDC (aspect-ratio-preserving

pre-train)) by a margin from the vanilla Conv counterpart.

Composition-Aware Structure. For better representation

learning of composition, we use three different scales for

SPP, {1 × 1, 2 × 2, 3 × 3}. The network with a global

pooling layer is equivalent to using only one scale, 1 × 1.

From Table 2, the network with SPP modules (AFDC+SPP)

generates better results comparing to the network with the

global pooling layer (AFDC). The experimental results have

shown that incorporating the localization information could

benefit the learning of image compositions. In Fig. 6, the

automatic cropping example demonstrates that the ability of

localization/composition discrimination is important to find

a good cropping result when the global cue in each cropping

box has a similar distribution (color, lighting et al.). The

model leaned with SPP modules can infer cropping respect-

ing the image compositions, e.g. the relative position of eye

and face in the example. We also tried numgrids = 5 and

found that the results were not compelling due to the overfit-

ting from extra model parameters. Three different scales are

quite consistent with the common aesthetic rules (global in-

formation, symmetrical composition in horizontal and ver-

tical direction, the rules of the thirds).

4.3. Effectiveness of AFDC

Learning Representation and Generalization From the

experiments in Fig. 7, we argue that preserving aspect ratio

information is essential for learning photo aesthetics since

our method not only improves the validation results but also

improves the training results. Without extra learning pa-

rameters, AFDC improves both learning representation and

generalization ability. As discussed in Section 1, preserv-

ing the image aesthetics information completely omits the

label noises caused by random warping and thus facilitates

the learning process. The additional aesthetic features re-

lated to the aspect ratios allow the model to be more robust

and discriminative. To further probe the effects of embed-

ding aspect ratio, we compare different ways to incorpo-

rate the dilated convolution and the results are reported in

Table 3. When trained with vanilla Conv (top rows in Ta-

ble 3), AFDC is superior to other dilated Conv methods dur-

ing the test. It implies the potential optimal between nearest

two integer dilated kernels. After training with AFDC (bot-

tom rows in Table 3), it further validates the effectiveness

of AFDC, which is guided by the helpful supervision of as-

pect ratios. We note that such experiments are accessible

because our method is parameter-free.

Overall, our proposed AFDC can learn more discrimina-

tive and accurate representations related to aesthetics per-

ception, resulting in better generalization by leveraging ex-

tra supervision from the information of image aspect ratios.

Discriminative to Aspect Ratios To further investigate the

response to aspect ratios, we resize the same image into dif-

ferent aspect ratios and test the results on different trained

models. As shown in Fig. 8, AFDC (blue line) is discrim-

inative to the change of aspect ratios. The small fluctua-

tion of vanilla Conv (green line) is attributed to sampling

change from resizing process. The model with random-size

cropping pretrain on Imagenet (orange line) is less discrim-

inative to capture the aesthetics perception related to aspect

ratio due to its distortion-invariant pretrain. Moreover, the

proposed method produces a multi-modal score distribu-

tion, which reflects that it learns complex relation between

the aspect ratio and the aesthetics perception. It is in line

with the notion that designing better aspect ratios or finding

14120



Train Test cls.acc. MSE EMD

vanilla

vanilla 0.8172 0.3101 0.0481

constant dilation rate = [2,1] 0.8072 0.5163 0.0610

second nearest integer dilation 0.8091 0.5368 0.0620

mean of nearest two integer dilations 0.8117 0.4558 0.0576

nearest integer dilation 0.8114 0.4322 0.0562

adaptive fractional dilation 0.8132 0.4133 0.0553

AFDC

vanilla 0.8085 0.3210 0.0581

constant dilation rate = [2,1] 0.8132 0.3182 0.0576

second nearest integer dilation 0.8156 0.3003 0.0476

mean of nearest two integer dilations 0.8274 0.2771 0.0457

nearest integer dilation 0.8277 0.2757 0.0457

adaptive fractional dilation 0.8295 0.2743 0.0445

Table 3: The test result comparison of different convolu-

tions: The results are obtained with trained parameters

by vanilla Conv (above) and AFDC (below). Test pro-

cesses are conducted by different calculation methods

for interpolation weights, w in Eq. (5). Vanilla Conv,

constant dilation, nearest integer dilation and second

nearest integer dilation can be interpreted as feeding

one-hot interpolation weight vector into the networks.

Figure 8: Comparison of discrimination to the change of

aspect ratios.

aesthetically pleasing photography angles is not trivial.

Due to the constraint of training dataset, we admit that

the learned perception related to the aspect ratios is not sat-

isfactory yet even the model learns from different aspect

ratios. As a matter of factor, the learning ability is available

for our proposed method when training on a more specific

targeted dataset. It could be utilized in automatic/auxiliary

photo enhancement with not only color space transforma-

tion but also with spatial transformation, e.g. profile editing,

multi-shot selection and automatic resizing.

4.4. Comparison With the StateoftheArt Results

We have compared our adaptive fractional dilated CNN

with the state-of-the-art methods in Table 4. The results of

these methods are directly obtained from the correspond-

ing papers. As shown in Table 4, our proposed AFDC

outperforms other methods in terms of cls.acc and MSE,

which are the most widely targeted metrics. Compared with

NIMA(Inception-v2) [27] which uses the same EMD loss,

our experimental results have shown that preserving the im-

age aesthetic information completely results in better per-

formance on image aesthetics assessment. We follow the

same motivation from MNA-CMM-Scene [16], while our

Method cls. acc. MSE SRCC

MNA-CNN-Scene [16] 76.5% - -

Kong et al. [14] 77.3% - 0.558

AMP [17] 80.3% 0.279 0.709

Zeng et al. (resnet101) [33] 80.8% 0.275 0.719

NIMA (Inception-v2) [27] 81.5% - 0.612

MP-Net [15] (50 cropping patches) 81.7% - -

Hosu et al. [8] (20 cropping patches) 81.7% - 0.756

A-Lamp [15] (50 cropping patches) 82.5% - -

MPada [23](≥ 32 cropping patches) 83.0% - -

ours (single warping patch) 82.98% 0.273 0.648

ours (4 warping patches) 83.24% 0.271 0.649

Table 4: Comparison with the SOTA methods: The four

patches are warping size {224, 256, 288, 320}.The single

patch is warping size 320 selected from the best results.

proposed method is applicable to mini-batch training which

contains images with different aspect ratios. The experi-

mental results have shown adaptive embedding at kernel

level is an effective way to learn more accurate aesthet-

ics perception. Compared with multi-patch based meth-

ods [15, 8, 23], our unified model, which learns the im-

age aesthetic features directly from the complete images

in an end-to-end manner, can better preserve the original

aesthetic information and alleviate the efforts to aggregate

sampling prediction, e.g. complicated path sampling strat-

egy and manually designed aggregation structure in [15].

Moreover, our method is much more efficient without feed-

ing multiple cropping patches sampled from original im-

ages and could be more applicable for the application. Fur-

thermore, it is much succinct due to its parameter-free man-

ner and can be easily adapted to popular CNN architectures.

5. Conclusion

In this paper, an adaptive dilated convolution network is

developed to explicitly model aspect ratios for image aes-

thetics assessment. Our proposed method does not intro-

duce extra model parameters and can be plugged into pop-

ular CNN architectures. Besides, a grouping strategy has

been introduced to reduce computational overhead. Our ex-

perimental results have demonstrated the effectiveness of

our proposed approach. Even our adaptive dilated convolu-

tion network was proposed to support image aesthetics as-

sessment, it can also be applied in other scenarios when im-

age cropping or warping may introduce label noises. More-

over, adaptive kernel construction in a parameter-free man-

ner provides an intuitive approach to design dynamic em-

bedding at kernel level, which aims at better learning repre-

sentation and generalization.
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