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Abstract—Long-haul mode-division multiplexing (MDM) em-
ploys adaptive multi-input multi-output (MIMO) equalization to
compensate for modal crosstalk and modal dispersion. MDM
systems must typically use MIMO frequency-domain equaliza-
tion (FDE) to minimize computational complexity, in contrast
to polarization-division-multiplexed systems in single-mode fiber,
where time-domain equalization (TDE) has low complexity and is
often employed to compensate for polarization effects. We study
two adaptive algorithms for MIMO FDE: least mean squares
(LMS) and recursive least squares (RLS). We analyze tradeoffs
between computational complexity, cyclic prefix efficiency, adap-
tation time and output symbol-error ratio (SER), and the impact
of channel group delay spread and fast Fourier transform (FFT)
block length on these. Using FDE, computational complexity in-
creases sublinearly with the number of modes, in contrast to TDE.
Adaptation to an initially unknown fiber can be achieved in ∼3–
5 µs using RLS or ∼15–25 µs using LMS in fibers supporting
6–30 modes. As compared to LMS, RLS achieves faster adapta-
tion, higher cyclic prefix efficiency, lower SER, and greater toler-
ance to mode-dependent loss, but at the cost of higher complexity
per FFT block. To ensure low computational complexity and fast
adaptation in an MDM system, a low overall group delay spread
is required. This is achieved here by a family of graded-index
graded depressed-cladding fibers in which the uncoupled group
delay spread decreases with an increasing number of modes, in
concert with strong mode coupling.

Index Terms—DSP complexity, MIMO, equalization, few-mode
fiber, modal dispersion, mode coupling, mode-division multiplex-
ing, multi-mode coherent receiver, multi-mode fiber, receiver signal
processing.

I. INTRODUCTION

T
HE continued exponential growth of data traffic has mo-

tivated research on increasing capacity in long-haul trans-

mission systems. Information-theoretic limits of single-mode

fiber (SMF) transmission imposed by noise, fiber nonlinear-

ity and dispersion are being approached [1], [2] and compen-

sation of these combined effects requires very high computa-

tional complexity [3], [4]. Increasing per-fiber capacity can be

achieved more readily by increasing spatial dimensionality us-

ing multi-core fiber [5], [6] or multi-mode fiber (MMF) [5], [7]

with multi-input multi-output (MIMO) transmission [8], [9].
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Throughout this paper, D denotes the total number of dimen-

sions available for multiplexing, including spatial and polariza-

tion degrees of freedom.

Long-haul transmission systems already employ multiplex-

ing in the two polarization modes of SMF (D = 2). This is

enabled by coherent detection and digital equalization [10],

[11], which can compensate for chromatic dispersion (CD) and

polarization-mode dispersion (PMD). Most such systems em-

ploy a hybrid equalization approach. CD, which is essentially

fixed but has a long impulse response duration, is compen-

sated by programmable (but not adaptive) frequency-domain

equalization (FDE). By contrast, PMD, which can vary on a

microsecond time scale [12], [13] but has a very short im-

pulse response duration, is often compensated by adaptive 2 × 2
MIMO time-domain equalization (TDE) [14]–[18]. Filter taps

are updated using either blind or data-aided methods such as the

least mean squares (LMS) algorithm, typically using training

sequences for initial adaptation and decision-directed updates

afterwards [10], [17].

In systems using mode-division multiplexing (MDM) in

MMFs (D > 2), receiver computational complexity increases

because of an increase in D and because of the large group delay

(GD) spread from modal dispersion (MD). Two approaches for

minimizing GD spread and controlling receiver complexity are

optimization of the fiber index profile and introduction of strong

mode coupling [19]. For two mode groups (D = 6), fibers with

very low uncoupled GD spread can be realized by choosing a

core radius at which the GD-versus-radius curves for the two

mode groups intersect [20]. For more than two mode groups

(D > 6), this approach is not viable, since the curves for dif-

ferent pairs of modes intersect at different radii, and step-index

fibers have prohibitively high GD spreads [21]. On the other

hand, graded-index fibers with large cores (D → ∞) have very

low GD spreads [22], but for small D, graded-index fibers have

prohibitively high GD spreads [21]. With any fiber design, in the

absence of mode coupling, the GD spread accumulates linearly

with fiber length, while strong mode coupling causes the GD

spread to accumulate with the square-root of fiber length [19].

Nevertheless, even assuming low uncoupled GD spread and

strong mode coupling, the GD spread caused by MD in MMF

is far larger than that caused by PMD in SMF [23].

Most MDM demonstrations to date have used signal pro-

cessing approaches generalized from SMF systems. Experi-

ments [7], [24], [25] with two mode groups have employed

6 × 6 MIMO TDE adapted using data-aided methods, such as

LMS [26], and implemented in non-real-time computation. In

MDM, however, the computational complexity of MIMO TDE

is known to be prohibitively high [19], [27], [28]. Computational
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complexity per symbol scales linearly in D and in the GD spread

from MD, while total hardware complexity scales quadratically

in those parameters [19]. Moreover, blind equalization methods

commonly used in SMF systems can perform poorly in MDM

systems with MD and mode coupling [29].

Because of large values of D and large GD spreads, MDM

systems ultimately must use different signal processing ap-

proaches than SMF systems to ensure tolerable complexity. As

shown in [19], [27], and [30], MIMO FDE can reduce com-

plexity, enabling the computational complexity per symbol to

scale sublinearly in D and in the GD spread from MD (assum-

ing a known channel), while hardware complexity still scales

superlinearly in those parameters [19]. In long-haul MDM sys-

tems, mechanical or acoustic perturbations of installed MMFs

are expected to cause mode coupling variations on time scales

as short as tens of µs [31], similar to polarization coupling vari-

ations in SMF [12], [13]. These temporal variations demand

adaptive MIMO FDEs that achieve fast adaptation, low out-

put symbol-error ratio (SER), high throughput efficiency, and

tolerable computational complexity.

Adaptive FDE techniques have been studied for wide-

band single-carrier MIMO wireless communications [32]–[35].

While those techniques may be relevant for MDM systems,

MDM systems exhibit several important differences affecting

the performance and feasibility of candidate techniques [36].

MDM systems have far higher GD spreads than typical wireless

MIMO systems, when measured in units of symbol intervals.

MDM MIMO channels may be near-unitary if mode-dependent

loss and gain (MDL) is well-controlled [37], in contrast to wire-

less systems, where multipath fading typically causes MIMO

channels to be far from unitary. MDM channels have sym-

bol rates of tens of Gbaud, favoring simple techniques such

as linear equalization, in contrast to wireless MIMO, where

more complex nonlinear equalization techniques can be consid-

ered [38], [39].

In this paper, we study adaptive MIMO FDE for long-haul

MDM systems using two candidate algorithms: LMS and recur-

sive least squares (RLS). We study the tradeoffs between com-

putational complexity, throughput efficiency, adaptation speed

and output SER, and the impact of the fast Fourier transform

(FFT) block length on them. For D ranging from 6 to 30, while

either RLS or LMS can adapt to an unknown fiber within mi-

croseconds; RLS achieves faster adaptation, higher throughput

efficiency, lower output SER, and greater tolerance to MDL,

at the cost of moderately higher computational complexity per

FFT block. Apart from adaptive algorithm design, low complex-

ity and fast adaptation require the MDM system to have low GD

spread. To this end, we use a family of graded-index MMFs in

which uncoupled GD spread decreases with an increasing num-

ber of modes. Some results from this paper are summarized in a

tutorial [36] on MDM systems, channel models and signal pro-

cessing architectures. This paper presents a much more detailed

performance and complexity analysis than [36].

The remainder of this paper is as follows. Section II presents

a linear MIMO channel model for MDM systems and describes

MIMO FDE. Section III reviews the LMS and RLS algorithms

for FDE and their important properties. Section IV describes an

exemplary long-haul MDM system, including a new MMF de-

Fig. 1. Multi-section model of long-haul MDM system.

sign optimized for low GD spread, and presents numerical sim-

ulations evaluating the complexity and performance of adaptive

MIMO FDE methods. Sections V and VI provide discussion

and conclusions, respectively.

II. MDM SYSTEM MODEL

A. Multi-Section Propagation Model

In order to study the effect of mode coupling on system per-

formance and complexity, we model a long-haul MDM system

as the concatenation of numerous short sections, each slightly

longer than the length over which complex baseband modal

fields remain correlated [28]. By decreasing the section length,

thus increasing the number of sections, we can increase the

strength of mode coupling. Throughout this paper, we assume

the strong-coupling regime, so the number of independent sec-

tions is large compared to unity.

As shown in Fig. 1, the system is composed of Kamp spans,

each comprising a fiber of length Lamp , followed by an amplifier

to compensate for the mode-averaged loss of the fiber. Each

span is subdivided into Ksec sections, each of length Lsec . The

overall system has Ktot = KampKsec sections and total length

Ltot = KampLamp = KampKsecLsec .

Assuming a MMF supporting D orthogonal propagating

modes, excluding nonlinearity and noise, we represent the prop-

agation operator as a D × D matrix multiplying complex base-

band modal envelopes at frequency Ω [28]:

Mtot(Ω) = exp

(

− j

2
Ω2 β̄2Ltot

)

· MMD (Ω). (1)

The exponential factor represents mode-averaged propaga-

tion, where β̄2 is the mode-averaged CD per unit length (for

simplicity, we neglect the mode-averaged GD). The D × D
matrix MMD (Ω) represents mode-dependent effects, including

MDL, MD and mode coupling (for simplicity, we neglect mode-

dependent CD). It is written as a product of factors for each of

the Kamp spans:

MMD (Ω) =

K a m p
∏

k=1

M
(k)
MD (Ω), (2)

where M
(k)
MD (Ω) represents mode-dependent effects in the kth

span. This is given by

M
(k)
MD (Ω) = diag

[

exp

(

g
(k)
1

2

)

. . . exp

(

g
(k)
D

2

)

]

·
K s e c
∏

l=1

V(k,l)Λ(Ω)U(k,l)H

, (3)
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Fig. 2. Complex baseband model of MDM transmission with MIMO
equalizer.

where H denotes Hermitian conjugate. The V(k,l) and U(k,l) are

frequency-independent random unitary matrices representing

mode coupling in the lth section of the kth span.

We assume MDL from the transmission fibers is negligible

compared to that from the optical amplifiers [40]–[42]. Each am-

plifier has uncoupled modal gains g
(k)
i , i = 1, . . . , D, measured

in dB or log-power-gain units. They satisfy g
(k)
1 + · · · + g

(k)
D =

0 and have root-mean-square (rms) value σg . In the strong-

coupling regime with Kamp >> 1 independent MDL sources,

the statistics of coupled MDL are determined by the rms accu-

mulated MDL ξ =
√

Kampσg [43].

In (3), Λ(Ω) represents the uncoupled MD in one section,

which is assumed to be the same in all sections. It is given by

Λ(Ω) = diag
[

exp (−jΩτ1) . . . exp (−jΩτD )
]

, (4)

where τi , i = 1, . . . , D are the uncoupled modal GDs,

which satisfy τ1 + · · · + τD = 0. They have rms value στ =
∆β1,rmsLsec , where ∆β1,rms is the rms uncoupled MD per

unit length of the MMF. In the strong-coupling regime with

Ktot >> 1 independent sections, the statistics of the coupled

GDs are determined by the rms coupled GD σgd =
√

Ktotστ =
∆β1,rms

√
LsecLtot [44].

B. Discrete-Time System Model

Neglecting nonlinearity and assuming digital coherent detec-

tion with perfect carrier recovery, an MDM transmission sys-

tem can be described by the complex baseband system shown

in Fig. 2. The input in the jth mode in the nth symbol inter-

val, xj [n], is a complex-valued symbol from a particular con-

stellation. Transmitter pulse shaping and electrical-to-optical

conversion is represented by b (t). Linear propagation is de-

scribed by a D × D channel impulse response matrix Mtot (t),
which is the inverse Fourier transform (FT) of (1), in which

mdj (t) is the impulse response between the dth input mode

and the jth output mode. The dominant noise source is am-

plified spontaneous emission from inline amplifiers [1]. The

additive noises nj (t) , j = 1, . . . , D are modeled as spectrally

white with power spectral density N0/2 over the signal band-

width [1], and can be modeled accurately as spatially white,

provided Kamp is sufficiently large [43]. After the addition of

noise, optical-to-electrical conversion and electrical filtering are

performed, represented by p (t). We define an overall impulse

response between the dth input mode and the jth output mode

qdj (t) = b (t) ∗ mdj (t) ∗ p (t) (5)

and a filtered noise n′
j (t) = p (t) ∗ nj (t).

The output of each filter is sampled at rate ros/Ts , where

Ts is the symbol duration and ros is the receiver oversampling

ratio [15]. The output in the jth mode at the mth sampling

instant t = mTs/ros is given by

yj [m] =
∑

n

D
∑

d=1

xj [n] qdj

(

mTs

ros
− nTs

)

+ n′
j

(

mTs

ros

)

.

(6)

The discrete-time Fourier transforms (DTFTs) of the output

sample sequences yj [m] , j = 1, . . . , D, can be expressed as a

D × 1 vector

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

m

y1 [m] e−j ω m

...
∑

m

yD [m] e−j ω m

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∑

l

Y1

(

(ω − 2πl) ro s

Ts

)

...
∑

l

YD

(

(ω − 2πl) ro s

Ts

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

≈

⎡

⎢

⎢

⎢

⎢

⎢

⎣

Y1

(

ωro s

Ts

)

...

YD

(

ωro s

Ts

)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(7)

The components in the rightmost term of (7) are given by

⎡

⎢

⎢

⎣

Y1 (Ω)

...

YD (Ω)

⎤

⎥

⎥

⎦

= B(Ω)Mtot(Ω)P (Ω)

⎡

⎢

⎢

⎢

⎣

X1

(

ej T s Ω
)

...

XD

(

ej T s Ω
)

⎤

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎣

N ′
1 (Ω)

...

N ′
D (Ω)

⎤

⎥

⎥

⎦

,

(8)

where B(Ω),Mtot(Ω), P (Ω), N ′
j (Ω) are the FTs of

b (t) ,Mtot (t) , p (t) , n′
j (t), respectively, and Xj

(

ejω
)

is

the DTFT of xj [n]. In computing the FT of n′
j (t) and the

DTFT of xj [n], we consider any particular finite-length real-

izations of these random processes to be finite-energy signals.

The approximation in (7) assumes P (Ω) blocks all components

above the Nyquist frequency ros/2Ts , preventing aliasing.

C. Frequency-Domain Equalization

The optimization and complexity of non-adaptive FDEs for

MDM, assuming the channel is known a priori, were ad-

dressed in [19]. An equalizer for CD [14], [19] must ac-

commodate a delay spread of NCD =
⌈

2π
∣

∣β̄2

∣

∣ Ltot (rosRs)
2
⌉

samples, where Rs = 1/Ts is the symbol rate and ⌈x⌉
denotes the ceiling function. Assuming strong mode

coupling, an equalizer for MD [19] must accommo-

date a delay spread of NMD =
⌈√

Ktotστ uD (p) rosRs

⌉

=
⌈

∆β1,rms

√
LsecLtotuD (p) rosRs

⌉

samples, where uD (p) is

defined such that σgduD (p) is no shorter than the coupled

GD spread with probability 1 − p. For typical values of D and

p ∼ 10−4 to 10−6 , uD (p) ∼ 4 to 5 [19], [45]. A combined

equalizer for CD and MD must accommodate a delay spread of

NCD + NMD samples.

The MDM channel corresponds to linear convolution of

arbitrary-length sequences in the time domain (6) or multi-

plication of DTFTs in the continuous frequency domain (7)

and (8). Efficient realization of an FDE relies on using the dis-

crete Fourier transform (DFT), implemented by an FFT of block

length NFFT , for conversion between time and frequency, while

being able to represent the MDM channel as circular convolution

of finite-length sequences in the time domain, corresponding to

multiplication in the discrete frequency domain.
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There are two well-known approaches for enabling FFT-based

FDEs.

One approach is to use block convolution, e.g., overlap-save

convolution, as in [46], [47]. This avoids any overhead asso-

ciated with a cyclic prefix, but complicates realization of an

adaptive FDE. A constrained adaptive FDE requires additional

FFTs to enforce time-domain gradient constraints [46]. An un-

constrained adaptive FDE avoids these additional FFTs, but

exhibits slower adaptation and higher excess error [46].

A second approach, adopted here, is to prepend a cyclic prefix

of length NCP to each block of NFFT/ros symbols before

transmission, as in systems using orthogonal frequency-division

multiplexing [48]. At the receiver, the first NCP samples of

each received block of NFFT + NCP samples are discarded,

and the remaining NFFT samples can be processed independent

of other blocks. The cyclic prefix length NCP must be no shorter

than the channel delay spread (NCD , NMD or NCD + NMD ).
A drawback of this approach is a reduction of throughput and

average-power efficiency, which is quantified by a cyclic prefix

efficiency parameter

ηCP =
NFFT

NFFT + NCP
. (9)

Given a channel delay spread defining NCP , efficiency is max-

imized by choosing NFFT >> NCP . Since the cyclic prefix

simplifies realization of an adaptive FDE [46], this approach

has become popular in wireless systems [32]–[34].

The MDM channel frequency-domain relationship when us-

ing a cyclic prefix is obtained by sampling (8) at NFFT equally

spaced frequencies Ω = 2πros (k − NFFT/2) /NFFTTs , k =
0, ..., NFFT − 1

⎡

⎢

⎣

Y1 [k]

...

YD [k]

⎤

⎥

⎦
= B

(

2πros (k − NFFT/2)

NFFTTs

)

· Mtot

(

2πros (k − NFFT/2)

NFFTTs

)

· P
(

2πros (k − NFFT/2)

NFFTTs

)

·

⎡

⎢

⎣

X1 [k]

...

XD [k]

⎤

⎥

⎦
+

⎡

⎢

⎣

N ′
1 [k]

...

N ′
D [k]

⎤

⎥

⎦

= Q [k] ·

⎡

⎢

⎣

X1 [k]

...

XD [k]

⎤

⎥

⎦
+

⎡

⎢

⎣

N ′
1 [k]

...

N ′
D [k]

⎤

⎥

⎦
. (10)

The components of (Y1 [k] , . . . , YD [k])T , (X1 [k], . . . , XD

[k])T and (N ′
1 [k] , . . . , N ′

D [k])T
are NFFT -point DFTs of

blocks of the time-domain signals in (6).

Considering a non-adaptive FDE [19], computational com-

plexity is minimized by using a single D × D matrix FDE

Wtot [k] to compensate for the CD, MD and other mode-

dependent effects described byMtot(Ω), which requires a prefix

length NCD + NMD . However, to facilitate realization of a fast-

adapting FDE for MD, we compensate CD by a bank of D static

scalar equalizers, each denoted by WCD [k]. The notation im-

plies they are FDEs, but they could be realized using any of the

methods in [17], [49]–[51]. They are followed by an adaptive

D × D matrix FDE WMD [k] to compensate for the MD (and

other mode-dependent effects) described by MMD (Ω), which

requires cyclic prefix length NMD . As shown in Fig. 2, the cas-

cade of the CD and MD equalizers is equivalent to a combined

equalizer Wtot [k] = WCD [k]WMD . The equalizer output is

given by

⎡

⎢

⎢

⎣

X̂1 [k]

...

X̂D [k]

⎤

⎥

⎥

⎦

=Wtot [k]

⎡

⎢

⎢

⎣

Y1 [k]

...

YD [k]

⎤

⎥

⎥

⎦

=WMD [k]

⎡

⎢

⎢

⎣

Y ′
1 [k]

...

Y ′
D [k]

⎤

⎥

⎥

⎦

, (11)

where [Y ′
1 [k] , . . . , Y ′

D [k]]T represents the outputs of the CD

equalizers.

III. ADAPTIVE FREQUENCY-DOMAIN EQUALIZATION

At each discrete frequency k = 0, ..., NFFT − 1, the error

signal is given by

e [k] = x̃ [k] − WMD [k] ỹ [k]

= x̃ [k] − WMD [k] (Q [k] x̃ [k] + ñ′ [k]) (12)

where x̃ [k] = [X1 [k] . . . XD [k]]T represents a block of known

or estimated data symbols, ỹ [k] = [Y ′
1 [k] . . . Y ′

D [k]]T rep-

resents a block of samples at the CD equalizer outputs,

ñ′ [k] = [N ′
1 [k] . . . N ′

D [k]]T represents the filtered noise and

Q [k] is the overall channel transfer function matrix from

(10). Minimization of the total frequency-domain signal error
∑NF F T −1

k=0 E{e [k]H e [k]} is equivalent to separately minimiz-

ing the error terms at each frequency, as the equalizer matrices

WMD [k] can be optimized independently at each k.

For a known channel, E
{

e [k]H e [k]
}

is minimized by the

linear minimum mean square error (MMSE) filter [52]:

WMD [k]=

(

Q[k]H Rñ ′ [k]−1Q[k]+
I

Px

)−1

Q [k]H Rñ ′ [k]−1

(13)

where Px = E{|xj [n]|2} is the average transmitted power

in each mode, I is a D × D identity matrix and Rñ ′ [k] =

E{ñ′ [k] ñ′ [k]H } is the autocorrelation matrix of filtered noise

at discrete frequency k.

For an unknown channel, since Q [k] are not known a priori

at the equalizer, the WMD [k] must be computed iteratively.

Here, we consider equalizer adaptation using the LMS and RLS

algorithms.

LMS is a stochastic gradient descent minimization using in-

stantaneous estimates of the error e [k] [46], [53] described by

an update equation

WMD [k] ← WMD [k] + (x̃ [k] − WMD [k] ỹ [k]) ỹ [k]H µ.
(14)

The convergence rate and performance of LMS depends on

the scalar step size µ, which for convergence must satisfy
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TABLE I

COMPUTATIONAL COMPLEXITY PER BLOCK OF LENGTH NFFT , WHICH

CONVEYS D · NFFT /ros SYMBOLS

0 < µ < 2/λmax , where λmax is the largest eigenvalue of the au-

tocorrelation matrix of ỹ [k] , Rỹ [k] = E
{

ỹ [k] ỹ [k]H
}

[46].

RLS involves iterative minimization of an exponentially

weighted cost function, treating the minimization problem as

deterministic [46], [53]. It is described by update equations

WMD [k] ← WMD [k]

+ (x̃ [k] − WMD [k] ỹ [k]) ỹ [k]H
(

R [k] κ−1
)

(15)

R [k] ←
(

R [k] κ−1
)

−
(

R [k] κ−1
)

ỹ [k] ỹ [k]H
(

R [k] κ−1
)

1 + ỹ [k]H (R [k] κ−1) ỹ [k]
.

(16)

Here, R [k] is a D × D tracked inverse time-averaged weighted

correlation matrix at frequency k [32], [34], which is initialized

with the identity matrix times a large positive number, and κ
is a forgetting factor satisfying 0 << κ < 1. The version of the

RLS algorithm given above uses the matrix inversion lemma in

(16) for lower-complexity computation of R [k], which becomes

more important for higher values of D.

Assuming ntr blocks of known or estimated symbols are

required for training until convergence, and including the cyclic

prefix, the total time required to adapt an FDE is

Tadapt =
ntr (NFFT + NCP) Ts

ros
. (17)

Typically Ts , ros and NCP = NMD are given system parame-

ters. The parameter ntr is determined mainly by the algorithm

and convergence criteria. Hence, NFFT is the major parameter

that may be decreased to minimize the training time Tadapt .

However, given a prefix length NCP , decreasing NFFT reduces

the cyclic prefix efficiency (9). In Section IV, we will see that

it can be necessary to reduce NMD in order to minimize Tadapt

while maintaining high efficiency.

As rough measures of implementation complexities, we eval-

uate the number of complex multiplications and additions re-

quired for the LMS and RLS algorithms. Table I gives the com-

putational complexities of the algorithms for a training block

of length NFFT , considering the steps (13)–(16) (see Appendix

A for the details of the derivations). To evaluate the total com-

putational complexity to adapt an FDE, all the complexities in

Table I should be multiplied by the number of training blocks

ntr .

Fig. 3. Optimized fiber index profile for D = 12 modes.

The computational complexity per data-bearing symbol is ob-

tained by dividing the complexities in Table I by the number of

symbols per block, D · NFFT/ros . The per-symbol complexi-

ties scale at most linearly with D. They depend on NFFT only

through the DFT and inverse DFT operations, which favor the

choice of small NFFT to minimize complexity. For values of

D large relative to log2 (NFFT), the complexity of adaptation

and equalization dominates over the complexity of DFT/inverse

DFT operations, and the dependence of complexity on NFFT is

reduced.

IV. FDE COMPLEXITY AND PERFORMANCE EXAMPLES

In this section, we study the complexity, adaptation time,

and SER performance of MIMO FDEs using LMS and RLS

algorithms. The system end-to-end GD spread has a major effect

on complexity and performance, so we propose a novel fiber

design having very low uncoupled MD.

A. Multimode Fiber Design

Managing an MDM system’s end-to-end GD spread is impor-

tant in controlling the computational and hardware complexity

of the MIMO FDE [19], [28] and, as shown here, in achieving

fast adaptation of the MIMO FDE. Here, we propose to use

fibers with low uncoupled GD spread and rely on strong mode

coupling, induced by splices or other perturbations, to further

reduce the GD spread [19], [20].

We consider a family of “graded-index graded depressed-

cladding” (GIGDC) index profiles, inspired by [54]–[56], in

which a parabolic core index profile is extended smoothly into a

depressed cladding. Fig. 3 shows a profile optimized for D = 12
modes, and Table II gives parameters for fibers supporting D =
6, 12, 20 and 30 modes. These have been computed by numerical

solution of the vector wave equation, without assumption of

weak guidance [21]. For each value of D, the numerical aperture

is NA = 0.150, and the core radius is chosen so the number of

propagating modes is exactly D over the C band, and increases

at wavelengths just below 1530 nm. This approach optimizes

confinement of propagating modes, minimizing bending losses,

mode-dependent losses and mode-dependent CD. As included

in Table II, the mode-averaged effective areas scale as D0.78 and

minimum modal effective areas scale as D0.43 . Most relevant

here, the rms MD ∆β1,rms tends to decrease as D increases

from 6 to 30. This behavior, while perhaps counterintuitive,

may be justified by observing that as the core radius is increased
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TABLE II

UNCOUPLED PARAMETERS OF GRADED-INDEX

GRADED-DEPRESSED-CLADDING FIBERS FOR DIFFERENT NUMBERS OF

MODES, ASSUMING NA = 0.150 AND λ = 1550 nm

to support more modes, the index profile “seen” by the modes

increasingly resembles an infinite parabola, which is ideally

free of MD to first-order [22]. For GIGDC fibers, the mode-

dependent CD has an rms value of only 3% of the mode-averaged

CD β̄2 , justifying our neglect of mode-dependent CD in (1).

Low mode-dependent CD ensures that a low GD spread can be

achieved over a wide range of wavelengths.

B. Transmission System

We consider a long-haul fiber system described by the multi-

section model of Section II-A (see Fig. 1). The system has

Kamp = 20 spans, each of length Lamp = 100 km, for a total

length Ltot = 2000 km. The family of GIGDC fibers with un-

coupled parameters given in Table II is assumed. To vary the

strength of mode coupling, the number of sections per span

Ksec is varied from 1 to 100, corresponding to a section length

Lsec from 100 to 1 km, and an rms end-to-end GD spread

σgd = ∆β1,rms

√
LsecLtot . When MDL is present, the uncou-

pled modal gains in each span are uniformly distributed with rms

value σg , resulting in an rms accumulated MDL ξ =
√

Kampσg ,

measured in decibal.

MDM transmission is described by the system model of Sec-

tion II-B. A symbol rate Rs = 1/Ts = 32 Gbaud and a receiver

oversampling rate ros = 2 are assumed. The transmitter pulse

shape b (t) is a rectangular pulse of duration Ts filtered by a fifth-

order Bessel lowpass filter with−3-dB cutoff frequency 0.8/Ts ,

while the receiver filter p (t) is a fifth-order Butterworth low-

pass filter with −3-dB cutoff frequency 0.4ros/Ts [15]. Trans-

mitted symbols are drawn from a quadrature phase-shift keying

constellation with average power Px . The SNR as the trans-

mitted signal power over received noise per mode is defined

as SNR = Px/σ2
N , where σ2

N = N0Rsros . We initially neglect

phase noise and discuss its effects in Section V.

C. Computational Complexity and Cyclic Prefix Efficiency

We first study the computational complexity and cyclic prefix

efficiency of the adaptive MIMO FDE. These depend strongly

on the MD delay spread NMD , which we compute as described

in Section II-C, assuming p = 10−5 and neglecting MDL (ξ =

TABLE III

IMPULSE RESPONSE DURATIONS (IN SAMPLES) FOR DIFFERENT SECTION

LENGTHS, ASSUMING Lto t = 2000 km, Rs = 32 Gbaud, ros = 2, p = 10−5

AND ξ = 0 dB

TABLE IV

MIMO EQUALIZER: CYCLIC PREFIX LENGTHS, BLOCK LENGTHS, CYCLIC

PREFIX EFFICIENCIES AND COMPUTATIONAL COMPLEXITIES, ASSUMING THE

SAME PARAMETERS AS TABLE III AND Lsec = 1 km

0 dB). The presence of significant MDL might change NMD

slightly, as studied for D = 2 [57].

Table III gives values of NMD for D = 6, 12, 20 and 30

modes for section lengths Lsec = 100, 10 and 1 km, comparing

these to the CD delay spread NCD . In order for the computa-

tional complexity of an adaptive FDE for MD to be roughly

comparable to that for CD, a system should be designed so that

NMD is several times smaller than NCD . This requirement can

be traced to the adaptivity and increased dimensionality of the

D × D matrix FDE for compensating MD, as compared to the

D static scalar FDEs for compensating CD. Although an arbi-

trarily small section length is possible in principle, we believe a

realistic target is Lsec = 1 km, and this value is assumed here-

after. For this choice, NMD decreases from 477 to 131 (2.8 to

10.5 times smaller than respective values of NCD ) as D ranges

from 6 to 30.

Given these values of NMD , MIMO FDEs are designed using

the parameters given in Table IV. Prefix lengths are chosen to

satisfy NCP = NMD . Block lengths NFFT varying from 211 to

29 as D ranges from 6 to 30 are chosen to ensure fast adapta-

tion (see below). Corresponding values of the prefix efficiency

ηCP , given by (9), are roughly 80% for all values of D. As ex-

plained later, RLS adaptation may be sufficiently fast to permit

an increase in NFFT , which increases ηCP .



ARIK et al.: ADAPTIVE FREQUENCY-DOMAIN EQUALIZATION IN MODE-DIVISION MULTIPLEXING SYSTEMS 1847

Fig. 4. Average symbol-error ratio versus number of training blocks for dif-
ferent values of µ for LMS-adapted FDE, assuming D = 12 modes, SNR =
10.5 dB, ξ = 0 dB and D = 12 modes.

Table IV gives values of computational complexity per data

symbol for MIMO FDE. “Known channel” is the complexity of

equalization only, corresponding to the twice the first line plus

the second line of Table I. “LMS-adapted” or “RLS-adapted”

is the complexity of both equalization and adaptation, and also

includes the third or fourth line of Table I. In Table IV, each

of the above has been divided by D · NFFT/ros , the number of

symbols per block.

As compared to equalizing a known channel, LMS adaptation

increases the required complex multiplications per symbol by

1.4 to 1.8 and the required complex additions per symbol by

1.3 to 1.7 as D ranges from 6 to 30. RLS adaptation increases

the required complex multiplications per symbol by 2.9 to 4.9

and the required complex additions per symbol by 1.9 to 3.6

over the same range of D. The complexities of LMS and RLS

adaptation are compared further in Section V.

For comparison, static overlap-save based FDE of CD [19]

requires about 33 complex multiplications per symbol and about

61 complex additions per symbol for all values of D, assuming

a block length NFFT = 214 .

D. Adaptation Time and SER Performance

We now study the adaptation time and SER performance of

the MIMO FDE and their dependence on SNR, MDL and the

number of modes. We present values of the SER as a function of

the number of training blocks ntr obtained by averaging Monte-

Carlo simulations over random channel and symbol sequence

realizations. We continue to assume a section length Lsec =
1 km. For the RLS algorithm, we choose a forgetting factor

κ = 0.999, whose optimization has negligible effect on both

the converged SER value and the adaptation time. For the LMS

algorithm, the choice of the step size µ is critical. As shown in

Fig. 4, small values of µ result in impractically slow adaptation

times whereas large values of µ yield higher asymptotic SERs

and can cause the LMS algorithm to violate the convergence

condition discussed in Section III. Considering this trade-off,

for MDL-free channels, we choose an optimal value of µ = 1.5

× 10−5 . In the presence of MDL, since the condition number

Fig. 5. Average symbol-error ratio versus number of training blocks for SNR
= 6.5, 8.5, 10.5 and 12.5 dB with MMSE filtering (dotted lines), RLS (solid
lines) and LMS (dashed lines) algorithms assuming κ = 0.999, µ = 1.5× 10−5 ,
ξ = 0 dB and D = 12 modes.

Fig. 6. Average symbol-error ratio versus number of training blocks for ac-
cumulated MDL ξ = 0, 1.36, 2.72, 4.08, 5.43 and 6.79 dB with RLS algorithm
(solid lines) with κ = 0.999 and LMS algorithm (dashed lines) with µ = 1.5
× 10−5 , 1.3 × 10−5 , 1.1 × 10−5 , 9.3 × 10−6 , 5.1 × 10−6 and 3.1 × 10−6

respectively, assuming SNR = 10.5 dB and D = 12 modes.

of the MDM channel matrix MMD (Ω) is increased [43], µ is

reduced to optimize the convergence rate.

First we fix the number of modes to D = 12 and study

adaptation in different regimes of SNR and MDL.

Fig. 5 shows SER versus ntr achieved by RLS or LMS at dif-

ferent values of SNR per mode, assuming no MDL (ξ = 0 dB).

As expected, RLS converges faster, and to a lower asymptotic

SER, than LMS. The logarithm of the asymptotic SER scales

roughly as SNR−1.5 for RLS and as SNR−1.3 for LMS, lead-

ing to an increasing disparity in their asymptotic SERs with

increasing SNR. As the SNR increases, the time required for

convergence to the asymptotic SER increases slowly for RLS,

and more rapidly for LMS. As a comparison case, performance

bound of the MMSE filter given by (13) is also shown in Fig. 5.

The asymptotic SER of RLS approaches that of the MMSE

equalizer much faster than that of LMS as the SNR increases.

Over the range of SNRs considered, the SERs for using RLS

and LMS are, respectively, ∼2–6 times and ∼6–10 times higher

than those for the MMSE equalizer.
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Fig. 7. Average symbol-error ratio versus number of training blocks for D =
6, 12, 20 and 30 modes with RLS (solid line) and LMS (dashed line) algorithms
assuming κ = 0.999, µ = 1.5 × 10−5 , ξ = 0 dB and SNR = 10.5 dB.

Fig. 6 shows the SER versus ntr achieved by RLS or LMS at

different values of the accumulated MDL ξ, assuming an SNR of

10.5 dB. As expected, RLS is more robust than LMS, converging

faster to a lower asymptotic SER. The convergence rate of RLS

is not adversely affected for the values of MDL considered,

and the logarithm of the asymptotic SER increases roughly

proportional to ξ. On the other hand, increasing MDL causes

the convergence of LMS to slow down and causes the logarithm

of the asymptotic SER to increase roughly proportional to ξ, but

at a higher rate than for RLS. Note that for LMS, the step size

µ is optimized for each value of ξ. If µ is held constant at the

value optimal for the MDL-free case, even low-to-intermediate

values of ξ can prevent convergence and cause outage.

Now we study adaptation as a function of the number of

modes D. Fig. 7 shows SER versus ntr achieved by RLS or

LMS for different values of D, assuming an SNR of 10.5 dB

and no MDL (ξ = 0 dB). As D increases, although the block

length NFFT decreases slightly, the MIMO equalizer dimension

scales as D2 , so the number of training blocks required for

convergence increases. For RLS, the number of training blocks

needed for convergence is roughly proportional to D (the curves

nearly overlap when scaled by D−1), and the knee and flat-SER

regions of the adaptation curves occur at about 6D and 15D,

respectively. For LMS, the adaptation curves do not overlap

with any power-of-D scaling. The knees occur at about 20D to

30D, while the flat-SER regime starts at about 50D to 70D. The

asymptotic SERs for RLS are around 2 × 10−4 , while those for

LMS are a factor of ∼3 higher.

To quantify equalizer adaptation times, we extract from Fig. 7

values of ntr such that target SER values are achieved, and com-

pute Tadapt using (17). Table V presents these adaptation times

for RLS and LMS for various numbers of modes D. Adaptation

times for RLS range from roughly 1 to 7 µs, depending on D
and the target SER, while adaptation times for LMS are roughly

ten times longer for the same target SER for a given D. These

implications of results are discussed in Section V.

TABLE V

VALUES OF ADAPTATION TIME Tadapt TO REACH VARIOUS SYMBOL-ERROR

RATIOS USING RLS AND LMS ALGORITHMS FOR D = 6, 12, 20 AND 30
MODES, USING THE RESULTS OF FIG. 6

V. DISCUSSION

As noted above, adaptive MIMO FDEs for MDM have sev-

eral important design objectives, including scalability to many

modes, reliable convergence and low asymptotic SERs in the

presence of noise and MDL, fast initial adaptation and subse-

quent tracking, high cyclic prefix efficiency, and low computa-

tional complexity. We have found that RLS outperforms LMS

in most key respects.

As the number of modes D increases, RLS maintains faster

adaptation and lower asymptotic SERs than LMS (see Fig. 7).

In the presence of noise, RLS achieves lower asymptotic SERs

than LMS (see Fig. 5). In the presence of MDL, RLS converges

more reliably and achieves lower asymptotic SERs than LMS

(see Fig. 6), which is critical, because experiments [58] have

demonstrated that MDL can readily cause the channel matrix to

become ill-conditioned.

Reliable tracking of dynamic channel behavior is a critical

requirement in optical transport networks. It has been estimated

that MIMO channels in long-haul MDM systems will change

on a time scale of 25 µs [31], similar to long-haul polarization-

division-multiplexed systems in SMF. There do not yet exist

models for the dynamic evolution of MDM channels, which

would enable study of the tracking behavior of adaptive MIMO

FDEs. For sake of discussion, we conservatively assume that in

adapting to an unknown channel, an FDE must nearly reach its

asymptotic SER in no more than 25 µs, which should ensure it

can track dynamics in a long-haul MDM system.

Using the parameter values in Table V, values of the adapta-

tion time Tadapt for the LMS algorithm are close to 25 µs, i.e.,

LMS appears fast enough to track long-haul MDM channels.

Assuming these parameters, as noted earlier, the cyclic prefix

efficiency ηCP is∼80% for all numbers of modes D considered.

In Table V, values of Tadapt required for RLS are all at least a

factor of ten below 25 µs for all values of D. Recalling (9), the

relationship between the block length NFFT and Tadapt , it is

possible to increase NFFT up to a factor of eight. For example,

increasing NFFT fourfold (to 213 , 213 , 211 , 211 for D = 6, 12,

20, 30) increases the cyclic prefix efficiency ηCP to ∼95% for
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all values of D. In summary, the fast convergence of RLS can

be exploited to improve cyclic prefix efficiency.

Computational complexity is closely related to transceiver

power consumption, making it a key metric for comparing adap-

tive algorithms. Referring to Table IV, compared to LMS, RLS

requires 2.0 to 2.7 times more complex multiplications/symbol

and 1.5 to 2.1 times more complex additions/symbol. As shown

in Table V, adaptation times can be up to ten times shorter for

RLS than for LMS, so the total computational complexity to

adapt to an unknown channel is lower for RLS than for LMS. If

RLS uses a fourfold larger block length NFFT to improve cyclic

prefix efficiency ηCP , then the complexity slightly increases but

still remains lower than for LMS. In summary, the fast con-

vergence of RLS can be exploited to minimize the complexity

required to adapt to an unknown channel.

In continuous tracking of a dynamic channel, the higher com-

putational complexity of RLS becomes more of a concern.

Complexity and power consumption might be minimized by

performing the RLS updates (15) and (16) less frequently (since

the duration of a block of NFFT symbols is far less than 25 µs),

or by employing LMS updates (14). For the first approach, there

is also a possibility to avoid cyclic prefix overhead between

adaptation intervals by employing overlap-save-based FDE us-

ing filter coefficients approximated from the FDE adapted using

a cyclic prefix [47]. Evaluation of such channel tracking meth-

ods requires models for channel dynamics. A model for fibers

with two mode groups (D = 6) has been proposed [30]. It is de-

sirable to extend such models to larger D and to experimentally

validate them.

We have chosen to employ a cyclic prefix instead of us-

ing block convolution for reasons stated in Sections II-C and

III. As noted there, while this reduces throughput and transmit

power efficiency by the factor ηCP , it significantly reduces the

complexity of an adaptive FDE. This approach can be lever-

aged by inserting additional pilot symbols to aid in frame syn-

chronization [59] or synchronization of carrier frequency [60]

or phase [61], improving overall system performance and effi-

ciency. The combination of cyclic prefix and pilot symbols is

often called a “unique word”.

In this study, we have neglected the impact of phase noise.

There exist several candidate methods for phase noise compen-

sation. Their implementation and integration with adaptive FDE

are important subjects for further research. Since FDE can be

more prone to degradation from phase error than TDE, it may

be desirable to partially or fully compensate phase noise before

the adaptive FDE, even if it is necessary to use phase estimates

obtained after the adaptive FDE. MD equalization changes the

phase noise statistics, an effect called “equalization-enhanced

phase noise” [62], and commonly used symbol-by-symbol time-

domain phase recovery methods, such as feedforward carrier re-

covery [63], will yield suboptimal performance unless modified

to account for the modified phase statistics.

A technique popular in wireless systems with FDE is block-

by-block phase estimation. With the aid of pilot symbols within

a unique word [61], accurate phase estimation at the beginning

of each block can be achieved [64]. The estimated phase is used

to compensate the phase error of all symbols within the block

prior to FDE. This approach can be implemented with low com-

putational complexity without modifying the FDE adaptation

algorithm. We have simulated this method assuming zero phase

error at the beginning of each block and assuming the phase

noise is a Wiener process [62] inside the block. We have ob-

served negligible degradation in the asymptotic SER of adaptive

FDE, assuming the parameters in Fig. 7 with D = 12 modes,

provided the transmitter and local oscillator lasers have a beat

linewidth not exceeding ∼65 kHz, which can be achieved using

commercial tunable laser modules [65].

As [19], [28] and this paper demonstrate, the GD spread is a

key factor in determining the computational complexity, adap-

tation speed, and cyclic prefix efficiency of an MDM system.

In order to manage the GD spread, as explained in Section

IV-A, we propose to use a GIGDC fiber with low uncoupled

GD spread in conjunction with strong mode coupling described

by a section length Lsec = 1 km. This approach is considered

in [20], where it is pointed out that manufacturing process vari-

ations may increase the uncoupled GD spread beyond its ideal

value, and that splices between fiber sections may lead to sec-

tion lengths Lsec ∼ 5 km. Thus, obtaining the low coupled GD

spread assumed here may require intentionally perturbing the

fiber in some way analogous to the “spinning” used to reduce

PMD in SMF [66]. Fiber designs for reduced GD spread, in-

cluding methods to enhance mode coupling without increasing

loss and MDL, are important topics for future research.

Given the present uncertainty about mode coupling dynam-

ics and coupled GD spreads achievable in long-haul fibers, the

required adaptation time Tadapt and achievable impulse re-

sponse durations NMD assumed here, and the resulting FDE

design parameters and performance and efficiency metrics,

should be considered as illustrative examples more than precise

determinations.

An alternate approach to GD management, which has been

termed “GD compensation” reduces end-to-end GD spread by

interconnecting two or more fiber types in which lower- and

higher-order modes exhibit an opposite ordering of GDs [67].

This approach may be difficult to scale to several mode groups,

where effective reduction of GD spread would require several

fiber types with specific modal GD properties, as pointed out

in [68]. Also, in certain cases, mode coupling may limit the

reduction of GD spread, because in the strong-coupling regime,

end-to-end rms GD spread depends only on the rms GD spreads

of the individual segments [28], and not on the ordering of modal

GDs.

VI. CONCLUSION

Long-haul MDM systems must typically use MIMO FDE to

achieve sufficiently low computational complexity, in contrast

to polarization multiplexing in SMF, where MIMO TDE has

low complexity and is usually employed.

We have studied the LMS and RLS algorithms for adap-

tive MIMO FDE. Instead of using block convolution, we in-

sert a cyclic prefix. While reducing throughput efficiency, this

lowers the computational complexity of adaptation and may

provide additional functionality, e.g., by facilitating carrier
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TABLE VI

COMPUTATIONAL COMPLEXITIES OF ALGORITHM STEPS, WHICH ARE SUMMED TO OBTAIN RESULTS IN TABLE I

synchronization. We have investigated tradeoffs between com-

putational complexity, cyclic prefix efficiency, adaptation speed

and SER, and the impact of the system GD spread and FFT

block length on these.

We show that using optimized FDE architectures, compu-

tational complexities increase sublinearly with the number of

modes, in contrast to those using TDE. As compared to LMS,

RLS achieves faster convergence, higher throughput efficiency,

lower output SER, and greater tolerance to mode-dependent

loss, but at the cost of somewhat higher complexity per FFT

block. These attributes make RLS preferable for adapting to an

unknown channel. For continuous tracking of a dynamic chan-

nel, either using RLS at periodic intervals or using LMS con-

tinuously might be preferable, depending on channel dynamics

and system requirements.

Our paper illustrates that design of an MDM system to min-

imize GD spread is required to enable low computational com-

plexity and fast adaptation. This is enabled here by strong mode

coupling and by a new family of GIGDC fibers in which uncou-

pled GD spread decreases with an increasing number of modes.

APPENDIX A

COMPUTATIONAL COMPLEXITY

In this section, we derive the computational complexities per

block for the update steps (14)–(16) given in Table I. We con-

sider the optimal ordering of algebraic operations to minimize

complexity. For example, multiplication of a matrix, vector and

scalar can be done with lower complexity by first multiplying the

matrix and the vector and then the scalar, or by first multiplying

the vector and the scalar and then the matrix, as opposed to first

multiplying the scalar and the matrix and then the vector. We

also assume that any computed result can be reused at multiple

steps without being recomputed. We assume that multiplication

of an M × N matrix by an N × 1 vector requires MN complex

multiplications and M (N − 1) complex additions. We assume

the DFT and inverse DFT operations are performed with radix-2

FFT algorithms, so each requires NFFT log2 (NFFT) /2 com-

plex multiplications and NFFT log2 (NFFT) complex additions

for a vector of length NFFT . The number of complex multi-

plications and additions for each computed term is shown in

Table VI. The results in Table I are obtained by adding them.
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