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Adaptive Frequency-Domain Equalization for
Single-Carrier Multiple-Input Multiple-Output
Wireless Transmissions

Justin Coon, Student Member, IEEE, Simon Armour, Member, IEEE, Mark Beach, Associate Member, IEEE, and
Joe McGeehan

Abstract—Channel estimation and tracking pose real problems
in broadband single-carrier wireless communication systems
employing multiple transmit and receive antennas. An alternative
to estimating the channel is to adaptively equalize the received
symbols. Several adaptive equalization solutions have been re-
searched for systems operating in the time domain. However, these
solutions tend to be computationally intensive. A low-complexity
alternative is to adaptively equalize the received message in the
frequency domain. In this paper, we present an adaptive fre-
quency-domain equalization (FDE) algorithm for implementation
in single-carrier (SC) multiple-input multiple-output (MIMO)
systems. Furthermore, we outline a novel method of reducing the
overhead required to train the proposed equalizer. Finally, we
address the issues of complexity and training sequence design.
Other computationally efficient adaptive FDE algorithms for use
in SC systems employing single transmit and receive antennas,
receive diversity, or space-time block codes (STBC) can be found
in the literature. However, the algorithm detailed in this paper can
be implemented in STBC systems as well as in broadband spatial
multiplexing systems, making it suitable for use in high data rate
MIMO applications.

Index Terms—Adaptive equalization, frequency-domain equal-
ization (FDE), multiple-input multiple-output (MIMO) systems.

1. INTRODUCTION

ULTIPLE-INPUT multiple-output (MIMO) architec-

tures are very attractive solutions for high date rate
wireless communication systems due to their enormous poten-
tial for capacity gains relative to single-antenna systems [1],
[2]. Channel equalization in broadband MIMO systems can
potentially be very complex due to the superposition of all of
the transmitted streams at each receive antenna. The complexity
of the equalization process can be mitigated somewhat by per-
forming equalization in the frequency-domain at the receiver.
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There are two fundamental frequency-domain equalization
(FDE) techniques: orthogonal frequency division multiplexing
(OFDM) [3]-[5] and single-carrier (SC) transmission with FDE
(SC-FDE) [6]-[10]. Although OFDM is currently the favored
technique for use in MIMO systems, recent studies have shown
that MIMO SC-FDE offers significant performance improve-
ments over MIMO OFDM in certain environments [11]. In
this paper, we present an adaptive equalization algorithm for
implementation in MIMO SC-FDE systems.

To date, several adaptive solutions for SC MIMO systems
have been studied. In [12], adaptive time-domain equalization
for SC MIMO systems was addressed. The issue of MIMO
channel tracking was explored for adaptive time-domain equal-
ization in [13]. Adaptive algorithms based on the least mean
squares (LMS) algorithm and the recursive least squares (RLS)
algorithm were considered for SC-FDE systems employing re-
ceive diversity in [14], where the potential for significant re-
ductions in complexity relative to time-domain LMS and RLS
algorithms was shown. Another modification of the RLS algo-
rithm was applied to a space-time coded SC-FDE systemin [15],
where the structure of the space-time block code was exploited
in order to reduce the complexity of the algorithm beyond the
reduction achieved through FDE alone.

The main drawback of the adaptive FDE algorithms men-
tioned above is that they cannot be applied to MIMO systems
with spatial multiplexing (SM) architectures. As a result, they
are not suitable for use in very high data rate applications where
SM systems with an appropriate channel code, puncturing, and
interleaving would be most useful. The algorithm proposed in
this paper can be implemented in SM architectures as well as
space-time block-coded architectures. In order to highlight the
advantages of this algorithm, we focus on its implementation in
an SM system in this paper. The application of the algorithm to
space-time block-coded systems is straightforward.

This paper is organized as follows. In Section II, we introduce
a mathematical model for an SM SC-FDE system. We present
a detailed mathematical formulation of the proposed algorithm
in Section III, which, to the best of our knowledge, cannot be
found in the current literature. Convergence properties of the
algorithm are discussed in Section I'V. These properties are then
exploited in Section V to devise a novel method of reducing the
overhead required to train the adaptive equalizer. We address is-
sues concerning the design of training sequences in Section VI,
and the complexity of the proposed algorithm is compared to
that of alternative techniques in Section VII. Finally, numerical

1053-587X/$20.00 © 2005 IEEE
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Fig. 1. Block diagram of baseband SM SC-FDE system.

results are illustrated in Section VIII, and conclusions are pre-
sented in Section IX.

Notation: We use a bold uppercase (lowercase) font to de-
note matrices (column vectors); frequency-domain variables are
denoted by a tilde (e.g., a); F,, is the normalized m X m dis-
crete Fourier transform (DFT) matrix, where its (k,)th ele-
ment is given by F,,,.x ; = (1//m) exp(—j2xki/m) for k,i =
0,..., m—1;1,, is the m xm identity matrix; 0,,, x , iSan mxn
all-zero matrix; (-)*,(-)™%, (-)%, (-)®, (- )m,and | - | denote
the complex conjugate, inverse, transpose, conjugate transpose,
modulo-m, and absolute value operations, respectively; ® is the
Kronecker product operator; E{-} is the expectation operator;
Tr{-} is the trace operator; and diag{zo,..., £;—1} denotes
the m X m diagonal matrix with the elements {zg, ..., Zm—1}

on the diagonal.

II. SPATIAL MULTIPLEXING SYSTEM MODEL FOR SC-FDE

Consider an SM system with np transmit antennas and n g, re-
ceive antennas, where nr < ng and the baseband sequence at
each transmit antenna is modulated onto a single carrier wave-
form for transmission across a wireless channel. The received
baseband sequences are equalized in the frequency domain. To
facilitate FDE, a cyclic prefix is added to each sequence at the
transmitter and removed from each of the received sequences.
A block diagram of this system is illustrated in Fig. 1.

Adopting matrix notation, we can mathematically describe
this system. Let x, be alength- K vector of symbols that is trans-
mitted from the gth transmit antenna. The symbols in x, are
drawn from an arbitrary constellation [e.g., binary phase-shift
keying (BPSK)]. Typically, K is defined as a power of two to
allow for the implementation of the fast Fourier transform (FFT)
during equalization. A cyclic prefix of () symbols is added to x,,
prior to transmission, and the first ) symbols are removed from
each of the received vectors. In the following discussion, we as-
sume () > L, where L is the memory order of each of the npn g
channel impulse responses (CIRs). From this assumption, the
exploitation of the cyclic prefix creates the illusion of period-
icity in the transmitted message, thereby allowing the wireless
channels to be expressed as circulant matrices, as given in the
following expression for the vector y, of symbols received at
antenna p.

nr
Yp = Zanxq +n,. (1)
q=1

In (1), n, is a length-K vector of independent and identically
distributed (i.i.d.) zero-mean complex Gaussian noise samples

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005

with variance o2 /2 per dimension, and H, , is a K x K circu-
lant matrix defined by the CIR between the gth transmit antenna
and the pth receive antenna. Specifically, the first row of H,, ,
is (hp,q:0,01x K —(L+1), Pp.qiLs - - s Pp 1), Where hy, 4. is the
1th complex tap coefficient of the CIR between the ¢th transmit
antenna and the pth receive antenna. It is assumed that the chan-
nels remain static for at least one block duration.

It is convenient to construct a length-n g K vector of received
symbols y = (yT,... ,y};R)T. A length-np K vector x of
transmitted symbols can be constructed in a similar manner,

where x £ (x],...,x! )T. Therefore, we have the linear
system

y=Hx+n 2)
wheren £ (nf,...,n} )7, and the (p, ¢)th submatrix of the

ng X ng block matrix H is H,, ,.

Equalization is performed on the received symbol vector y
in the frequency domain. Consequently, the equalized symbols
can be expressed by

x=D;!I"D,,y 3)

where D,,, =1,, ® Fg, and T'H is the np K x npK equalizer
matrix. Because each circulant submatrix of H is diagonalized
by pre- and post-multiplication of a DFT and an indiscrete DFT
(IDFT) matrix, respectively, it is convenient to express (3) as

x =D, Ty

=D, !'T"(Hx + 1) 4)
where y = D,,y,H = D, ,HD;! x = D,,x, and
n = D,,n. The (p,q)th diagonal K x K submatrix of
H is given by H,, = diag{hp4:0,---,hpgx_1}, Where
the discrete frequency response of the channel is given by
hpgk = SoF o hpgiexp(—j2rki/K). This mathematical
model for an SM SC-FDE system is used throughout this paper.

III. ADAPTIVE ALGORITHM

The adaptive FDE algorithm described in this section is a
version of the RLS algorithm. The goal is to adaptively update
’Yf)k,o T rK—1,0

=

* *
Yo,nr K—1 YnrK—-1nrK—1

utilizing training blocks (training mode) or detected data blocks
(decision-directed mode). However, the update process requires
the revision of nynrK? elements, which can become compu-
tationally cuambersome as the block length K increases. We can
reduce the number of elements that must be updated by ob-
serving that only the n g elements of ¥ corresponding to the kth
frequency bin are required to recover the kth frequency compo-
nent of the block transmitted from antenna g. It follows that

o = f e ibue (u=vic =0
u,v 0, otherwise
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for some real numbers a,,;, and b, ,,. Thus, the number of ele-
ments in I'H that must be updated is reduced to nynpK.

To update the nonzero elements of ', consider the classical
cost function defined by

t

Jo(t) =D ¢t OB )], Yo=0,....n7K -1 (5)
=1

where / is a time index denoting a given block interval, ¢ is a time
index denoting the current block interval, and (¢, £) = p*~* is
the standard weighting factor, which is included for implemen-
tation of the algorithm in decision-directed mode. A block in-
terval is defined here as the interval of time in which one block
is sent from each transmit antenna. In (5), the error term F,, (¢, t)

is given by

u,
(lu=v]) g =0

Ev(f, t) = iv(g) - ’Y:,U(t)gu(g)' (6)

The notation Z,,(¢) denotes the vth element of the vector X at
time /.

The objective is to minimize .J,(¢) for each v. Taking the
partial derivative of (5) with respect to 7} (), setting the re-
sult equal to zero, and performing some algebraic manipulations
yields

R, (t)7,(t) = pu(t) )
where
R,(t) = o', (0} (0) ®)
and o
pu(t) = ;pt%z (O, (). ©

In (7) 0 O, 7,() = uwt) - Yu,,_,.0(t)", and
P, (1) = (G, (1), ... ,gjunR_l(t))T, where the index w,, €
{0,...,ngK — 1} such that (|u,, —v|)g = 0. We may rewrite
(8) as

R (t) = pRo(t — 1) + 9, ()83 (1). (10)
Similarly, we can rewrite (9) as
Pu(t) = ppu(t — 1) + 23 (1), (1) (11)

Utilizing (7) to (11), it can be shown that the update equation for
the nonzero elements in the vth column of I' at time ¢ is given
by

Vo) =7, (8 = 1) + R (), (£)ew (£)

where e,(t) = #*(t) — ¥ (t)y,(t — 1).

To this point, the derivation of the adaptive algorithm has
more or less followed that of the standard RLS algorithm [16].
The key difference in our derivation here is the formulation of
the RLS problem on a tonal basis in the context of a multidimen-
sional, multiantenna system. It was important to step through
this derivation to show the first of several interesting points that

(12)
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TABLE 1
ADAPTIVE ALGORITHM FOR SM SC-FDE

Initialization:
r (0) = OnRKan,vK
R, (0) =0I,,, Yv=0,...,nrK —1 and for small o

p < some number close to, but less than, 1

t—1

Recursion:

Vo=0,...,nrK — 1

Sl il 1y P CRSNE-DY YL ()RS (-1
R (0= Ry (t-1) 1= 1P ()RS (6=, (1)

eu(t) = T5(t) — ¥y ()7, (t — 1)

Y, (1) =7, (= 1) + R (1) ¥, (t) e (t)

t—t+1

will be made about this algorithm: The time-average correla-
tion matrix R, (¢) is an ng X np matrix. Consequently, for
small numbers of receive antennas, the inverse of R, (¢) can be
computed directly with ease. In contrast, the size of the anal-
ogous correlation matrix in the standard time-domain RLS al-
gorithm is dependent on the length of the time-domain filter,
which grows large with increasing channel memory (i.e., as L
increases) [16]. Therefore, in most broadband applications of in-
terest, the time-domain RLS algorithm can only be implemented
via the matrix inversion lemma, whereas the proposed FDE al-
gorithm can be implemented easily for small g in any environ-
ment. Indeed, for MIMO systems with large numbers of receive
antennas, the matrix inversion lemma can be used to compute
R, 1(t) as well, which is given by

(o

Ry'(t)=p "Ry (t—1)
PRGN Dy, (D9 (ORG (- 1)
L+ p iR (= D, (1)

The adaptive algorithm is summarized in Table I, where the ma-
trix inversion lemma is used to calculate R !(¢).

13)

IV. CONVERGENCE PROPERTIES

The convergence properties of the proposed algorithm were
studied in order to gain an understanding of the performance of
the algorithm. The properties that are of greatest interest are the
mean-square error (MSE) convergence and the rate of conver-
gence. In general, the derivations of these convergence proper-
ties follow directly from the time-domain RLS algorithm, which
can be found, for example, in [16]. However, the derivations
included here contain additional steps, which provide insight
into several aspects of this algorithm and allow the overhead in-
volved in training the equalizer to be reduced from the general
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case, as discussed in the next section. Attention is drawn here to
the significance of each convergence property in the context of
the basic algorithm presented in Section III. First, consider the
MSE convergence from which the rate of convergence follows.

A. MSE Convergence

It can be shown that the adaptive equalizer converges to a
steady-state solution [16]. The rate at which the adaptive equal-
izer converges to this solution can be examined through an MSE
analysis. To derive an expression for the MSE convergence of
the algorithm, we first define the vth weight-error vector by

e,(t)

where 4, = E{~,(¢)} is the vth steady-state solution. The vth
weight-error correlation matrix is given by

=7,(1) =% (14)

K,(t) =E{e,(t)el(t)}.
The MSE of the vth equalizer vector relative to the mean solu-
tion 4, can be found by taking the trace of K, (¢). Assuming
that

1)  the vectors 9, (1),...,,(t) are i.i.d.;

2  9,(1),...,9,(t), where t > ng are drawn from a
stochastic process with a zero-mean Gaussian distri-
bution with an ensemble-average correlation matrix

®, = E{¢, ¥}'};

the MSE of the vth equalizer vector can be expressed as

5)

MSE Tr{®;*
()= T}
—J—ZR L isar+1 6
B t— nr — 1 )\v.p, R
p=1 "
where Av,1s -5 Ay ny are the eigenvalues of ®,, [16]. The term

o2 denotes the variance of a zero-mean measurement error
process €q ,,(t) that is adopted from a multiple linear regression
model, which is given by [16]

o (t) =

Since ®,, is positive definite, the eigenvalues of ®,, are positive.
Therefore, we may write

fYU I‘p ( ) + EO,'U(t)~ (17)

o? B 1
MSE(t) = ———
(> t_”R_lg)‘vm

1/nR
O"NR
> 18
_t—nR—l( Av ) (18)

which is met with equality if and only if A, 1 = A2 = -+ =
Av,ny - Furthermore, we have

7

= [det(® (19)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005

In order to minimize (18), we must maximize det(®,
plying Hadamard’s inequality, we may write

< H¢v,pp

where {$,;}, 5 are the diagonal elements of ®,,. Equation
(20) is met with equality if and only if ®,, is diagonal, in which
case, Pupp = Ayp for p = 1,...,ng. Therefore, in order to
maximize det(®, ), and thus minimize the MSE, ®,, must be a
diagonal matrix with equal elements on the diagonal for all v.
Consequently, improper design of the training sequences and/or
ill-conditioned channels may lead to poor MSE convergence.
We will return to this condition for achieving the minimum MSE
during our discussion of training sequence design in Section VI.

). Ap-

det(® (20

B. Rate of Convergence

The rate at which the algorithm converges can also be mea-
sured by the error in the signal at the output of the equalizer
prior to the equalizer update operation. This error is known as
the a priori estimation error and is given by

Eu(t) = o, (t) — e (t = )b, (1).

The study of the mean-square a priori estimation error as a func-
tion of block intervals ¢, which is given by

Ty (t) = B{J&.(1)]*}

is a useful measure of the rate of convergence. This metric is
similar to the MSE metric used to study the convergence of the
equalizer to the steady-state solution discussed above.

Expanding (22) and evaluating the resulting expectations
yields

2y

(22)

J(t) = o + Tr{K,(t — 1)®,}. (23)
Therefore, using (16), the mean-square a priori estimation error
as a function of block intervals can be written as

Ji(t) =o" (1 +

R

t—TLR—Q (24)

) , t>np+2.
Thus, the rate at which the proposed algorithm converges de-
creases as the number of receive antennas n i increases. Further-
more, the rate of convergence is proportional to the variance of
the measurement error process, which is an intuitively satisfying
result since this error is related to the noise at the receiver. The
expression for the rate of convergence given in (24) can be used
to reduce the number of symbols required to train the equalizer,
as will be shown in the next section.

V. REDUCING TRAINING OVERHEAD

Equation (24) suggests that for ng > 2, approximately 2n g
block intervals must be used for training before the mean-square
a priori estimation error reaches within 3 dB of its final value.
From this result, a more practical solution would be to imple-
ment a “channel sounding” technique in which the channel is
estimated by sequentially transmitting one training block from
each transmit antenna, while the others remain silent, which
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would require np block intervals, then construct an equalizer
from the estimate. However, we conclude from (24) that the
rate of convergence is not dependent on the lengths of the trans-
mitted symbol vectors. Therefore, the transmitted time-domain
training blocks can theoretically have any length x, as long as K
frequency components can be obtained from each block. Three
cases of interest emerge from this observation:

1) k > K) Choosing x > K during equalizer training but
using a K -point FFT during equalization is inefficient.
Although the resolution of the training sequences in
the frequency domain is higher, a larger FFT is needed
for training than for transmission. Furthermore, this in-
creased resolution is not exploited during equalization
of the received data symbols.

2) x = K) In this case, the full block length is used
to train the equalizer. The algorithm converges to the
minimum mean-square a priori estimation error floor,
as described by (24).

3) k < K) Frequency-domain interpolation can be used
to obtain K frequency components from a sequence
of length « if K < K. This is a standard technique
and has been presented in the literature [15]. In this
case, the eigenvalues in (16) are generally smaller than
if the full block size were used because a length-« se-
quence of constant-modulus training symbols has less
energy than a length-K sequence. Consequently, the
MSE floor is higher for £ < K than for other values
of k.

Now, consider a system employing the proposed algorithm
where & is initially less than K. Specifically, let Kk = k¢ in the
set £ = {Ko,K1,.--,60-1}, where Q < K9 < K1 < -+ <
kg—1 < K, and 0 is the cardinality of the set IC. After 7 training
block intervals, k is incremented to x = x1. Following another
7 training block intervals, x is incremented to Kk = K2, and
so on. By periodically incrementing «, convergence to a high
error floor is prevented, which is a problem with systems im-
plementing frequency-domain interpolation with a nonvarying
block size k < K, as is the case in [15].

In general, 7 can be varied to optimize convergence, but 7
is defined as a constant here. As long as 7 is not too large and
the system is well-conditioned, the algorithm will continue to
converge, in terms of training block intervals, as described by
(24). However, the number of symbol intervals used for training
will depend on the choice of 7 and K. In particular, if 76 block
intervals are used for training, the number of symbol intervals
used for training is given by

61
T, =70Q + 1 Z Kog. (25)
9=0
Thus, the length x of each training block can be varied such that
the number of symbol intervals required to train the algorithm

can be dramatically reduced from the case where k = K.

VI. TRAINING SEQUENCE DESIGN

To begin the discussion of training sequence design, we re-
visit Section IV-A and the condition required to achieve the min-
imum MSE, namely, that ®, must be a diagonal matrix where
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all elements on the diagonal are positive, real-valued, and equal.
In most practical systems, it is impossible to achieve this con-
dition since no prior knowledge of the channel is available. To
illustrate this point, consider the linear system

P, = Gix, + v, (26)
where x, = (Fugs-- - Fupy10) V0 = (lugws oo
M, 1) ", and the (p,q)th term of the ng X nr mixing
matrix Gy, is hp gk, Where k& = (v)g is a frequency index.

The time index ¢ has been omitted for brevity. For a given
channel, we note that the noise and the transmitted signal are
uncorrelated and write

®, = GiE {x,x} } G + 02L,. (27)

Without possessing knowledge of the channel, it is obvious that
the training sequences should be designed such that they have a
mean of zero and are spectrally white. Equivalently, the covari-
ance matrix of x, should be given by

Cx =E {X’UX’[I;I} = ﬂInT

for some positive 5 € R.

The condition shown in (28) can be satisfied as follows. Con-
sider a length-x vector a, of training symbols at the gth transmit
antenna, where x < K. The symbols in a, are taken from a fi-

(28)

nite constellation such as BPSK. Leta = (af,...,a} )T. The
K-element normalized DFT of a, is given by
a, = (1/VK)Va, (29)

where V is a K X k Vandermonde matrix with its (k, 7)th ele-
ment Vj, ; = exp(—j2mki/K). Consequently, we have

a=(1/VK)La

where L = I, ® V. We can construct a vector a, from a,
where a, £ (i, - - -, f,,_,) . and u, € {0,... np K —1}
such that (|u, — v|)x = 0 for all m.

Assuming a,, has a mean of zero, the covariance matrix of
a, is given by Co = E{a, a!l}, which can be diagonalized
to give C, = XAXH, where A is a diagonal matrix with the
eigenvalues of C, on the diagonal, and X is a unitary matrix
composed of the eigenvectors corresponding to the eigenvalues
in A. It is important to note that a covariance matrix is pos-
itive semi-definite, which implies that its eigenvalues are real
and non-negative. Indeed, a covariance matrix is positive defi-
nite if and only if its eigenvalues are positive [17]. Therefore,
assuming the eigenvalues of C,, are positive, we can construct
prewhitened training sequences by letting

x, = VBEA" S Ha,.

Consequently, the condition shown in (28) is met.

The time-domain training sequences {x,};Z; can be con-
structed by first computing x, for all v as in (31) to obtain
x = (xT,..., xT )T and then computing x, = VKV'x,
for each of the ny resulting frequency-domain vectors, where
VT = (VEV)~1VH is the pseudoinverse of V. For the case
where k = K, this step can be simplified by calculating the
direct inverse of V rather than the pseudoinverse. It should be
noted that this step corresponds to performing a truncated IDFT.

(30)

€19
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Thus, training sequences constructed in this manner provide
good performance only if they are relatively long (i.e., they are
close to length-k).

From this analysis, it is seen that the parameter 3 can be ex-
plicitly defined. However, in practice, [ is limited by the max-
imum transmission power of the system. If the restriction on the
maximum transmission power is relaxed, § can be used to in-
crease the power of the short training sequences in order to mit-
igate the problem of low training sequence energy, which leads
to a high MSE, as discussed in the previous section.

In addition, it should be noted that this method of training
sequence construction is susceptible to peak-to-average power
ratio (PAPR) problems. Another solution to the problem of
training sequence design is to manually construct the time-do-
main sequences {X,},Z; from a constant-modulus symbol
alphabet such that C,, = I, which would not cause a PAPR
problem. However, the difficulty of this method is highlighted
by the fact that the sequences are designed in the time domain,
whereas the condition for optimality lies in the frequency
domain.

VII. COMPLEXITY

The complexity of the proposed algorithm was compared
with that of adaptive time-domain equalization for systems
employing receive diversity in [14]. It was shown that a sig-
nificant reduction in complexity can be obtained by adaptively
equalizing the received message in the frequency domain as
opposed to in the time domain. In this section, the complexity
of the proposed algorithm is compared with that of the channel
sounding technique mentioned in Section V and a channel
estimation/equalizer construction technique based on the least
squares (LS) criterion. The LS method was first developed for
OFDM systems with transmit diversity in [18] and has been
adapted for use in SC-FDE systems in this study.

Complexity is measured in terms of the number of complex
multiplications that are performed in each method. It is assumed
here that the frequency/time-domain transforms are carried out
with FFT/IFFT operations. The number of multiplications ex-
ecuted in a matrix inversion and in an FFT vary slightly, de-
pending on the implementation of the operations. Typically, an
m X m matrix inversion requires 1> multiplications, and an
m-point FFT requires m log,(m) multiplications. To preserve
generality in this study, the numbers of multiplications required
to compute an m X m matrix inversion and an m-point FFT are
denoted by (-);;! and FFT,,,, respectively.

Equations defining the complexities of the proposed algo-
rithm, the channel sounding technique, and the LS technique
are given in Table II for training mode, whereas Table III de-
picts equations defining the complexities of the LS technique
with equalizer construction and the proposed algorithm for de-
cision-directed mode. Since the channel sounding technique is,
by default, a technique that utilizes training symbols rather than
detected/decoded data symbols, the complexity of this method
was not studied for decision-directed mode. The complexity of
determining the channel memory order L for the LS technique
is not included in these calculations. The terms 7).s, 7ad, and 715
are the numbers of block intervals used for channel estimation

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 8, AUGUST 2005

TABLE 1I
EQUATIONS FOR NUMBERS OF COMPLEX MULTIPLICATIONS PERFORMED
DURING TRAINING MODE

Algorithm Number of multiplications

Channel sounding K (2ngpn3 + nesng + ();’1?)

Proposed algorithm nadKnT(Sn% +4ng + 3)

LS n%nR(L + 1)2 + 2ms Knrnr(L + 1)+

2Kngrn? + K ();}1e + nrngFFT K

TABLE III
EQUATIONS FOR NUMBERS OF COMPLEX MULTIPLICATIONS PERFORMED
DURING ONE TRAINING ITERATION IN DECISION-DIRECTED MODE

Algorithm Number of multiplications

Proposed algorithm Knr(5n% +4ng + 3) + nrFFTk

n3nr(L+ 1)% + 2Kn3 (2L + 1)+
LS 2Kngn + 2Knrng(L + 1)+

Onmsny + K O +nr(ng + 1)FFTx

and/or equalizer training for the channel sounding technique,
the proposed algorithm, and the LS technique, respectively. It
should be noted that the equations presented in Tables II and
III that relate to the proposed algorithm assume that the matrix
inversion lemma is used to compute R (), as discussed in
Section III.

A. Training Mode

In training mode, the complexity of the proposed algorithm is
dominated by the number of iterations that are required for the
algorithm to converge. This fact is illustrated in Fig. 2, where
the numbers of complex multiplications used by the three tech-
niquesin a2 X 2 system are plotted against the memory order of
the channel L and the number of training blocks 1,4 processed
by the adaptive algorithm. In this analysis, we let (-),;,! = m?
and FFT,, = mlog,(m), and R (t) is computed directly
since it is only a 2 X 2 matrix. As observed in Fig. 2, the pro-
posed algorithm becomes much more attractive from a com-
plexity viewpoint as L increases, which follows from the fact
that the length of the channel impulse response has no direct ef-
fect on the complexity of the proposed algorithm, as shown by
the equations in Table II. However, for channels with low ex-
cess delay spread, the LS technique provides a good low-com-
plexity method of estimating the channel and constructing the
frequency-domain equalizer. This result follows from the fact
that most of the computationally intensive operations in the LS
technique can be precomputed if training data is used rather
than detected data. It should, of course, be noted that channel
sounding is the least complex of the three techniques that are
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Fig. 3. Complexity of techniques for a 2 X2 system operating in
decision-directed mode, where 1 = 7.0 = 1.

studied here. However, this method suffers from convergence
problems, which are addressed in the next section.

B. Decision-Directed Mode

The proposed algorithm shows much promise in terms of
complexity when operating in decision-directed mode. Fig. 3
illustrates the numbers of complex multiplications used by the
LS technique and the proposed algorithm as a function of the
memory order of the channel L and the FFT size K. The number
of transmit antennas for this example is ny = 2, and the number
of receive antennas is ng = 2. Again, R 1(¢) is computed di-
rectly. As shown in Fig. 3, the complexity of the proposed algo-
rithm is lower than that of the LS technique for all values of L
and K when operating in decision-directed mode, although this
advantage is only marginal when the channel memory order is
low. It should be noted that this advantage is not limited to the
case where np = ngr = 2 but in fact extends to systems in
which more antennas are employed, even when the matrix in-
version lemma is used to compute R (¢).

VIII. SIMULATION RESULTS

Computer simulations were used to observe the rate of
convergence of the proposed algorithm and the packet error
rate (PER) of a system employing the algorithm. The channel
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Fig. 4. Rate of convergence curves for FDE techniques employed
in a 2x2 SC-FDE system operating in the ETSI BRAN A channel.
(SNR per RX antenna = 15 dB, K = 256,K = {8,16,32,64,128},Q =
8,7 = 4).

models used in the simulated systems are the ETSI BRAN
A and E models [19]. The ETSI BRAN A model is specified
for nonline-of-sight (NLOS) transmission in a typical office
environment and has an RMS delay spread of 50 ns. The ETSI
BRAN E model is specified for NLOS transmission in a large
open environment and has an RMS delay spread of 250 ns.
Root-raised cosine filters, each with a roll-off factor of 0.4,
were employed at each transmitter and receiver, resulting in the
utilization of 20-MHz bandwidth to support 14.3 Mbaud. Con-
sequently, the memory order of the ETSI BRAN A channel is
L4 = 5, and the memory order of the ETSI BRAN E channel is
Lg = 25. A Doppler spread of 50 Hz was assumed. Therefore,
the channel remained static throughout the transmission of the
training blocks and for one packet in the case of the PER study.

A. Convergence Results

Figs. 4-6 illustrate the rate of convergence of the proposed
algorithm implemented with both a constant training block
size and a variable training block size. As a comparison, the
convergence curves of two techniques that use an estimate of
the channel to construct a linear MMSE frequency-domain
equalizer are also depicted. The first of these techniques is the
LS technique discussed in Section VII. The second technique
is the aforementioned channel sounding technique. Chu se-
quences are used for training in the latter technique to provide
a good estimate with nr blocks [20]. These sequences are
optimal for the channel sounding technique since they have
constant-modulus elements in both the time domain and the
frequency domain. Random training sequences are used in the
LS technique, and optimal sequences are implemented in the
proposed algorithm. Both of the channel estimation techniques
utilize full-size training blocks for channel estimation. As a
reference, the mean-square a priori estimation error produced
by an MMSE frequency-domain equalizer constructed with
perfect channel state information (CSI) and knowledge of the
noise power is illustrated for each system in Fig. 4 to Fig. 6.
It should be noted that the markers in these figures mark the
ends of training blocks for the respective techniques. Thus, the
utilization of short blocks to train the equalizer, as discussed
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Fig. 5. Rate of convergence curves for FDE techniques employed
in a 5x5 SC-FDE system operating in the ETSI BRAN A channel.
(SNR per RX antenna = 15 dB, K = 256.K = {8.16,32,64,128},Q =
8,7 = 6).

in Section V, is clearly visible from the dashed curves in these
examples.

The benefits that can be gained by utilizing a variable training
block size as opposed to a constant block size with the pro-
posed algorithm are evident in Fig. 4. In this example, it is
shown that for the 2 x 2 system operating in the ETST BRAN A
channel, the proposed algorithm with a variable block size and
the channel sounding technique reach the same mean-square a
priori estimation error after 280 training symbol intervals and
528 training symbol intervals, respectively. This difference cor-
responds to a 47% decrease in training overhead in favor of
the proposed algorithm, although this decrease comes at the
expense of an increase in complexity. Additionally, the differ-
ence in the estimation errors of these two methods after approx-
imately 528 training symbol intervals is 0.6 dB. Not surpris-
ingly, the LS technique converges very quickly, nearly reaching
the reference curve after the first training block interval. A dif-
ference of approximately 1 dB is measured between the mean-
square a priori estimation errors of the proposed algorithm and
the LS technique at this point. Furthermore, the LS technique
and the proposed algorithm require similar numbers of compu-
tations during the training process, as illustrated in Fig. 2. How-
ever, the proposed algorithm can be used to continually update
the equalizer after training for a much smaller computational
cost than is required by the LS technique, as depicted in Fig. 3.

Fig. 5 illustrates the rate-of-convergence curves for a 5 x 5
system operating in the ETSI BRAN A channel. It is impor-
tant to note that although the proposed algorithm with a vari-
able block size converges to the same estimation error floor as
the channel sounding technique, it begins to converge to this
point much more quickly. For example, the proposed algorithm
and the channel sounding technique converge to the same esti-
mation error after 1320 training symbol intervals. However, the
proposed algorithm reaches within approximately 0.6 dB of this
value after only 624 symbol intervals and within 0.3 dB of this
value after 840 training symbol intervals.

The rate-of-convergence curves for a 2 x 2 system operating
in the ETSI BRAN E channel are illustrated in Fig. 6. From this
figure, it is observed that although the proposed algorithm with
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Fig. 6. Rate of convergence curves for FDE techniques employed
in a 2x2 SC-FDE system operating in the ETSI BRAN E channel.
(SNR per RX antenna = 15 dB, K = 256,K = {16,32,64128256},Q =
16,7 = 4).

a variable block size converges, it would be more economical
in terms of complexity to let x = K for all training blocks.
Specifically, the proposed algorithm with a variable block size
converges after 16 blocks in this example, whereas only 6 blocks
are required to reach the same point if a constant block size is
used. Furthermore, the proposed algorithm requires nearly an
order of magnitude fewer computations to train the equalizer
than the LS technique in this case, according to Fig. 2.

Figs. 4-6 suggest that k¢ _1 can be much less than K for chan-
nels with large coherence bandwidth. Indeed, the length of the
ETSI BRAN A CIR is 390 ns. Therefore, the coherence band-
width of the channel is approximately 2.6 MHz, which is much
greater than the bandwidth of 78 kHz occupied by each of the
256 frequency bins used during the equalization process. In fact,
Fig. 4 shows the algorithm converging after 16 training blocks.
With 7 = 4 and K = {8,16,32,64, 128}, the 16th block in-
terval used for training in this example comprises 64 training
symbol intervals. Similarly, Fig. 5 depicts the algorithm con-
verging after 24 training blocks when, again, x = 64. How-
ever, Fig. 6 shows the proposed algorithm converging after 16
training blocks, at which point, k = 128. A larger value of &
is required in this example due to the smaller coherence band-
width of the ETSI BRAN E channel.

As a final note on the convergence curves depicted in Figs. 4—
6, observe that the curves related to the proposed algorithm ap-
pear to diverge in the first few training blocks; however, this
divergence reverses after np training blocks are received. This
behavior is simply due to the underdetermined nature of the
adaptive system prior to the reception of an adequate number
of training blocks, from which point, the system becomes de-
termined and can be solved. In addition, it should be noted that
the sudden jump in each of the channel sounding curves occurs
after np training blocks, which is simply due to the fact that
all required training information has been received at this point,
and a full channel estimate can be made.

B. Packet Error Rate Results

The PERs were simulated for four systems. Each system
has np = 2 transmit antennas and ngp = 2 receive an-
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tennas. The first system devotes two block intervals to channel
sounding. The second system uses two training block inter-
vals for LS channel estimation. The third system adaptively
computes the equalizer matrix with 15 training blocks, where
K = {8,16,32,64}, and 7 = 4. The fourth system is assumed
to have perfect knowledge of the channel. Each of the three
nonadaptive systems employ a linear MMSE equalizer at the
receiver. The ETSI BRAN A model was used to simulate the
channel, where each tap was faded according to a Rayleigh
distribution, and 10 000 independent channel realizations were
constructed for each SNR point.

For each system, once the channel is estimated and
the equalizer is trained, a packet of 1024 data bits is en-
coded with a half-rate convolutional encoder with generator
polynomials ¢g;(D) = D¢+ D* + D3 + D + 1, and
g2(D) = D® + D> + D* + D3 + 1 [21]. The encoded bits
are randomly interleaved and mapped to quadrature phase shift
keying (QPSK) symbols that are then arranged into blocks,
each with K = 256 symbols. A cyclic prefix of ) = 8 symbols
is added to each block prior to transmission. At the receiver, the
equalized symbols are mapped to soft bits that are then deinter-
leaved and passed through a standard Viterbi decoder to obtain
hard decoded data bits. The PERs of the four simulated systems
are shown in Fig. 7. As observed, the system employing the
proposed algorithm performs within 3 dB of the system with
perfect channel knowledge.

The crossover of the curves for the proposed algorithm
and the channel sounding technique results from the use of
frequency-domain interpolation at high SNR. Since the perfor-
mance of the channel sounding technique is primarily affected
by noise, as SNR increases, the technique obviously performs
better. However, the adaptive algorithm in this example is
affected by noise and the error floor imposed by frequency-do-
main interpolation. Therefore, the crossover point can be
viewed as the point where noise no longer affects the adaptive
algorithm as much as frequency-domain interpolation. It can be
argued, however, that as long as the system is operating below
the desired PER when this crossover occurs, the fact that the
channel sounding technique performs better than the adaptive
algorithm is irrelevant. Furthermore, the adaptive algorithm
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can now be used to track variations in the channel, whereas the
channel sounding technique cannot. Note that since tracking
is performed on full-size data blocks, no frequency-domain
interpolation is needed to update the equalizer once it has been
initially trained. Thus, error floors are prevented by switching
to decision-directed mode following equalizer training, as long
as the data decisions that are fed back to update the equalizer
are reliable.

IX. CONCLUSION

In this paper, we presented a new method for adaptively
equalizing multiantenna SC transmissions in the frequency
domain. We applied this algorithm to a high data rate SM
system. Furthermore, we examined convergence properties
of the algorithm and subsequently used these properties to
develop a method by which the required training overhead can
be reduced. We derived conditions for optimality in training
sequence design and detailed one approach to meeting these
conditions. The complexity of the proposed algorithm is sig-
nificantly lower than that of a channel estimation technique
based on the LS criterion when both methods operate in the de-
cision-directed mode. This advantage in complexity is greater
when the channel has a large excess delay spread.

We used computer simulations to examine the convergence of
the algorithm and the PER of a system employing the proposed
algorithm. The results of these simulations show that the algo-
rithm tends to converge very quickly in channels possessing a
large coherence bandwidth. The results also show that the PER
of an SM system employing the proposed algorithm is only 3
dB higher than the PER of a system that has perfect knowledge
of the channel.
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