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Signal processing is a crucial technology for the efficient
use of limited and intermittent power resources in the smart
grid of the future, and a number of challenges remain to be
met. One major issue, as we move towards distributed en-
ergy production and use (microgrid) is real time estimation
of power quality parameters (frequency, voltages, power fac-
tor). The accurate knowledge of frequency is a key param-
eter of a power system, and its optimal estimation becomes
critical in the future smart grid, where the generation, load-
ing and topology are all dynamically updated. In this work,
we first consolidate the existing approaches to real-time fre-
quency estimation in a three phase system, and then provide a
unified framework for the estimation of the instantaneous fre-
quency in both balanced and unbalanced conditions of a three
phase power system. This is achieved by using recent de-
velopments in the statistics of complex variables (augmented
statistics), by employing the associated widely linear models,
and by rigorously accounting for the different degrees of non-
circularity associated with various natures of frequency varia-
tions in real-world conditions. The usefulness of the proposed
framework for frequency tracking in smart grids is illustrated
in the context of two major issues in power quality control,
namely the tracking of false frequency perturbations in the
presence of unbalanced voltage sags (here both synthetic and
real-world) and in adaptive frequency tracking in microgrids
and islands where there is mismatch between production and
consumption.

THE NEED FOR FREQUENCY ESTIMATION IN SMART
GRID

Governments, utilities and consumers are all interested in
making the ways we produce and use energy more efficient
and sustainable. For the electrical power grid this involves
fundamental paradigm shifts as we build a smart grid, adopt
more renewable energy sources, and promote more energy
efficient practices. A smart grid delivers electricity from sup-
pliers to users using digital technology and has a number of
properties, including incorporating all forms of energy gener-
ation and storage, using sensor information, enabling active
participation by end users, being secure and reliable, and
using optimization and control to make decisions [1]. This

will require the interplay between sensor networks, genera-
tion systems, and the power grid, with key technologies from
signal processing.

It is estimated that the financial loss due to outages in the
US economy approaches USD $45.7 billion annually, with
power quality issues costing USD $6.7 billion annually [2, 3].
Among them, voltage sags, that is, an increase in load current
over up to few hundred cycles, are the most frequent prob-
lem [4] that severely affects medical centres, semiconductor
plants, and broadcasting stations, among others [5]. Voltage
sags are typically followed by frequency variations and occur
due to switching between the main grid and microgrids, short
circuits, motor starting, transformer inrush, fast reclosing of
circuit breakers, unexpectedly large or fast change in the load,
malfunction of electronic protection components, or when the
scale of the problem causes a large number of alarms which
saturate the alarm processing capability of the control center
[6].

In a power system, unexpected frequency variations from
the nominal value can trigger abnormal system conditions and
disturbances, and fast and accurate frequency estimation has
recently attracted much attention [7, 8, 9, 10, 11]. Deriving
the system frequency from a single phase is a non-unique
problem [12], and for robust frequency estimation it is de-
sired to simultaneously consider all the three phase voltages.
A classic approach is to use Clarke’s αβ transformation to
obtain a complex-valued signal from the three phase voltages
[13], and derive system frequency from the phase of the trans-
formed signal.

This work addresses adaptive tracking of system fre-
quency in a 3-phase system, and proposes next generation
solutions for the identification and troubleshooting in the
following events that lead to frequency deviations.

• Imbalance in the generation (G) and load (L). In smart
grid, the system will frequently switch between the
main grid (MG) and microgrids (µG), with parts of
the system completely switching off the MG for the
prolonged periods of time (islanding). The system
frequency rises for G > L and decreases for L < G.

• Single and dual phase faults. The system frequency is
derived from the relationship between the three phase



voltages (using Clarke’s transform). Faults in one or
two phases and voltage sags (sudden drop in voltage
for a short period of time) will cause an incorrect fre-
quency estimate and an alarm spread through the sys-
tem, although the actual system frequency is correct.

• Dual character of load-supply. The key idea behind
smart grid is to have dynamic loads and dual load-
generator devices, such as for instance Plug-in Electric
Vehicles (PEV)s, which can give the energy back to the
grid in the case of emergency. This will cause prob-
lems with reactive power, whose drifting is responsible
for oscillations of power levels and harmonics in fre-
quency.

• Harmonics. Some loads (power supplies, motors,
pumps, heating elements) that have nonlinear V-I char-
acteristics introduce harmonics, which are slowly float-
ing and may not be integer multiplies of system fre-
quency. They cause resonance in the system and lead
to overheating of transformers and significant increase
in currents [14]. In addition, switching on the shunt
capacitors for reactive energy compensation causes
strong transients and harmonics that are damaging to
some equipment.

• Transient stability issues. Faults and short circuits
make the system unstable, and actions such as shed-
ding loads (or generators) that are needed to mitigate
the problem must occur within a short period of time,
typically 100ms [15]. Accurate frequency estimation is
required to make this possible.

Although some of the events leading to frequency changes
in the system could be dealt with if detected in time, cur-
rent systems do not have sufficient information about the state
at the distribution end to do so. This applies particularly to
problems related to the management of single and dual phase
faults, short duration voltage sags, and reactive power, caus-
ing damaging events, such as harmonics, false alarms, and
slow response to critical events.

The Clarke’s transform based complex domain solutions
for frequency tracking include phase locked loops (PLL) [16],
least squares methods [17], Kalman filtering [18], and demod-
ulation methods [19]. Recently, adaptive tracking algorithms
based on the minimisation of mean square error have become
a standard, as they are naturally suited to deal with noise, har-
monics, and nonstationary environments [7, 17, 20]. How-
ever, as discussed in [21], unbalanced events make it diffi-
cult to calculate phase angle - the complex-valued signal ob-
tained from an unbalanced three-phase voltage source is rep-
resented as an orthogonal sum of positive and negative se-
quences (SCT - see (2)). Standard complex linear adaptive
filters can only cater for the positive sequences, whereas the
negative sequences introduce a modelling error that oscillates
at twice the system frequency [22, 23, 24].

To this end, we introduce a robust framework for adaptive
and unbiased frequency estimation under unbalanced system
conditions, a typical case in microgrids, coupled microgrids
and power islands.

◦ We first analyse the complex-valued signal, obtained by
the αβ transformation of a three-phase power system,
and illustrate the suitability of complex valued filters
in this context by illuminating their magnitude-phase
relationship and tracking abilities.

◦ We then address the geometry of learning to lever-
age between magnitude-only and phase-only adaptive
tracking, and emphasize the trade off between bias and
variance of such adaptive frequency estimators.

◦ It is further illustrated that under unbalanced system
conditions the αβ-transformed complex voltage signal
is second order noncircular (improper), for which cur-
rent, strictly linear, complex valued adaptive estimators
are suboptimal.

◦ A second-order optimal adaptive widely linear fre-
quency estimator is next addressed, and is shown to
cater for both the balanced and unbalanced system
conditions and to produce unbiased estimates with
greatly reduced variance as compared with standard
approaches, asymptotically approaching the Cramer-
Rao Lower Bound (CRLB) for high signal to noise
ratios.

FROM THE HIERARCHICAL GRID TO SMART GRID, MI-
CROGRIDS, AND ENERGY ISLANDS

Electric distribution networks are undergoing wholesale
changes both from the generation and the user (load) sides.
Generation, historically aggregated into large power plants
and far from the user, is beginning to be moved towards be-
ing located at the distribution level, and based on renewable
sources, that is, intrinsically intermittent [25]. This will re-
quire enhanced flexibility in order to accommodate islanding
and micro-grids [26, 27]. Major challenges are envisaged to
be the management of largely increased load levels and the
synergy between loads and supplies. For instance, charg-
ing large number of Plug-In Electric Vehicles (PEVs) in a
residential area is likely to lead to unbalanced system condi-
tions - causing increased levels of harmonics and frequency
deviations that are potentially damaging to households elec-
tronic and electrical equipment. On the other hand, PEVs
are designed to discharge their batteries quickly (e.g. when
accelerating) and may be used when in the vehicle-to-grid
(V2G) mode to feed the energy back into the grid, in order to
mitigate power shortage and system imbalances.

The idea behind smart distributed grids and microgrids is
to balance as much as possible locally between production
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Fig. 1. Block diagram of power grid. The transmission side is
well understood and the measurements of voltage, frequency,
current and load are available. The distribution side does not
have enough sensors and the transmission side does not have
sufficient information about local behaviour. Various loads
(L) and small generators (G) contribute to the variability of
power quality.

and consumption. However, the nature of intermittent renew-
able sources will inevitably lead to frequent system imbal-
ance. For instance, the variability of wind and solar power
seldom correlates with the load variability. There is evidence
of difficulty in maintaining system balance due to wind vari-
ability [28]. Accurate and fast frequency tracking is a prereq-
uisite to the system responding quickly to such problems, and
signal processing is certain to play a large role in dealing with
the complexity and uncertainty associated with frequency es-
timation in smart grid. In this context, stochastic models are
a natural choice.

Fig. 1 shows a simplified diagram of the transmission and
distribution part of the grid, illustrating the available loads
(L), generators (G), and measurements (M) at both the sub-
station and consumer level. One of the main problems in fre-
quency estimation is that at present the transmission side of
the grid does not have sufficient information about the system
behaviour at the distribution level, in order to incorporate it
into the operator model.

The high voltage transmission line (e.g. 138kV) is trans-
formed down to 46kV at the substation, with each substation
typically having 3-5 branches (called circuits). At present,
Phasor Measurement Units (PMU), which use synchro-
nised measurements based on the Global Positioning System
(GPS), are mostly deployed at the substations, and forward
synchronised data to the main station. The voltage signals
are obtained at 48 samples/cycle, that is, approximately at the
sampling frequency of 1000 Hz. The measurements available
at the substation are the three phase voltages, currents, system
frequency, and loads. This provides the operator model with
the information about the state of the grid, and this part is
well modelled.

The progress towards microgrids, coupled microgrids,
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Fig. 2. Nodal Estimation. The load (L) and generators
(G) operate locally. Every substation has 3-5 circuits (main
branches). The sum of all the circuit loads ΣL and all the
generation ΣG equals that of the substation. Symbol M indi-
cates where measurements area available. All circuits shown
are three phase. In case of G-L mismatch in one of the cir-
cuits, this can be compensated from the generation in another
circuit or from the main grid.

and islanding will introduce numerous problems in power
quality, including frequency estimation, and will require
more metering devices at the distribution and consumer level.

The roles of the main station and substation are [6]:

• The main station collects and manages PMU data and
real-time switching information from the substations,
diagnoses wide area faults and issues control orders
(switching off and blocking) to the substations;

• The substations collect and forward the local data to
the main station and execute control sequences received
from the main station.

The so called Nodal Estimation, depicted in Fig. 2, illus-
trates these issues - a substation with three circuits (C1-C3)
taking respectively 20%, 30% and 50% of the generation, and
a zoom in into the local grid (from the pole transformer down
to customer). In classical distribution systems, voltage is nor-
mally controlled only at the entry point, however, modern sys-
tems are not designed vertically and have both the consump-
tion and production at the distribution level. Wind energy is
more likely to be connected at the generation level, whereas
photovoltaic sources that produce 1∼2 kW are often located
at the customer’s site. They offset the connection load, and
can also feed the energy back into the grid [29]. The opera-
tion of the power system at a constant frequency is maintained
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Fig. 3. Islanding regulation, using relays and inverters.

by regulating the balance between generation and load in real
time.

MICROGRIDS AND ISLANDS

Microgrids are small connected clusters within the main grid,
and can operate in parallel to the grid or isolated (as an is-
land). They respond to fault events autonomously and based
on only local information, switching to the islanding mode
for faults (dynamic islanding), such as large voltage sags and
power outages. They facilitate the implementation of key
Smart Grid functions, such as load control, reliability and
self-healing, but this comes at a cost of constant switching,
as they will disconnect when the power quality of the main
grid is below certain standards. It is desired that the microgrid
seamlessly changes its mode of operation between an island
(energy source for local loads) and a grid resource.

This also facilitates a greater use of renewables, but re-
quires local stability and constant monitoring of large circu-
lating reactive currents between sources, together with volt-
age vs. power droop control. Fig. 3 (adopted from [15])
illustrates the principle of connecting a Photo-Voltaic (PV)
generator to the grid through the circuit breakers and relays.
The microgrid operation is summarised in the following.

• In normal operation, the loads in microgrid receive
power from both the main grid and local generators;

• When the grid power is lost, the microgrid dynamically
transforms into the islanding mode;

• If the microgrid was taking the energy from the grid, lo-
cal generation increases the available power - resulting
in a temporary drop in frequency;

• If the islanding event occurred when the microgrid was
exporting power to the main grid, the system frequency
will increase;

• If the power mismatch between the source and load is
small, this is difficult to detect; so for instance, an inver-
tor that constantly attempts to shift its local frequency
would indicate a power island.

VOLTAGE SAGS

Voltage sags refer to a temporary drop in the one or two phase
voltages for several hundreds milliseconds [27]. Despite their
short duration they are harmful to a range of equipment, in-
cluding computers, adjustable speed devices and three-phase
loads. A voltage sag is defined by the IEEE Standard 1159-
1995 as a “decrease in root mean square (RMS) voltage at the
power frequency for durations from 0.5 cycles to 1 minute”.
It is measured by the percentage of the nominal voltage, so
that a sag of 60% is equivalent to 60% of nominal root-mean-
square (RMS) voltage. A voltage dip is the amount by which
the voltage drops from its nominal value, that is, a voltage dip
of 40% is equivalent to a voltage sag of 60%. The voltage
sags are detected when the RMS magnitude drop exceeds a
predefined threshold, typically 90% of the nominal voltage.

Single phase faults and sags typically occur in rural distri-
bution systems. In three-phase systems, the other two phase
voltages go into a swell (increase in voltage) in order to main-
tain the required power by the load, even in the case of a single
phase voltage sag. Three-phase sags can be symmetric, for
instance, when starting a large motor in an industrial plant,
or unbalanced as when energising a large transformer. In all
cases there is a large and sudden drop in phase voltage(s), fol-
lowed by a slow recovery. The kind of sag experienced by
the load also depends on whether it is connected in the star or
delta configuration.

Voltage sags are multifaceted phenomena, yet since there
are typically one or two transformers between the phase fault
and the meter (or load) they are rarely recorded at the level at
they occurred. Voltage sags that occur at the higher voltage
side are spread to the lower voltage systems through trans-
formers, and sags and faults that appear at one circuit of the
low voltage side will also affect the other circuits at the same
substation (see Fig. 2). System frequency is estimated from
the three phase voltages, and therefore, accurate and fast esti-
mation of voltage sags is a prerequisite.

DEALING WITH THE THREE-PHASE VOLTAGES – CLARKE’S
TRANSFORM

The voltages of a three phase power system in a noise-free
environment can be represented in the discrete time form as

va(k) = Va(k)cos(ωk△T + ϕ)

vb(k) = Vb(k)cos(ωk△T + ϕ− 2π

3
)

vc(k) = Vc(k)cos(ωk△T + ϕ+
2π

3
) (1)

where Va(k), Vb(k), Vc(k) are the peak values of each phase
voltage component at time instant k, △T the sampling inter-
val, ϕ the phase of fundamental component, and ω = 2πf
the angular frequency of the voltage signal, with f being the
system frequency.



A direct analysis of the individual phase voltages in (1)
is not practical for the estimation of power quality parame-
ters - single phase techniques are limited and it is difficult to
select the most representative phase, since 6 different phase
voltages exist in a three phase system when also line-to-line
voltages are considered. We therefore need a system solution
operating simultaneously on all the three phases, and attempts
have been made to introduce invertible transformations which
would give physical meaning to the estimation in a transform
domain.

The symmetrical component transformation (SCT) [30]
can determine the type of voltage sag, and is given by V̄0

V̄1

V̄2

 =
1

3

 1 1 1
1 a a2

1 a2 a

 V̄a

V̄b

V̄c

 (2)

where e.g. V̄a = Vae
ȷΦa is the complex magnitude for phase

a, va(k) =
√
2Va cos(ω0k+Φa) is the instantaneous voltage,

a = eȷ
2π
3 corresponds to a phase angle shift, and V̄i = Vie

ȷΦi .
The transformed quantities are: V̄0 - the zero sequence, V̄1 -
positive sequence, and V̄2 - negative sequence. In physical
terms, the positive sequence voltage reflects the energy trans-
fer between generators and consumers; the negative-sequence
and zero-sequence components indicate imbalance between
the three voltages; the negative sequence propagates from the
fault to the equipment terminals; the zero-sequence is in many
cases blocked by the transformers. A voltage dip is charac-
terised by a relationship between the positive sequence volt-
age V̄1 and the negative sequence voltage V̄2.

The SCT is based on a phasor representation (no notion
of time), and is thus not suitable for the analysis of transients
- these would need a time domain representation whose high
resolution is guaranteed by a high sampling frequency of the
phase voltages (e.g. 1000 Hz as opposed to the 50Hz system
frequency). To this end, Clarke’s transform relates phase-to-
neutral voltages and phase voltages using the following map-
ping  Va

Vb

Vc

 =

 1 0 1

− 1
2

√
3
2 1

− 1
2 −

√
3
2 1


 Vα

Vβ

V0

 (3)

or conversely, the time-dependent three-phase voltage is
transformed by the orthogonal αβ0 transformation matrix
[13] into a zero-sequence v0 and the direct and quadrature-
axis components, vα and vβ , as v0(k)

vα(k)
vβ(k)

=

√
2

3


√
2
2

√
2
2

√
2
2

1 −1
2 − 1

2

0
√
3
2 −

√
3
2


 va(k)

vb(k)
vc(k)

 (4)

The factor
√

2/3 is used to ensure that the system power is in-
variant under this transformation. When Va(k), Vb(k), Vc(k)
are identical, v0(k) = 0, vα(k) = Acos(ωk∆T + ϕ) and
vβ(k) = Acos(ωk∆T + ϕ + π

2 ), with a constant amplitude

A, while vα(k) and vβ(k) are the orthogonal coordinates of a
point whose position is time variant at a rate proportional to
the system frequency. In practice, only the vα and vβ parts are
used in the modelling, known as the αβ transformation [19].

The resulting complex voltage signal v(k) is given by

v(k) = vα(k) + ȷvβ(k) (5)

and will be the basis for the analysis in this work. There is
no loss in information in using this representation, and this
complex time-domain voltage also serves as the desired sig-
nal in adaptive frequency estimation and can be calculated
iteratively from (in a balanced system condition)

v(k + 1) = Aeȷ(ω(k+1)∆T+ϕ) = v(k)eȷω∆T (6)

THE ADAPTIVE FREQUENCY ESTIMATION FRAME-
WORK: COMPLEX CIRCULARITY, STRICTLY LINEAR
AND WIDELY LINEAR MODELS

We shall now introduce a general framework for both the
strictly linear and widely linear complex-valued frequency
estimation, based on the complex voltage in (6).

The strictly linear framework employs the recently intro-
duced Least Mean Magnitude Phase (LMMP) algorithm [31]
to leverage between the standard, error power based, Com-
plex Least Mean Square (CLMS) [32] and phase-only esti-
mation realised by the Least Mean Phase (LMP) algorithm
[33]. It is shown that all the strictly linear algorithms exhibit
bias and large oscillations of the mean squared error, with
the LMP best suited for frequency estimation in terms of the
bias and LMMP in terms of the steady state properties. This
is not unexpected - LMP was designed specifically for phase
minimisation and the frequency estimate is derived from the
phase of the complex αβ voltage in (6), whereas LMMP is
general enough to cater for the evolution of error variance.

Next, for adaptive estimation of complex signals with sec-
ond order noncircular (improper, rotation-dependent) distri-
butions, it is shown that the covariance matrix Cxx = E[xxH ],
does not contain sufficient information, and the pseudocovari-
ance matrix Pxx = E[xxT ] should also be taken into account
to describe the complete second order behaviour of the com-
plex random vector x [34], [35]. In practice, this is achieved
by virtue of the widely linear modelling [34, 36], where both
x and its complex conjugate x∗ are combined into the aug-
mented input xa = [xT , xH ]T . The widely linear Augmented
Complex Least Mean Square (ACLMS) algorithm [37, 36] is
then exploited in adaptive frequency estimation of the gener-
ality of system conditions - both balanced (circular) and un-
balanced (noncircular). The strictly linear models (CLMS,
LMP, LMMP) are shown to provide biased and non-minimum
variance solutions, while the widely linear ACLMS produced
an unbiased and minimum variance solution, asymptotically
approaching the theoretical performance bound - the Cramer
Rao Lower Bound (CRLB).
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Fig. 4. Scatter plots of complex white noise realisations.
Top row: circular Gaussian noise (left) and noncircular Gaus-
sian noise (η = 0.81) (right). Bottom row: circular Lapla-
cian noise (left) and noncircular Laplacian noise (η = 0.81)
(right). The circularity measure η is defined in (15). The kur-
tosis values Kc are given for each case.

COMPLEX CIRCULARITY AND WIDELY LINEAR MOD-
ELLING

Complex circularity is a property of probability density func-
tions, whereby the distribution of a complex random variable
x and its rotation eȷφx are equal for any rotation angle φ. Ex-
amples of circular and noncircular signals, together with their
kurtosis values, are given in Fig. 4, where the symbol ℜ de-
notes the real and ℑ the imaginary part of a complex number.
Most real world complex-valued signals are noncircular. It is
not practical to quantify noncircularity from the probability
distributions, however, and we usually consider second order
circularity (properness) and second order noncircularity (im-
properness), which are derived from the powers in the real
and imaginary part, based on covariance functions.
Widely linear model. Consider a real-valued conditional
mean squared error (MSE) estimator

ŷ = E[y|x] (7)

which estimates the signal y in terms of another observation
x. For zero mean, jointly normal y and x, the optimal solution
is the linear estimator given by

ŷ = xTh (8)

where h = [h1, . . . , hL]
T is a vector of fixed filter coeffi-

cients, x = [x1, ..., xL]
T the regressor vector, and (·)T the

vector transpose operator.

In the standard, strictly linear estimation in the complex
domain, it is assumed that we can use the same form of esti-
mator, leading to the standard complex linear minimum mean
square error (MMSE) estimator in the form

ŷ = ŷr + ȷŷi = xTh (9)

where ȷ =
√
−1 and subscripts r and i denote respectively

the real and imaginary parts of a complex variable. Since both
the real and imaginary parts of complex variables are real, we
also have

ŷr = E[yr|xr, xi], ŷi = E[yi|xr, xi] (10)

and a more general form of (9) becomes

ŷ = E[yr|xr, xi] + ȷE[yi|xr, xi] (11)

Substitute xr = (x + x∗)/2 and xi = (x − x∗)/2ȷ to arrive at

ŷ = E[yr|x, x∗] + ȷE[yi|x, x∗] = E[y|x, x∗] (12)

leading to the widely linear estimator for complex valued data

ŷ = hTx+ gTx∗ = xTh+ xHg = xT (k)wa(k) (13)

where h and g are complex-valued coefficient vectors. In
practice, the widely linear estimate in (13) is based on a re-
gressor vector produced by concatenating the input vector
x with its conjugate x∗, to give an augmented input vector
xa = [xT , xH ]T , together with the corresponding augmented
coefficient vector wa = [hT , gT ]T .
Augmented complex statistics. The 2L×2L augmented co-
variance matrix, corresponding to the widely linear model in
(13), now becomes [35, 38, 36]

Ca
xx = E

[
x
x∗

] [
xHxT

]
=

[
Cxx Pxx
P∗

xx C∗
xx

]
(14)

and contains the full second order statistical information.
From (14), it is clear that the covariance matrix, Cxx =
E[xxH ], alone does not have sufficient degrees of freedom
to describe full second order statistics, and in order to make
use of all the available second order information we also
need to consider the pseudocovariance matrix, Pxx = E[xxT ].
Processes with the vanishing pseudocovariance, Pxx = 0,
are termed second order circular (or proper). Therefore, the
widely linear estimator in (13) is optimal for the generality of
complex signals (both proper and improper), and simplifies
into the strictly linear model (g = 0) for proper data.
Index of second order noncircularity (improperness). The
degree of improperness can be calculated using the circularity
index, given by [39]

η =
|τx|2

σ2
x

(15)

where σ2
x = E[x(k)x∗(k)] is the variance of the signal x, and

τ2x = E[x(k)xT (k)] = E[|x2(k)|] is the absolute value of the
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Fig. 5. Widely linear autoregressive modelling of the noncir-
cular Ikeda signal. Top row: covariances, Bottom row: pseu-
docovariances of (left) the original Ikeda signal, (middle) the
strictly linear AR model of Ikeda signal, (right) the widely
linear AR model of Ikeda signal.

pseudovariance of x. This way, η ∈ [0, 1], the value of 0 in-
dicating that x(k) is second order circular (proper), otherwise
indicating a second order noncircular (improper) x(k). The
angle θ = arg(η(x)) indicates the orientation of the com-
plex distribution - for a purely circular signal, η = 0, and
θ does not provide additional information about the distribu-
tion. For graphical interpretation, imagine an ellipse (centred
in the complex plane) of eccentricity ϵ and orientation α, such
that η = ϵ2 and θ = 2α [39]. For circular signals, ϵ = 0, indi-
cating a circle, while for the extreme case of ϵ = 1 the ellipse
becomes elongated with a maximal major axis and minor axis
of length zero.
Widely linear autoregressive modelling. Based on the
widely linear model in (13), the widely linear autoregressive
model (WLAR) can be written as

y(k) = h(k)x(k) + g(k)x∗(k) + n(k), n ∼ N (0, τ2x , σ
2
x)

for which the coefficients are obtained from the widely linear
Yule-Walker equations, given by [40][

h∗

g∗

]
=

[
C P
P∗ C∗

]−1 [
c
p∗

]
(16)

Fig. 5 illustrates the ability of the WLAR model to explain
both the covariance and pseudocovariance of the nonlinear
and noncircular (chaotic) Ikeda signal. Notice that the stan-
dard AR model was not able to explain the pseudocovariance.
The advantage of widely linear estimation over strictly linear
estimation can be quantified by the difference between the
mean square errors of a strictly linear estimator, e2L, and that
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Fig. 6. Circularity via the “real-imaginary” scatter plot in
the complex plane. The circle denoted by ‘+’ corresponds
to a circular complex-valued signal v(k) in a balanced system
where Va(k), Vb(k), Vc(k) are identical at 1-p.u. (per unit)
The ellipse denoted by ‘·’ corresponds to a noncircular v(k)
obtained in an unbalanced system condition with Va(k) = 1-
p.u, Vb(k) = 0.9-p.u. and Vb(k) = 0.7-p.u.

of a widely linear estimator, e2WL [34], given by

δe2 = e2L − e2WL

= [p − P∗
xxC∗−1

xx c∗]H [Cxx − PxxC∗−1
xx P∗

xx]
−1

· [p − P∗
xxC∗−1

xx c∗] (17)

where c = E[y∗x] and p = E[yx]. Due to the positive def-
initeness of the matrix [Cxx − PxxC∗−1

xx P∗
xx], the term δe2 is

always nonnegative. This means that the widely linear estima-
tor has performance advantage over the strictly linear estima-
tor for improper data, whereas their performances on proper
data are identical.
Voltage sags and noncircularity. It is now possible to relate
the complex circularity with the distribution of the αβ voltage
v(k) from (5) in balanced and unbalanced system conditions.
Fig. 6 shows amplitude distribution diagrams for a balanced
case and a voltage sag event; when the phase voltages exhibit
dips or transients (a sag event), Va(k), Vb(k), Vc(k) are not
identical, and samples of v(k) are located on an ellipse, as il-
lustrated by the ellipse denoted by ‘·’. For a balanced system,
the distribution of v(k) remains on a circle.

In addition, as shown later in the article, by accounting for
the notion of circularity, it is possible in principle to identify
the type of the voltage sag and its parameters within a quarter
of the frequency cycle.

FREQUENCY ESTIMATION MODELS IN BALANCED AND
UNBALANCED THREE PHASE SYSTEMS

The current state-of-the art is based on the αβ voltage in
(5) and the subsequent application of the complex least



mean square (CLMS) algorithm. Stochastic gradient al-
gorithms aim to minimise the instantaneous error power,
J = e(k)e∗(k) = |e(k)|2, using a gradient descent based
update of the filter coefficient vector w(k), in the form

w(k + 1) = w(k)− µe(k)∇wx(k) (18)

where µ is a small positive learning rate, e(k) the output error
of the filter, and x(k) the filter input vector (regressor vector).
Notice that for the modelling of the αβ voltage in (5), we only
need a single filter coefficient - all the subsequent models will
be presented in a single coefficient format.
The strictly linear CLMS model. The CLMS-based model
for frequency estimation is given by [17]

v̂(k + 1) = w(k)v(k)

e(k) = v(k + 1)− v̂(k + 1)

w(k + 1) = w(k) + µe(k)v∗(k) (19)

where the filter weight w(k) estimates the phasor eȷω∆T in
(6), v̂(k + 1) is the estimate of v(k + 1), and the estimated
system frequency is derived from

f̂(k) =
1

2π∆T
sin−1

(
ℑ(w(k))

)
(20)

that is, from the instantaneous value of the filter coefficient.
The strictly linear Least Mean Phase (LMP) model. Ob-
serve from (6) that the instantaneous system frequency is ob-
tained based on the phase information in eȷω∆T, and thus the
CLMS may be suboptimal, since it is primarily the phase
rather than the magnitude that conveys useful information.
The complex least-mean-phase (LMP) algorithm [33, 20] is
designed to minimise the phase error, based on the cost func-
tion

Jpe(k) = |epe(k)|2 = |∠v(k + 1)− ∠(v(k)w(k))|2 (21)

Its update is given by

w(k + 1) = w(k)− µ∇w(k)Jpe(k)

and from ∇w(k)Jpe(k) = 2epe(k)
∂epe(k)
∂w∗(k) the single-tap weight

update of LMP has the form

w(k + 1) = w(k) +
ȷµepe(k)v

∗(k)

(v(k)w(k))∗
(22)

Since the estimated instantaneous frequency of a three-phase
system is a derivative of the estimated phase, this suits the
LMP algorithm, which rotates the filter output towards the de-
sired signal and corrects solely for the phase error. Therefore,
for balanced system conditions (and thus a circular system)
LMP is expected to achieve enhanced frequency estimation
over the standard, error power based, CLMS.
The Least Mean Magnitude Phase (LMMP) based estima-
tion. The LMMP decomposes the cost function of CLMS,

J = 1
2 |e(k)|

2, into a sum of two terms: the magnitude-only
term that is minimised when |v(k + 1)| = |v̂(k + 1)|, and
the phase-only term that is minimised when |∠v(k + 1)| =
|∠v̂(k + 1)|, that is [31]

J = (|v(k + 1)| − |v̂(k + 1)|)2︸ ︷︷ ︸
Jm(k+1)

(23)

+ 2|v(k + 1)||v̂(k + 1)|(1− cos(∠v(k + 1)− ∠v̂(k + 1)))︸ ︷︷ ︸
Jp(k+1)

where Jm(k + 1) and Jp(k + 1) are respectively the magni-
tude and phase cost functions that inherently exist in the cost
function of CLMS. The corresponding gradients are

∇w∗Jm = −2(|v(k + 1)|sgn(v̂(k + 1))− v̂(k + 1))v∗(k)

∇w∗Jp = −2(v(k + 1)− |v(k + 1)|sgn(v̂(k + 1)))v∗(k)

where sgn(v̂(k + 1)) = v̂(k + 1)/|v̂(k + 1)|. We can assign
different weights to these cost functions. A weighted linear
combination of Jm and Jp through different learning rates
µm and µp gives the Least-Mean-Magnitude-Phase (LMMP)
update [31]

w(k + 1) = w(k) + (24)
+ µm(|v(k + 1)|sgn(v̂(k + 1))− v̂(k + 1))v∗(k)

+ µp(v(k + 1)− |v(k + 1)|sgn(v̂(k + 1)))v∗(k)

This way we can leverage the magnitude-only and phase-only
based estimation and have a whole range of algorithms be-
tween the CLMS and LMP.
The ACLMS based frequency estimation. In unbalanced
system conditions, the distribution of the voltage in (5) is ro-
tation dependent (noncircular) and the signal is adequately
modelled (see the Appendix A) only by using the widely lin-
ear model in (13), whose adaptive version is given by

v(k) = A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ) (25)

In other words, when Va(k), Vb(k), Vc(k) are not identical,
A(k) is no longer a constant, B(k) ̸= 0, and the model in
(6) is not adequate. The coefficients of the above widely
linear model can be adapted using the Augmented CLMS
(ACLMS), given by [37, 36]

v̂(k + 1) = v(k)h(k)︸ ︷︷ ︸
standard update

+ v∗(k)g(k)︸ ︷︷ ︸
conjugate update

e(k) = v(k + 1)− v̂(k + 1)

h(k + 1) = h(k) + µe(k)v∗(k)

g(k + 1) = g(k) + µe(k)v(k) (26)

where h(k) and g(k) are respectively the standard and conju-
gate filter weights. The stability of ACLMS has been investi-
gated in [41]; the upper bound for the step-size of ACLMS is
roughly half that of CLMS.



From (25) and (26), the estimate v̂(k + 1) becomes

v̂(k + 1) = A(k)h(k)eȷ(ωk∆T+ϕ) +B(k)h(k)e−ȷ(ωk∆T+ϕ)

+ A∗(k)g(k)e−ȷ(ωk∆T+ϕ) +B∗(k)g(k)eȷ(ωk∆T+ϕ)

=
(
A(k)h(k) +B∗(k)g(k)

)
eȷ(ωk∆T+ϕ)

+
(
A∗(k)g(k) +B(k)h(k)

)
e−ȷ(ωk∆T+ϕ) (27)

while from (25), v(k + 1) can be rewritten as

v(k + 1) = A(k + 1)eȷω∆Teȷ(ωk∆T+ϕ)

+ B(k + 1)e−ȷω∆Te−ȷ(ωk∆T+ϕ) (28)

Comparing the ‘standard’, strictly linear parts within (27) and
(28), the term eȷω∆T containing the frequency information
can be estimated from

eȷω̂∆T =
A(k)h(k) +B∗(k)g(k)

A(k + 1)
(29)

while comparing the conjugate parts within (27) and (28), the
evolution of the term e−ȷω∆T can be expressed as

e−ȷω̂∆T =
A∗(k)g(k) +B(k)h(k)

B(k + 1)
(30)

thus giving

eȷω̂∆T =
A(k)g∗(k) +B∗(k)h∗(k)

B∗(k + 1)
(31)

The assumption held implicitly in frequency estimation by
adaptive filtering algorithms is that, at two consecutive time
instants, A(k + 1) ≈ A(k), and also B(k + 1) ≈ B(k). This
way, (29) and (31) can be respectively simplified into

eȷω̂∆T = h(k) +
B∗(k)

A(k)
g(k) (32)

eȷω̂∆T = h∗(k) +
A(k)

B∗(k)
g∗(k) (33)

Appendix A shows that the coefficient A(k) is real-valued
whereas B(k) is complex-valued, and thus B∗(k)

A(k) =
(B(k)
A(k)

)∗
.

Since (32) should be equal to (33), using a(k) =
(B(k)
A(k)

)∗,
we can find the expression for a(k) by solving the following
quadratic equation with complex-valued coefficients

g(k)a2(k) +
(
h(k)− h∗(k)

)
a(k)− g∗(k) = 0 (34)

Since the system frequency is far smaller than the sam-
pling frequency, the correct solution is that for which imagi-
nary part of eȷω̂∆T is positive, that is

a(k) =
−ȷℑ

(
h(k)

)
+ ȷ

√
ℑ2(h(k))− |g(k)|2

g(k)
(35)

and the widely linear system frequency estimate f̂(k) is cal-
culated in the form

f̂(k) =
1

2π∆T
sin−1

(
ℑ(h(k) + a1(k)g(k))

)
(36)

The above expression is a generic widely linear extension of
the standard, strictly linear, frequency estimation method, and
can be implemented by any type of widely linear adaptive fil-
ter. When the system is balanced, g(k) = 0, and (36) simpli-
fies into the standard linear solution.

UNBALANCED SYSTEM CONDITIONS AND CLASSIFICA-
TION OF VOLTAGE SAGS

There are seven typical three-phase voltage sags that cause
system imbalance; single-phase-to-ground ones are charac-
terised in Table 1, while Table 2 characterises two-phase-to-
ground sags. The corresponding phasor diagrams, together
with the associated circularity plots, are given in Fig. 7 and
Fig. 8. Observe that apart from the symmetric Type A volt-
age sag, all the other sags exhibit noncircular amplitude dis-
tribution and the frequency drifts are thus expected to be best
modelled by widely linear models. The shape, orientation
and principal axes are different for the various types of sags,
allowing us to identify the fault based on its circularity prop-
erties. For instance, Type C sag is noncircular and aligned
horizontally, whereas Type B sag is noncircular and is aligned
vertically. Similar observations can be made based on the
two-phase-to-ground faults in Fig. 8.
Ambiguities and duality between the sags. Consider a Type
B sag, that is, a phase to-ground fault at phasor va for a star-
connected load, shown in Fig. 7. For the same voltage sag in
a delta-connected load (where terminal voltages are phase-to-
phase voltages), the parameters of the corresponding voltage
sag are obtained using the star-delta (Yd) transformation V

′

a

V
′

b

V
′

c

=
ȷ√
3

 0 1 −1
−1 0 1
1 −1 0

 Va

Vb

Vc

 (37)

where the factor
√
3 keeps the system power invariant, while

the 90◦ rotation (by the imaginary unit j) keeps the axis of
symmetry of the sag along the real axis. Owing to the rota-
tion and coordinate transformation, a Type B sag in a delta-
connected load can be seen as Type C sag, usually considered
to be caused by a phase-to-phase fault, where the voltage pha-
sors in the two faulted phases move toward each other. After
applying (37) once again, the equivalent sag for a phase-to-
phase connected load becomes a Type D sag.

The equivalent forms for sags due to two phase-to-ground
faults can be derived in the same way. For example, for a Type
E sag, listed in Table 2, after applying the transformation in
(37) we obtain a Type F sag, whereas applying the Yd trans-
formation twice on Type E sag gives Type G sag. Relation-
ships between faults, load connections and sag types are given
in Table 3; for more detail see [5]. Most common sags are of
Types A, C, and D [27]. Type A sag does not alter the cir-
cularity of the complex voltage and for frequency estimation
standard linear adaptive estimators (CLMS, LMP, LMMP) are



Table 1. Four types of voltage sags due to single phase-to-ground fault
Type A Type B Type C Type D
Va = V Va = V Va = 1 Va = V

Vb = (− 1
2
− ȷ

√
3

2
)V Vb = − 1

2
− ȷ

√
3

2
Vb = − 1

2
− ȷ

√
3

2
V Vb = − 1

2
V − ȷ

√
3

2

Vc = (− 1
2
+ ȷ

√
3

2
)V Vc = − 1

2
+ ȷ

√
3

2
Vc = − 1

2
+ ȷ

√
3

2
V Vc = − 1

2
V + ȷ

√
3

2

Table 2. Three types of voltage sags due to two phase-to-ground faults
Type E Type F Type G
Va = 1 Va = V Va = 2

3
+ V

3

Vb = (− 1
2
− ȷ

√
3

2
)V Vb = − ȷ

√
3

3
− V

2
− ȷ

√
3V
6
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Fig. 7. The four unbalanced voltage sags due to single phase-to-ground faults, for the characteristic complex voltage of V =
0.7.
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Fig. 8. The three unbalanced voltage sags due to two phase-to-ground faults for the characteristic complex voltage of V = 0.7.

adequate, whereas sags of Type C and Type D exhibit noncir-
cular amplitude distributions and the system frequency is thus
best estimated using the widely linear ACLMS. From Fig. 7
and 8, we can observe that when the phase difference between

phasors Vb and Vc is smaller than the nominal 2
3π (such in the

case of Type C and Type G sags), the corresponding circu-
larity plots show a vertically aligned ellipse, whereas when
the phase difference between phasors Vb and Vc is larger than



Table 3. Causes of three-phase voltage sags
Fault type Load: star Load: delta

Three-phase Type A Type A
Two-phase-to-ground Type E Type F

Phase-to-phase Type C Type D
Single-phase Type B Type C
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Fig. 9. Time waveforms for different voltage sag types.

2
3π (Type D and F sags), a horizontally aligned ellipse is ob-
served. Time waveforms of several typical voltage sags are
shown in Fig. 9.

EXAMPLES OF STRICTLY LINEAR AND WIDELY LINEAR
FREQUENCY ESTIMATION

The following case studies are most frequent in practical ap-
plications and will be addressed in this section.

• Frequency estimation in the presence of voltage sags,
where the system frequency remains at 50Hz, but due
to system imbalance the frequency reading is wrong;

• Frequency rise and decay, which routinely occurs in
microgrids and islands, due to a mismatch between pro-
duction and consumption, resulting in the change in
system frequency;

• Presence of harmonics, caused by heavy loads, imbal-
ance of active and reactive power due to the incorpora-
tion of intermittent renewable generation, or switching
between the main grid and microgrids.

Simulations were performed in the Matlab programming en-
vironment, for signals sampled 5kHz, and the step-size µ of
all algorithms was set to be 0.01 in all simulations.
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Fig. 10. Illustration of the speed of convergence in frequency
estimation for all the strictly linear algorithms for a noise-free
balanced power system.

Table 4. percentage errors of all the algorithms in frequency
estimation in noisy balanced power system

SNR [dB] 50 40 30 20 10
CLMS 0.047% 0.17% 0.53% 2.73% 14.73%
LMP 0.032% 0.11% 0.33% 1.05% 13.72%

ACLMS 0.048% 0.17% 0.53% 1.83% 13.21%

Balanced system operation. In the first set of simulations,
the power system was operating at a system frequency of
f = 50Hz, it was balanced and had distortion-free three-
phase voltages (normalised to unit magnitude), and all the
considered frequency tracking algorithms were initialised
with f0 = 50.5Hz. Fig. 10 illustrates the convergence of the
adaptive frequency tracking algorithms considered for this
circular complex voltage arrangement (see (5)), conform-
ing with the analysis: the CLMS and ACLMS had similar
performance and converged faster than LMP, however, the
phase-error based LMP exhibited robust performance after
convergence. This is further depicted in Table 4, for a system
contaminated by noise over a range of Signal to Noise Ratio
(SNR) levels.
Frequency estimation in the presence of synthetic voltage
sags. Fig. 11 compares performances of the strictly linear
CLMS, LMP and LMMP for a system disturbance caused
by Type C voltage sag (with characteristic complex voltage
V = 0.7), typical waveforms for a Type C sag are shown
in Fig. 9. Initially, the simulated power system was in its
normal operation, at 50 Hz, it had balanced distortion-free
three-phase voltages with unit magnitude and all the estima-
tors converged in a similar way. Then at t = 0.05 s, a Type C
sag occurred, with around a 12% voltage drop and 9.5◦ phase
angle offset for phases vb and vc, leading to an unbalanced
system with a degree of noncircularity η = 0.3501 (Fig. 7).
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0 0.05 0.1 0.15 0.2
46

47

48

49

50

51

52

53

Time (sec)

F
re

qu
en

cy
 (

H
z)

 

 

LMP
LMMP

(b) LMP vs. LMMP - LMP has advantage in terms of the bias and LMMP in
terms of the error variance

Fig. 11. Comparison of CLMS, LMMP and LMP for fre-
quency estimation in the presence of Type C voltage sag.

The LMMP algorithm showed smallest variation in frequency
estimation whereas the solely phase error based LMP algo-
rithm was the only unbiased algorithm - none of them was
optimal for the noncircular unbalanced three-phase system.
Frequency estimation in the presence of harmonics, and
for a succession of sags. Fig. 12 illustrates the behaviour
of ACLMS, LMP, and CLMS for a system undergoing a se-
quence of harmful events. The simulated power system was
initially in its normal operating mode, at 50 Hz, with balanced
distortion-free three-phase voltages of unit magnitudes. Then,
at t = 0.05 s, a Type C sag occurred, with around a 12% volt-
age drop and 9.5◦ phase angle offset in phases vb and vc, lead-
ing to an unbalanced three-phase power system with a degree
of noncircularity η = 0.3501 (Fig. 7). There was an in-
evitable oscillation error at twice of the system frequency for
both the CLMS and LMP based estimation due to the under-
modelling (see Appendix B). The phase error based LMP al-
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Fig. 12. Frequency estimation using the strictly linear CLMS
and widely linear ACLMS (for µ = 0.01), for frequency esti-
mation in a three phase power system undergoing three con-
secutive voltage sags of different natures, together with har-
monic disturbance.

gorithm eliminated the bias encountered by CLMS, whereas
the advantage of the widely linear ACLMS based estimator
in accurately estimating the frequency can be seen after con-
vergence (after about 100ms). Then at t = 0.25 s, a Type D
sag took place exhibiting a 30% voltage drop for phase va and
6.6% voltage drop for both the phases vb and vc, together with
a 8◦ phase angle offset, exhibiting the degree of noncircular-
ity of η = 0.3433. Again, the widely linear ACLMS gave
an unbiased performance, whereas the CLMS was not ade-
quate. Finally, after t = 0.4 s, a 10% of the third harmonic and
10% of the fifth harmonic of the fundamental frequency were
added into the unbalanced three-phase power system suffer-
ing from the same Type D sag to give the circularity index of
η = 0.3920. The estimated frequency was subject to an oscil-
latory steady state error; from t = 0.4 s, the ACLMS achieved
significantly better performance with a smaller oscillation er-
ror than the strictly linear CLMS and LMP.
Frequency estimation in the presence of a mismatch be-
tween the generation and consumption - frequency rise
and decay. Fig. 13 illustrates the superior performance of
the widely linear ACLMS over CLMS for a power system ex-
periencing frequency rise and decay. In the simulations, the
50 Hz fundamental frequency estimation was offset by a Type
D unbalanced three-phase voltage sag, and the frequency rose
and decayed at a rate of 5 Hz/sec. The ACLMS algorithm fol-
lowed the true system frequency very closely after an initiali-
sation period of around 0.05 sec, whereas as expected CLMS
produced a biased estimation with large variance.
Theoretical performance bounds in frequency estimation.
Bias in frequency estimation is particularly damaging in smart
grid applications, as it indicates non-existing shifts in fre-
quency, whereas oscillations (error variance) in the estimate
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Fig. 13. Frequency rise and decay. Illustration of frequency
estimation for a generation - consumption mismatch (micro-
grids, islanding), when the system frequency is undergoing a
decay (G < L) and rise (G > L) at a rate of 5 Hz/sec. The
widely linear ACLMS approached the correct value to within
5% in 50ms, whereas the strictly linear CLMS could not cope
with the unbalanced system conditions. The simulations were
conducted for µ = 0.01.

indicate that the estimation algorithm is not adequate. A bi-
ased estimate will send false alarms through the system, or
force the operator to wait for the bias to settle before taking
action - both potentially hazardous.

Fig. 14 illustrates the statistical advantage of widely lin-
ear frequency estimation over its strictly linear counterpart.
Bias and variance analysis for all the algorithms considered
were conducted in a noisy environment, by averaging 1000
independent trials. The Cramer-Rao lower bound (CRLB), a
theoretical performance bound for the variance of a frequency
estimator of a single tone complex exponential contaminated
by zero-mean complex-valued doubly white Gaussian noise
is derived in Appendix C. Compared with CLMS and LMMP,
the phase error based LMP achieved a smaller bias, support-
ing the analysis. The strictly linear CLMS, LMP, and LMMP
were inadequate for unbalanced system conditions (noncircu-
lar), they were biased and the bias was not affected by the
noise level. The widely linear ACLMS-based estimator was
asymptotically unbiased for high SNR.

A similar conclusion can be drawn for the analysis of the
estimation variance. Out of the strictly linear algorithms, the
LMMP was most robust (also confirmed in Fig. 11), followed
by LMP and CLMS. The unavoidable oscillation error expe-
rienced by strictly linear estimators, as shown in Fig. 12,
gave rise to the high estimation error variance, whereas the
widely linear ACLMS estimator was consistent, approaching
the CRLB to within 9 dB in the high SNR region.
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(b) Variance: the widely linear ACLMS is a consistent estimator

Fig. 14. Analysis of bias and variance in frequency estimation
for the widely linear ACLMS, and the strictly linear CLMS,
LMP and LMMP, relative to theoretical bound for minimum
variance unbiased estimation, the Cramer-Rao lower bound
(CRLB). The curves are obtained for different SNRs, and av-
eraged over 1000 independent trials.

ESTIMATION OF REAL WORLD VOLTAGE SAGS

Real-world three phase voltage sags were recorded at a
110/20/10kV transformer station, using the ABB REL 531
numerical line distance protection terminal monitoring ‘phase-
to-ground’ voltages. The device was set to record whenever
the phase voltage value dropped below 90% of its nominal
value for longer than 20 ms, and was sampling at 1 kHz; the
voltage waveforms normalised with respect to their nominal
peak values are shown in Fig. 16(a) and (c).
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Fig. 15. Noncircularity of real world unbalanced voltage sags
via a ’real-imaginary’ scatter plot in the complex plane.

In the first case study, a problem in phase vc occurred
(shortcut with earth), causing a 94% voltage drop, while the
voltages in phases va and vb kept their nominal values, to give
a degree of noncircularity of η = 0.8081. In the second case
study, at around t = 0.07 sec, phase vb experienced a short-
cut with earth, resulting in a 65.32% voltage sag and 79.25%
and 21.92% voltage swells in phases va and vc respectively,
to give a degree of noncircularity of η = 0.2151. A geometric
view of the circularity of the complex voltage v(k) for these
two cases is given in Fig. 15 - observe the noncircular natures
of these real world problems.

Fig. 16(b) and (d) illustrate the performances of CLMS
and ACLMS. Both CLMS and ACLMS were suitable for nor-
mal operating conditions; the CLMS was not adequate for the
unbalanced situation, whereas the ACLMS could quickly re-
cover and accurately track the true system frequency, which
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Fig. 16. Frequency estimation in the presence of real-world
voltage sags. (a) Phase C experiences a voltage dip of 94 %.
(b) Frequency tracking using CLMS and ACLMS. (c) Phase
B experiences a shortcut and phases A and C go into a swell.
(d) Frequency tracking using CLMS and ACLMS.

remained at 50Hz.

SUMMARY AND FUTURE OPPORTUNITIES

We have revisited adaptive frequency estimation in three
phase power systems, and have proposed robust frequency
estimators suitable for the challenges of smart grid. First,
it has been shown that for a balanced system the αβ trans-
formed three-phase voltage is second order circular (proper),
whereas in unbalanced system conditions it is second order
noncircular (improper). Circularity plots for voltage sags
have indicated the possibility of identifying the type and
characteristics of the sag, and the analysis has shown that
Type A sag (e.g. motor starting) is proper, while all the
other types of voltage sags (Type B – Type G) are improper.
Standard strictly linear complex valued estimators are sub-
optimal for improper data, and a widely linear estimator



of the instantaneous system frequency has been shown to
be second-order optimal for both balanced and unbalanced
three-phase systems. The adaptive frequency estimation
technique based on the widely linear Augmented Complex
Least Mean Square (ACLMS) algorithm has been compared
with standard estimation techniques, and has shown excellent
tracking ability during dynamic changes in power system,
together with reduced sensitivity to higher order harmonics.
Unlike the strictly linear frequency estimators based on the
CLMS, Least Mean Phase (LMP) and Least Mean Magni-
tude Phase (LMMP), the ACLMS has been shown to yield
unbiased solutions and reduced variance, with a performance
improvement over the standard methods that increases with
the degree of system imbalance (noncircularity of the pha-
sor). This is suited to smart grid applications, where severe
frequency variations are expected due to the on-off switching
of various subgrids, and the dual roles of generators and loads
(e.g. PEVs).

The use of widely linear modeling in conjunction with
Clarke’s model increases the number of degrees of freedom,
enabling unbiased minimum variance frequency estimation.
This has enabled unbiased and minimum variance frequency
estimation. Beyond this, it opens opportunities for enhanced
grid modeling. For example, by catering for the improperness
(second order noncircularity) of the complex αβ voltage, it is
possible to realize:

• Rapid frequency trackers at the distribution level,
which are envisaged to be a part of many future ap-
pliances (dynamic load, inverters). Smart loads must
be able to detect rapid frequency changes and take
appropriate action;

• Joint identification and classification of the fault in the
system from a voltage dip, based on the different de-
grees of noncircularity and the shape of the circularity
diagram. It is critical that the frequency detector re-
mains accurate during the fault and indicates whether
the system experienced one-, two-, or three-phase fault;

• Rate of change frequency trackers, crucial for the op-
eration of microgrids and frequent On/Off switching in
the event of islanding;

• Loss-of-mains detection in real time, as a drop in fre-
quency may indicate a loss of a generator and a rise in
frequency loss of a load. For instance, the way a wind
turbine reacts to a fault depends on the type of voltage
sag, and the widely linear methodology enables their
identification and tracking at the sub-cycle scale (less
than 20 ms);

• Optimal operation of microgrids - in a cooperative dis-
tributed mode, we not only must bring in new genera-
tors and interconnect the grid, but also remove low pri-
ority loads when power quality deteriorates, also the

storage devices that are needed to accommodate the re-
newable sources compromise the reliability of power
quality;

• Low voltage ride through (LVRD) procedures, together
with other problems caused by the bidirectional flow
of reactive power when renewables are profusely used
(e.g. related to the dual role of photovoltaic generators).
This may help to further unify and broaden intercon-
nection standards, to address power factor control and
LVRD in order to mitigate transient stability issues;

• Forecasting and scheduling, since solar generators and
small scale wind turbines are a must-take resource, but
are intrinsically intermittent, requiring enhanced real-
time control.
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APPENDIX A

From the standard three-phase system in (1) and (4), the com-
ponents vα(k) and vβ(k) of the complex voltage v(k) =
vα(k) + ȷvβ(k), obtained using the αβ transformation, can
be derived as

vα(k) =

√
2

3

(
va(k)−

vb(k)

2
− vc(k)

2

)
=

(√6Va(k)

3
+

√
6(Vb(k) + Vc(k))

12

)
cos(ωk△T + ϕ)

−
√
2
(
Vb(k)− Vc(k)

)
4

sin(ωk△T + ϕ) (38)

vβ(k) =

√
2

3

(√3vb(k)

2
−

√
3vc(k)

2

)
= −

√
2
(
Vb(k)− Vc(k)

)
4

cos(ωk△T + ϕ)

+

√
6
(
Vb(k) + Vc(k)

)
4

sin(ωk△T + ϕ) (39)

Given that

cos(ωk△T + ϕ) =
eȷ(ωk△T+ϕ) + e−ȷ(ωk△T+ϕ)

2

sin(ωk△T + ϕ) =
eȷ(ωk△T+ϕ) − e−ȷ(ωk△T+ϕ)

2ȷ
(40)

the complex-valued v(k) can be written in the form of a stan-
dard part (left hand term) and a conjugate part (right hand



term) as v(k) = vα(k) + ȷvβ(k), that is

v(k) = A(k)eȷ(ωk△T+ϕ) +B(k)e−ȷ(ωk△T+ϕ) (41)

where

A(k) =

√
6(Va(k) + Vb(k) + Vc(k))

6

B(k) =

√
6(2Va(k)− Vb(k)− Vc(k))

12
−

√
2(Vb(k)− Vc(k))

4
ȷ

Augmented complex statistics [38, 36] show that v(k) is
second order circular with rotation invariant probability
density function in the complex plane if B(k) vanishes
and A(k) is a constant, which can only be achieved when
Va(k), Vb(k), Vc(k) are identical at each time instant, when
(41) simplifies into (6). In unbalanced conditions, A(k)
is real-valued, but B(k) ̸= 0 and can be complex-valued,
resulting in a second order noncircular (improper) v(k).

APPENDIX B

This Appendix gives a theoretical performance analysis on
the suboptimality of linear adaptive filters for frequency es-
timation on unbalanced three-phase voltage systems. In any
unbalanced condition, expression (25) stands, and the estima-
tor v̂(k + 1), obtained by using the strictly linear modelling
based adaptive algorithms, such as CLMS, LMMP, LMP, can
be further expressed as

v̂(k + 1) =
(
A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ)

)
w(k)

In the steady state, v̂(k + 1) ≈ v(k + 1), resulting in

w(k) =
A(k + 1)eȷ(ωk∆T+ϕ)ejω∆T

A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ)

+
B(k + 1)e−ȷ(ωk∆T+ϕ)e−jω∆T

A(k)eȷ(ωk∆T+ϕ) +B(k)e−ȷ(ωk∆T+ϕ)
(42)

Under the standard assumptions that A(k + 1) ≈ A(k), and
B(k + 1) ≈ B(k), we have

w(k) = e−jω∆T +
ejω∆T − e−jω∆T

1 + B(k)
A(k)e

−2ȷ(ωk∆T+ϕ)
(43)

where B(k)
A(k) is a unknown parameter, and w(k) is periodic as

w(k) = w(k+ 1
2f∆T ). In (20), function sin−1 is a monotonic

function, resulting in periodic oscillations in the estimated
frequency f̂(k). The cycle frequency due to undermodelling
is 2f when using standard linear adaptive filters for frequency
estimation of unbalanced power system, whereas for balanced
power systems B(k) = 0, and the standard linear estimate in
(20) is adequate.

APPENDIX C

The widely linear modelling of the complex-valued voltage
v(k) obtained from noisy unbalanced three-phase power sys-
tems is given by

v(k) = A(k)eȷ(ωk∆T+ϕ)+B(k)e−ȷ(ωk∆T+ϕ)+n(k) (44)

where n(k) is complex-valued doubly white Gaussian noise
with zero mean and variance σ2

n, that is, n = nr + ȷni, σ2
nr

=
σ2
ni

= 1
2σ

2
n, and nr ⊥ ni. (44) can be rewritten in terms of its

real and imaginary components vr(k) and vi(k) as

v(k)=(A(k) +B(k)) cos(2πfk∆T + ϕ) + nr(k)︸ ︷︷ ︸
vr(k)

+ȷ ((A(k)−B(k)) sin(2πfk∆T + ϕ) + ni(k))︸ ︷︷ ︸
vi(k)

(45)

hence the joint probability density function in terms of doubly
white Gaussian noise when the parameter of interest is the
system frequency f is given by [42]

p(v; f) = (
1

2πσ2
nr

)Kexp[− 1

2σ2
nr

K∑
k=1

((vr(k)−mr(k))
2

+ (vi(k)−mi(k))
2)] (46)

where v = [v(1), v(2), . . . , v(K)] with K the number of ob-
servations, mr(k) = (A(k) +B(k)) cos(2πfk∆T + ϕ) and
mi(k) = (A(k)−B(k)) sin(2πfk∆T + ϕ). Therefore,

∂ln (p(v; f))
∂f

=
1

σ2
nr

K∑
k=1

(
(vr(k)−mr(k))

∂mr(k)

∂f

+ (vi(k)−mi(k))
∂mi(k)

∂f

)
(47)

and

E
[∂2ln (p(v; f))

∂f2

]
= − 1

σ2
nr

K∑
k=1

(
(
∂mr(k)

∂f
)2 + (

∂mi(k)

∂f
)2
)

Since

∂mr(k)

∂f
= −2πk∆T (A(k) +B(k)) sin(2πfk∆T + ϕ)

∂mi(k)

∂f
= 2πk∆T (A(k)−B(k)) cos(2πfk∆T + ϕ)(48)

and σ2
nr

= 1
2σ

2
n. According to the CRLB calculation [43],

that is,

var(f̂) ≥ 1

−E
[∂2ln(p(v;θ))

∂f2

] (49)

The CRLB of frequency estimator on unbalanced three-phase
power systems thus can be obtained in (50).



var(f̂) ≥ σ2
n

2ΣK
k=1(2πk∆T)2

(
(A(k) +B(k))2sin2(2πfk∆T + ϕ) + (A(k)−B(k))2cos2(2πfk∆T + ϕ)

) (50)
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