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Adaptive Friction Compensation:

A Globally Stable Approach
K.A.J. Verbert, R. Tóth, Member, IEEE. R. Babuška

Abstract—In this paper, an adaptive friction compensation
scheme is proposed. The friction force is computed as a time-
varying friction coefficient multiplied by the sign of the velocity
and an on-line update law is designed to estimate this coefficient
based on the actual position and velocity errors. Furthermore,
a modified signum function definition is proposed to better
capture the behavior of friction over varying velocity profiles
than the signum function commonly used in friction models. The
properties of the closed-loop behavior of the proposed scheme
are analyzed and stability of the closed-loop system is proven.
Simulations and real-world experimental results are provided
to confirm the theoretical findings: the compensator is able to
eliminate steady-state errors, significantly decrease the stick-slip
effect and compensate even rapidly varying friction forces.

Index Terms—Friction compensation; Adaptive control; Track-
ing control; Global stability.

I. INTRODUCTION

MANY motion control tasks, like micro-manipulation or

robotic surgery, require high precision. In such applica-

tions, friction is often the main cause of performance degrada-

tion. In the absence of a correct compensatory action, friction

may cause significant tracking errors, stick-slip motion and

limit cycles [1]. The result is that the controlled system is un-

able to satisfy high-accuracy performance requirements. Thus,

friction compensation is an important objective in motion

control. Due to the complexity of the friction phenomenon, it

is not easy to adequately compensate for its effects in a closed-

loop system. The phenomenon is non-linear (especially in the

low-velocity range), time varying and application specific. One

way of dealing with friction is to use extra control force to

cancel the effect of the friction force [2]. The magnitude of

this extra force should be (approximately) equal to the actual

friction force. As the friction force is not measurable and it

often exhibits unpredictable behavior, its estimation presents

a significant challenge. Furthermore, due to the time-varying

nature of friction, an a priori estimate/model is often found

to be inefficient for compensation. This suggests that adaptive

techniques can provide an attractive solution in handling such

a complicated time-varying and application-specific behavior.

In the literature, a wide range of adaptive estimation tech-

niques have been proposed for friction compensation [2]–[19].

Most of them are based on a friction model, for example on the

simple Coulomb model [2]–[10], or on the more sophisticated

LuGre model [11]–[13]. Such models approximate the behav-

ior of the friction force with varying accuracy and complexity.
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Generally, the model complexity grows when models get more

representative, requiring more extensive parameter estimation.

To avoid the complicated estimation problem associated with

these parameters, much research has been done on compen-

sation methods that rely on the relatively simple Coulomb

friction model [2]–[6], [8]–[10], [20], [21]. In the approach

of [2], an observer is used for the on-line identification of

the Coulomb friction coefficient. Asymptotic stability of the

scheme is proven for the case when the true friction behaves

according to the assumed Coulomb model and the velocity

is bounded away from zero. In [4] and [5], compensation

methods have been proposed which relax the constraint on

the velocity. In both papers, global asymptotic stability of the

position, velocity and Coulomb friction parameter estimate is

claimed. However, asymptotic convergence of this parameter

estimate cannot be guaranteed for zero velocities, which means

that tracking errors may persist for constant references. The

difficulty of achieving convergence for zero velocity is a direct

result of the friction model assumed, which is based on a

signum function.

In the papers [2], [4], [5], the rationale behind the definition

of the signum function and hence the behavior of the friction

model is overlooked. For example, at zero velocity, the signum

function equals zero while it is known that the break-away

force has to be overcome before motion actually occurs. This

definition also makes it impossible to prove globally asymp-

totic convergence of the friction parameter estimate. When the

signum function equals zero, the convergence of the Coulomb

friction parameter estimate cannot be guaranteed [6]. In [6], a

more realistic definition of the signum function is presented:

the signum function depends, besides the velocity, on the total

control input and on the Coulomb friction parameter. It is,

however, assumed that the actual value of the signum function

is always exactly equal to its modeled value. Exact modeling

is only possible if all the input variables (velocity, total control

input and Coulomb friction parameter) are known. This again

turns out to be an unrealistic assumption because the Coulomb

friction coefficient is unknown.

In the methods discussed so far, the Coulomb friction

parameter is assumed to be constant. However, in reality,

the friction force is not constant and depends on other vari-

ables like the velocity of the moving body. In later works,

methods have been proposed to meet these properties. [8]

focused on applications in which the friction force is assumed

to be periodic with respect to time. Later, situations have

been considered in which the friction force is periodic with

respect to position [9]. Recently, a compensation method has

been proposed that allows the friction to be generally time-

varying [10]. This method is in essence similar to the one



proposed in [22]. Also in these works, no attention is paid to

the definition of the signum function and its consequences for

the stability analysis.

In this paper, we propose an adaptive compensation method

that requires no friction modeling. An attractive feature of such

a model-free approach over extensive model-based methods,

like the LuGre-model-based compensators, is the ease of its

implementation on different systems. Approaches based on

extensive friction models require that for each system, a

time-consuming, identification-based modeling phase needs to

be carried out, which requires considerable user expertise.

Moreover, most mechanical systems suffer from position-

dependent friction, which cannot be easily included in the

available friction models. This newly proposed method, which

is an improved form of the methods proposed in [8], [9] and

[10], overcomes the limitations for zero-velocity tracking as

outlined above. The main contribution lays in the introduction

of a physically realistic form of the signum function and the

analysis of the resulting closed-loop stability. More specifi-

cally, we:

1) propose a realistic and useful definition of the signum

function;

2) prove asymptotic stability of the proposed adaptive

scheme;

3) demonstrate the performance of the compensation

scheme via simulations and real-world experiments.

The paper is organized as follows: In Section II, the principal

idea of the compensator is introduced. In Section III, the

closed-loop system behavior is analyzed and next, in Section

IV, we present the stability analysis of the closed-loop system.

Issues regarding the discrete-time implementation and proper-

ties of the overall approach are discussed in Section VI. To

validate the performance of the compensator, simulations and

experiments are performed, which are presented in Section

VII. Finally, conclusions and perspectives of future work are

given in Section VIII.

II. THE ADAPTIVE FRICTION COMPENSATOR

Consider the following motion control problem:

mẍ(t) + bẋ(t) = uc(t)− Ff

(
ẋ(t), uc(t), kc(t)

)
, (1)

with ẍ(t) the acceleration of a mass m > 0 in the horizontal

direction, b ≥ 0 the viscous friction coefficient, uc(t) the

control input, and Ff

(
ẋ(t), uc(t), kc(t)

)
the friction force,

which is modeled as:

Ff

(
ẋ(t), uc(t), kc(t)

)
= kc(t)σ0

(
ẋ(t), uc(t), kc(t)

)
, (2)

with kc(t)≥ 0 a time-varying friction parameter and σ0 the

signum function defined as [6]:

σ0
(
ẋ(t), uc(t), kc(t)

)
=







1 if ẋ(t) > 0 or
(
ẋ(t)=0 and uc(t)>kc(t)

)
,

−1 if ẋ(t)<0 or
(
ẋ(t)=0 and uc(t)<−kc(t)

)
,

uc(t)
kc(t)

if ẋ(t)=0 and |uc(t)|≤kc(t).
(3)

Important properties of this friction model (2)-(3) are that

it does not require detailed friction modeling, while it still

includes a realistic representation of the friction at zero

velocity. At zero velocity, the friction force opposes the

driving forces. So, for ẋ(t) = 0 in (1), it must hold that

uc(t) − Ff

(
ẋ(t), uc(t), kc(t)

)
= 0 unless |uc(t)| > kc(t), in

which case motion is initiated. Furthermore, as kc(t) is time-

varying, this model can represent a large family of friction

behaviors.

The control input uc(t) is composed of two terms: a

‘nominal’ control action u(t) and a friction compensation

action w(t):
uc(t) = u(t) + w(t). (4)

The nominal control input u(t) is chosen as a PD control

law extended with feedforward velocity and acceleration terms

to achieve good tracking performance for different types of

reference signals. This is a further generalization of the control

laws used in [8]–[10], [22]:

u(t) = mαλ
︸ ︷︷ ︸

Kp

ex(t) +
(
(α+ λ)m− b

)

︸ ︷︷ ︸

Kd

ėx(t)

+ bẋd(t) +mẍd(t), (5)

where α, λ ∈ R
+ are the tuning parameters of the controller,

namely −α and −λ are the closed-loop poles in the nominal

situation when the friction is absent or perfectly compensated.

Note that to calculate Kp and Kd, the system parameters m
and b must be known.

To cancel the effect of friction, w(t) is defined as1:

w(t) = k̂c(t)σ
(
ẋ(t), uc(t), k̂c(t)

)
, (6)

where k̂c(t) ≥ 0 is a model-free estimate of the friction

parameter kc(t) and the signum function σ
(
ẋ(t), uc(t), k̂c(t)

)

is defined as:

σ
(
ẋ(t), uc(t), k̂c(t)

)
=







1 if ẋ(t)>0 or
(
ẋ(t)=0 and uc(t)>k̂c(t)

)
,

−1 if ẋ(t)<0 or
(
ẋ(t)=0 and uc(t)<−k̂c(t)

)
,

0 if ẋ(t)=0 and |uc(t)|≤ k̂c(t).
(7)

The differences between σ
(
ẋ(t), uc(t), k̂c(t)

)
and

σ0(ẋ(t), uc(t), kc(t)) used in the friction model (2)

are that kc(t) is replaced by k̂c(t) and that for

ẋ = 0 and uc(t) ≤ |k̂c(t)|, the value of the signum

function σ is set to 0 instead of
uc(t)

k̂c(t)
.

In contrast to the standard definition of the signum function

used in other works [2]–[10], this definition ensures an ade-

quate compensation action, even at zero velocity. The problem

with the standard definition of the signum function is that it

is zero for zero velocity, regardless of uc(t) acting on the

system. So, when the system comes to rest in an undesired

position, the compensation action is zero by definition. When

also the nominal controller is not able to initiate any motion,

the system stays in this undesired position.

As the definition of the signum function given by (7) is not

directly suited for practical purposes, we derive an equivalent

definition that is practically useful. For the sake of brevity, in

the sequel, we omit the arguments of the functions σ and σ0

1Note that computing w(t) according to (6) requires the knowledge of

uc(t), which is not available. However, we use σ
(

ẋ(t), uc(t), k̂c(t)
)

only
for illustration purpose. Later, in this paper, an alternative, but equivalent
definition of the signum function is derived that is useful for practical
purposes.



Fig. 1: The friction compensation scheme.

and we denote by σ(t) and σ0(t) their time-varying nature

where needed.

Because w(t) = k̂c(t) if σ(t) = 1, see (6), it follows from

(4), that uc(t) > k̂c(t) if and only if u(t) > 0. Similarly,

for σ(t) = −1, uc(t) < −kc(t) if and only if u(t) < 0.

Finally, if uc(t) ≤ |k̂c(t)|, it follows that u(t) = 0. This last

condition clarifies why one can set the value of the signum

function σ to zero in this mode. When the system is at rest

and the nominal controller commands a zero control action

(u(t) = 0), no compensation is needed. Therefore, a realistic

and useful definition of the signum function to be used in the

compensator is:

σ1
(
ẋ(t), u(t)

)
=







1 if ẋ(t) > 0 or
(
ẋ(t) = 0 and u(t) > 0

)
,

−1 if ẋ(t) < 0 or
(
ẋ(t) = 0 and u(t) < 0

)
,

0 if ẋ(t) = 0 and u(t) = 0.

(8)

Note that for the controller (4), σ1 as defined in (8) is

equivalent to σ as specified in (7). Now, the compensation

action w(t) can be rewritten as:

w(t) = k̂c(t)σ1
(
ẋ(t), u(t)

)
. (9)

To determine k̂c(t), the following update law [10] is used:

˙̂
kc(t) = Pσ1

(
ẋ(t), u(t)

)
[ėx(t) + λex(t)], (10)

with P, λ ∈ R
+ user-defined tuning parameters, with λ the

same parameter as in the control law (5), and ex(t) the position

error defined as:
ex(t) = xd(t)− x(t), (11)

with xd(t) the desired position.

Combining (5) and (9), the total control input becomes:

uc(t) = Kpex(t) +Kdėx(t) + bẋd(t) +mẍd(t)+

k̂c(t)σ1
(
ẋ(t), u(t)

)
. (12)

The overall compensation scheme is shown in Figure 1.

III. CLOSED-LOOP SYSTEM ANALYSIS

Applying the adaptive control law (12) to the plant (1)

results in the following closed-loop dynamics:

ẍ(t) =
uc(t)− kc(t)σ0

(
ẋ(t), uc(t), kc(t)

)
− bẋ

m
, (13a)

˙̂
kc(t) = Pσ1

(
ẋ(t), u(t)

)
[ėx(t) + λex(t)], (13b)

with ex(t), u(t), and uc(t) as defined in (11), (5), (12). In the

sequel, we assume that the system parameters m and b are

known with a reasonable accuracy so that the nominal control

law (5) can be designed.
Due to the signum functions σ0 and σ1, the closed-loop

system is a hybrid system whose behavior can be described

by several modes and transitions between these modes. Both

the ‘true’ signum function σ0 and the compensator signum

function σ1 can be in five different modes. These modes are

given in Tables I and II, respectively.

TABLE I: Modes of σ0(ẋ(t), uc(t), kc(t)).

Mode ẋ(t) uc(t) σ0

M1 (−∞, 0) R −1

M2 0
(

−∞,−kc(t)
)

−1

M3 0 [−kc(t), kc(t)] [−1, 1]

M4 0
(

kc(t),∞
)

1

M5 (0,∞) R 1

TABLE II: Modes of σ1(ẋ(t), u(t)).

Mode ẋ(t) u(t) σ1

M′1 (−∞, 0) R −1

M′2 0 (−∞, 0) −1

M′3 0 0 0

M′4 0 (0,∞) 1

M′5 (0,∞) R 1

The modes of σ0 (abbreviated as M in the sequel) are

interpreted as follows: M1 and M5 describe sliding motion for

negative and positive velocities respectively, M3 is the stiction

mode and M2 and M4 are break-away modes (transition

between stiction and sliding). The modes of the two signum

functions are not independent as only certain combinations are

possible. For ẋ(t) 6= 0, both signum functions are in the same

mode by definition. Furthermore, it is not possible that σ1 is in

M′3 (i.e. σ1 = 0), while σ0 6= 0 (when ẋ(t) = u(t) = σ1 = 0,

then uc(t) = 0 and from (3) it follows that σ0(t) = 0). Finally,

it is not possible that one of the signum functions is in Mode 2
and the other is in Mode 4 This leaves only 7 combinations in

which the closed-loop system can be: the first 5 combinations

are those in which the system and the compensator are in the

same mode, and the last two are those in which the system,

σ0, is in M3 while the compensator, σ1, is in M′2 or M′4.



M5

M3

M1

M4M2

ẋ = 0, |uc| < kc

ẋ = 0, |uc| < kc

uc < −kc uc > kc

ẋ > 0

ẋ < 0
ẋ = 0
uc > kc

ẋ = 0
uc < −kc

Fig. 2: Schematic overview of the different modes of

σ0
(
ẋ(t), uc(t), kc(t)

)
and the possible transitions between

these modes.

The system is also constrained in its switching possibilities.

The signum functions cannot arbitrarily switch between their

modes. For the compensator signum function σ1, all transitions

are possible except the direct transitions between M′1 and M′5
and between M′2 and M′4. The ‘true’ signum function σ0 is

more constrained in its transition possibilities. The possible

transitions are illustrated in Figure 2.

The other transitions are physically impossible as will be

explained next. First, it is shown that the ‘true’ signum

function cannot stay in M2 or M4. These modes only serve to

bring the system from M3 to M1 or M5. In addition, we show

that the transitions M4→ M1 and M2→ M5 are excluded.

Lemma 1. σ0
(
ẋ(t), uc(t), kc(t)

)
cannot stay in M2 or M4

and neither can switch from M4 to M1 and from M2 to M5.

Proof. To remain in M2 or M4, both ẋ(t) and ẍ(t) have to

be equal to zero. This however conflicts with the conditions

to be in M2 or M4. For example, to be in M4, it must hold

that uc(t) > kc(t). This results in:

mẍ(t) + bẋ(t) = uc(t)− Ff

(
ẋ(t), uc(t), kc(t)

)

︸ ︷︷ ︸

kc(t)

> 0. (14)

From (14) we can conclude that the system cannot stay in M4
and also cannot move to M1. Analogously, it can be proven

that the system cannot stay in M2 and that the transition M2→
M5 is excluded.

From this result, it can also be concluded that the transitions

M4 → M3 and M2 → M3 cannot be executed because

they require zero acceleration in modes M2 and M4, which

is shown to be impossible. It also directly follows that the

transitions M1→ M2 and M5→ M4 are not possible because

they require either a zero acceleration in M2 and M4 or the

execution of the transition M4→ M1 or M2→ M5.

Finally, transitions M3 → M5 and M3 → M1 are also not

possible as shown by the following lemma.

Lemma 2. σ0
(
ẋ(t), uc(t), kc(t)

)
cannot directly switch from

M3 to M5 and from M3 to M1.

Proof. To leave M3, the acceleration has to become unequal

to zero. However, in M3, ẍ(t) = 0, because in this mode ẍ(t)
is constrained to be:

mẍ(t) = uc(t)− kc(t)σ0
(
ẋ(t), uc(t), kc(t)

)

︸ ︷︷ ︸

uc(t)

= 0. (15)

Therefore, the transition M3 → M1 is only possible via M2,

and the transition M3→ M5 is only possible via M4.

IV. STABILITY ANALYSIS

In this section, stability of the adaptive compensation

scheme is discussed. This analysis shows that the adaptive

compensator will asymptotically cancel the effect of the fric-

tion force without destabilizing the nominal control loop. The

technicalities of the proof require detailed insight into the

following two situations:

Situation 1: Signum functions in the same mode

When the plant and the compensator are in the same

mode, it holds that σ1(t) = σ0(t) (see Section III). The

closed-loop system equations (13) simplify to:

ẍ(t) =
k̂c(t)− kc(t)

m
σ1(t) + αλex(t)+

(α+ λ)ėx(t) + ẍd(t), (16a)

˙̂
kc(t) = Pσ1(t)

(
ėx(t) + λex(t)

)
. (16b)

The error dynamics become:




ėx(t)
ëx(t)
ėa(t)



 = A(t)





ex(t)
ėx(t)
ea(t)



+





0
0
1



 k̇c(t), (17)

with

A(t) =





0 1 0

−αλ −(λ+ α) σ1(t)
m

−Pλσ1(t) −Pσ1(t) 0



 ,

and ea(t) defined as kc(t)− k̂c(t).
Situation 2: Signum functions in different modes

In this situation, the compensator and the plant are

in different modes. The following combinations are

possible (see Section III):

System in M3, compensator in M′2 (18a)

System in M3, compensator in M′4. (18b)

In this situation, the following equations hold:

ẋ(t) = 0, (19a)

σ1(t) =

{
−1 for combination (18a),
1 for combination (18b),

(19b)

σ0(t) =
uc(t)

kc(t)
. (19c)

The closed-loop system equations simplify to:

ẍ(t) = 0, (20a)

˙̂
kc(t) = Pσ1(t)

(
ėx(t) + λex(t)

)
. (20b)

The error dynamics become:




ėx(t)
ëx(t)
ėa(t)



=A(t)





ex(t)
ėx(t)
ea(t)



+





0 0
1 0
0 1





[
ẍd(t)

k̇c(t)

]

, (21)



with

A(t) =





0 1 0
0 0 0
−Pλσ1(t) −Pσ1(t) 0



 .

To stay in these mode combinations, the following

conditions must be satisfied:

u(t)

{
< 0 for combination (18a),
> 0 for combination (18b),

(22a)

ea(t) > 0. (22b)

This last condition results from (3) and (7). If

k̂c(t) > kc(t), it is not possible that the system is in

M3 while the compensator is not.

From the above analysis, it can be concluded that the non-

linear closed-loop system (13) is equivalent to the following

piece-wise affine (PWA) system:




ėx(t)
ëx(t)
ėa(t)



=Ai





ex(t)
ėx(t)
ea(t)



+Bi

[
ẍd(t)

k̇c(t)

]

, (23)

with i the modes as defined in Table II and:

A1 =





0 1 0
−αλ −(λ+ α) − 1

m

Pλ P 0



 , B1 =





0 0
0 0
0 1



 ,

A2 =





0 1 0
0 0 0
Pλ P 0



 , B2 =





0 0
1 0
0 1



 ,

A3 =





0 1 0
−αλ −(λ+ α) 0
0 0 0



 , B3 = B1,

A4 =





0 1 0
0 0 0
−Pλ −P 0



 , B4 = B2,

A5 =





0 1 0
−αλ −(λ+ α) 1

m

−Pλ −P 0



 , B5 = B1.

Because the error dynamics of the closed-loop system (13) can

be written as a linear hybrid system (23), we can use linear

stability theory to proof stability of the closed-loop system.

To prove bounded-input-bounded-output stability of the linear

system (23), it is sufficient to prove that the equilibrium point

x0 = [ 0 0 0 ]⊤ of:



ėx(t)
ëx(t)
ėa(t)



=Ai





ex(t)
ėx(t)
ea(t)



. (24)

is globally uniformly stable [23]–[25]: So, to prove stability,

we are allowed to assume that ẍd(t) = k̇c(t) = 0, as in other

cases linearity of error system implies boundedness.

Theorem 1 (Closed-loop stability). The equilibrium x0 =
[ 0 0 0 ]⊤ of system (24) is globally uniformly Lyapunov stable

and locally uniformly asymptotically stable.

Proof. Consider the following Lyapunov function:

V
(
x(t)

)
= x(t)⊤





1
2 (λ

2 + 2αλ) 1
2λ 0

1
2λ

1
2 0

0 0 1
2Pm





︸ ︷︷ ︸

M

x(t), (25)

with x(t) = [ ex(t) ėx(t) ea(t) ]⊤. This Lyapunov func-

tion V (x(t)) is positive definite and descredent w.r.t. x0, which

can be proven as follows: V (x(t)) is positive definite if M is

positive definite. This is the case if all eigenvalues of M are

strictly positive. The eigenvalues of M are:




ψ1

ψ2

ψ3



 =






1
2Pm

(λ2+2αλ+1)+
√

(λ2+2αλ−1)2+4λ2

4
(λ2+2αλ+1)−

√
(λ2+2αλ−1)2+4λ2

4




 . (26)

It is obvious that the first two eigenvalues are strictly positive.

The third eigenvalue is positive if:

(λ2 + 2αλ+ 1)−
√

(λ2 + 2αλ− 1)
2
+ 4λ2 > 0,

4(λ2 + 2αλ) > 4λ2. (27)

Because 2αλ > 0, this inequality always holds. Furthermore,

V (x(t)) is trivially continuous in the neighborhood of x0 and

the descredent property is satisfied by V (x(t)) being quadratic

with bounded M . As V (x(t)) is positive definite, descredent

and continuous at the origin, according to Lyapunov’s direct

method, asymptotic stability holds if V̇ (x(t)), defined as:

V̇
(
x(t)

)
= (λ2 + 2αλ)ex(t)ėx(t)+

λex(t)ëx(t) + λė2x(t) + ėx(t)ëx(t) +
1

Pm
ea(t)ėa(t), (28)

is negative along all state trajectories. However, as proven in

[26], this requirement is conservative and not satisfied for all

stable systems. In [26] it is shown that for asymptotic stability,

it is sufficient to prove that the time-averaged Lyapunov

function derivatives are negative along all state trajectories.

According to this result, asymptotic stability of x0 = [ 0 0 0 ]⊤

of (24) is proven by showing that:

1) For σ1(t) = σ0(t) (situation 1), V (x(t)) is non-

increasing and x(t) converges to the equilibrium xe =
[ 0 0 e ]⊤ with:

e =

{
ea(0) if ex(0) = ėx(0) = ẋd(t) = 0,
0 otherwise.

2) When σ1(t2) = σ0(t2) and sgn(ex(t2)) 6=
−sgn(ėx(t2)), then σ1(t) = σ0(t) ∀t ≥ t2.

3) When σ1(t1) 6= σ0(t1) and/or sgn(ex(t1)) =
−sgn(ėx(t1)), then ∃ts ∈ (0,∞) for which holds

that σ1(ts) = σ0(ts), sgn(ts) 6= −sgn(ts), and that

V (x(ts)) < aV (x(t1)) with a <∞.

So, we show that at the beginning of the experiment V (x(t))
may increase, but this possible increase is bounded and lasts

only for a finite amount of time. From t = ts, V (x(t))
monotonically converges to zero. According to the result of

[26], this means that there exists time instants td ≥ ts ≥ 0,

for which holds that:

1

td − t0

∫ td

t0

V̇
(
x(s)

)
ds ≤ 0. (29)

Because for t > ts, it holds that V̇ (t) ≤ 0, for td appropriately

chosen, this inequality is also satisfied for all other intervals

of length ∆ = td − t0, i.e.:

1

∆

∫ t+∆

t

V̇
(
x(s)

)
ds ≤ 0, ∀t ≥ t0, (30)

i.e., the time-averaged Lyapunov function derivative is nega-

tive (semi)definite.



The correctness of the three above mentioned criteria is

proven as follows:

1) Rewrite V̇ (x(t)) as:

V̇
(
x(t)

)
=

(
λex(t) + ėx(t)

)(
λėx(t) + ëx(t)

)
+

1

Pm
ea(t)ėa(t) + 2αλex(t)ėx(t). (31)

For the ease of notation, define S(t) = λex(t) + ėx(t).
By using (17), it can be shown that:

Ṡ(t) =
σ1(t)

m
ea(t)− αS(t). (32)

Then, V̇ (x(t)) can be rewritten as:

V̇
(
x(t)

)
= S(t)

(σ1(t)

m
ea(t)− αS(t)

)

+

1

Pm
ea(t)ėa(t) + 2αλex(t)ėx(t). (33)

Using relation (16b), the term 1
Pm

ea(t)ėa(t) can be

written as −S(t)σ1(t)
m

ea(t), resulting in:

V̇
(
x(t)

)
= −αS2(t) + 2αλex(t)ėx(t) . (34)

Now, we can prove that V̇ (x(t)) ≤ 0 by writing:

V̇
(
x(t)

)
= −αS2(t) + 2αλex(t)ėx(t),

= −α
(
λ2ex

2(t) + ė2x(t)
)
≤ 0. (35)

As α, λ > 0, based on (35), we can conclude global

stability. To proof convergence, we use Lasalle’s invari-

ant set theorem: Because α > 0 and λ > 0, V̇ (x(t))
can only be equal to zero if ex(t) = 0 and ėx(t) = 0,

which means that ex(t), ėx(t)→ 0 as t→∞. To prove

convergence of ea(t), consider relation (32). Because

ex(t), ėx(t)→ 0 as t→∞, this relation can be written

as:
lim
t→∞

ëx(t) =
σ1(t)

m
ea(t). (36)

If ëx(t) → 0 as t → ∞, then σ1(t) 6= 0 implies that

ea(t) → 0 as t → ∞. To prove that ëx(t) → 0 as

t→∞, consider the following equality:

ėx(t) =

∫ t

0

ëx(τ)dτ + ėx(0). (37)

Because ėx(t)→ 0 as t→∞, we get:

lim
t→∞

ėx(t) = lim
t→∞

∫ t

0

ëx(τ)dτ + ėx(0) = 0. (38)

If ėx(0) is bounded, and given the fact that the closed-

loop eigenvalues are real (i.e. ex(t) converges in a non-

oscillating way), the above equation can only be true if

limt→∞ ëx(t) = 0. Therefore, it can be concluded that

ëx(t)→ 0 as t→∞ and that ea(t)→ 0 as t→∞ and

σ1(t) 6= 0. So, based on Lasalle’s set theory, it can be

concluded that ex(t), ėx(t) and ea(t) → 0 as t → ∞
except if σ1(t) = 0. In the latter case, only convergence

of ex(t) and ėx(t) can be proven, nothing can be said

about ea(t). However, this is not a disadvantage of the

compensator, but a physical necessity we have implicitly

taken into our formulation of the compensation law. We

decided to take no action when there is no tracking error

and the system is standstill, i.e., ẋ = 0. Remember the

definition of σ1(t) given by (8). Hence, there is no need

and possibility to adapt k̂c(t).

Each equilibrium xe = [0 0 e]⊤ for which e 6= 0 is how-

ever unstable, i.e., its region of attraction is constrained

to the equilibrium point itself and all state trajectories

that start outside an unstable equilibrium converge to

x0 = [ 0 0 0 ]⊤. So if ex(0) 6= 0 ∨ ėx(0) 6= 0 the

desired equilibrium x0 is reached. This can be verified

as follows: σ1(t) = 0 can only be true if both σ1(t) and

σ0(t) are in mode 3. M3 can only be entered via M1 or

M5 (see Section III), which implies that |σ1(t)| = 1 just

before entering M3. As x(t) and ẋ(t) can only change

continuously, just before the final transition to M3, ex(t)
and ėx(t) need to come infinitely close to zero. If ex(t)
and ėx(t) converge to zero, also ëx(t) must converge

to zero, see (38). Using (17), it then can be concluded

that also ea(t) must be infinitely close to zero, i.e. the

system converges to the equilibrium x0.

2) To stay in M ′2 or M ′4, it must hold that ẋ(t) = ẍ(t) =
0, i.e., the force equilibrium u(t) + w(t) = kc(t)σ0(t)
must be satisfied. If k̇c(t) = 0, i.e., kc(t) = c1 with c1
a constant, then:

max |kc(t)σ0(t)| = c1,

which is reached for |σ0(t)| = 1, i.e., when ẋ(t) 6= 0.

Consider the situation:

ẋ(t) 6= 0 for t ∈ (t2 − a, t2]
ẋ(t) = 0 for t ∈ (t2, t2 + b)

(39)

with a, b > 0. Then, at t = t2, it must hold that:

|u(t2) + w(t2)| = |kc(t2)σ0(t2)|,
|u(t2) + w(t2)| = c1, (40)

and at t = t2 + ǫ1, with ǫ1 infinitely small, it must hold

that:

|u(t2 + ǫ1) + w(t2 + ǫ1)| = |kc(t2 + ǫ1)σ0(t2 + ǫ1)|
≤ c1 (41)

From (40) and (41), it follows that for the

supposed situation, i.e., (39) equilibrium in the

modes M ′2 and M ′4 would only be possible if

|u(t2 + ǫ1) + w(t2 + ǫ1)| ≤ |u(t2) + w(t2)|, i.e.,

if d
dt
|u(t) + w(t)| ≤ 0 in these modes. However,

d
dt
|u(t) + w(t)| is guaranteed to be positive in modes

M ′2 and M ′4 for either xd(t) = 0 or for xd(t) 6= 0
if sgn(ex(t)) 6= −sgn(ėx(t)), meaning that under

the condition sgn(ex(t)) 6= −sgn(ėx(t)), the force

equilibrium u(t) + w(t) = kc(t)σ0(t) cannot be

satisfied in M ′2 and M ′4 when there exists t2 < t for

which holds ẋ(t2) 6= 0. This can be proven as follows:

xd(t) = 0:

Under this condition, when the compensator is in M ′2
or M ′4, it holds that ex(t) 6= 0 and ėx(t) = 0. Without

loss of generality assume that ex(t) > 0. In this case,

u(t) = mαλex(t) > 0. As ex(t) must be positive

and constant to stay in M ′4, u(t) must be constant

and positive too. Then, from (6), (10), and the fact

that σ1(t) = 1 for ẋ(t) = 0 ∧ u(t) > 0, it follows

that ẇ(t) > 0, meaning that d
dt
(u(t) + w(t)) > 0. As

d
dt
(kc(t)σ0(t)) ≤ 0, the force equilibrium cannot be

satisfied. From this result, it follows that if xd(t) = 0,

then σ1(t2) = σ0(t2) implies σ1(t) = σ0(t)∀ t > t2.



xd(t) 6= 0 ∧ sgn(ex(t)) 6= −sgn(ėx(t)):
Under these conditions, when the compensator is in

mode M ′2 or M ′4, it holds that ėx(t) 6= 0. Without

loss of generality, we assume that ėx(t) > 0 (and

ex(t) ≥ 0). Then, from (5), it follows that u(t) > 0
and increasing. From (6), (10), and the fact that σ1 = 1
for ẋ(t) = 0 ∧ u(t) > 0, it follows that ẇ(t) > 0,

meaning that d
dt
(u(t)+w(t)) > 0. As d

dt
(kc(t)σ0(t)) ≤

0, the force equilibrium cannot be satisfied. Because

of the stability result for σ0(t) = σ1(t), the sys-

tem will not move to a position for which holds that

sgn(ex(t)) = −sgn(ėx(t)). Therefore, we can conclude

that σ1(t2) = σ0(t2) ∧ sgn(ex(t2)) 6= −sgn(ėx(t2))
implies σ1(t) = σ0(t)∀ t > t2.

3) We have to show that:

a) If σ1(t1) 6= σ0(t1) ∧ sgn(ex(t1)) 6= −sgn(ėx(t1))
then ∃ts with t1 < ts < ∞ for which σ1(ts) =
σ0(ts) ∧ sgn(ex(ts)) 6= −sgn(ėx(ts));

b) If σ1(t1) 6= σ0(t1) ∧ sgn(ex(t1)) =
−sgn(ėx(t1)), then ∃tv < ∞ for which

sgn(ex(tv)) 6= −sgn(ėx(tv)) and/or

σ1(tv) = σ0(tv) ;

c) V (x(ts)) < aV (x(t1)), with a <∞, i.e., V (x(t))
remains bounded;

are true, which can be proven as follows:

a) Under these conditions, d
dt
|u(t)| ≥ 0 and

d
dt
|w(t)| > 0. So, if kc(t) is finite, there is exist a

moment ts > t1 at which the force equilibrium can

no longer be satisfied, i.e. the system starts moving

meaning that σ1(ts) = σ0(ts) ∧ sgn(ex(t1)) 6=
−sgn(ėx(t1)).

b) If σ1(t1) 6= σ0(t1) ∧ sgn(ex(t1)) = −sgn(ėx(t1)),
then convergence to the desired position is guar-

anteed by the linear growth of xd(t)
2. So, there

exist a finite moment tv at which sgn(ex(tv)) =
−sgn(ėx(tv)) and/or σ1(tv) 6= σ0(tv) no longer

hold; Or the system stays at rest and due to the

linear growth of xd(t), at t = tv , it no longer

holds that sgn(ex(t)) = −sgn(ėx(t)). Or the total

control input (u(t) + w(t)) becomes sufficiently

large that motion is initiated, i.e., σ1(tv) 6= σ0(tv)
is no longer satisfied.

c) As the friction force is finite, both ex(t), ėx(t),
and ea(t) must be bounded to be in M ′2 or

M ′4. Therefore V (x(ts)) <∞, i.e., ∃a for which

V (x(ts)) < aV (x(t1)).

V. COMPARISON

In this section, we demonstrate the advantages of the

proposed compensation scheme compared to the schemes

proposed in [10], [22]. We compare with these methods

because they do not require extensive friction modeling, just

like our method. Furthermore, they use a friction model of the

same structure. The only difference compared to the proposed

2Note that ẍd(t) ≡ 0 =⇒ ẋd(t) = c ∈ R and if ẋd(t) = 0, then
sgn(ex(t)) 6= −sgn(ėx(t)).

0 2 4 6 8 10 12 14 16
−2

0

2

4

6

Time (s)

P
o
si
ti
o
n
 (
m
)

 

 
Reference

S
old

S
new

0 2 4 6 8 10 12 14 16
−5

0

5

10

15

Time (s)

k̂ c

Fig. 3: Comparison of the newly proposed compensation

scheme with a scheme based on the standard signum function.

method is that they are based on the standard signum function

sgn(ẋ(t)):

sgn(ẋ(t)) =







−1 if ẋ(t) < 0,
0 if ẋ(t) = 0,
1 if ẋ(t) > 0.

(42)

The problem of using sgn(ẋ(t)) instead of σ1(ẋ(t), u(t))
in the compensator equations (6), (10) is that in this case

the compensator is inactive when the system is in standstill,

i.e., for ẋ(t) = 0, it holds that w(t) =
˙̂
kc(t) = 0. As

a consequence, compensation schemes based on sgn(ẋ(t))
are not able to compensate for static friction forces. When

ẋ(t) = 0 and the nominal control action u(t) cannot initiate

motion (|u(t)| < kc(t)) the system stays at rest, even if it

is in an undesired position. Contrary, the newly proposed

signum function σ1(ẋ(t), u(t)) is only equal to zero when

both ẋ(t) = 0 and u(t) = 0. So, when ẋ(t) = 0 and

u(t) 6= 0 (indicating that there is static friction), the friction

compensator is active.

To illustrate the differences mentioned, we simulate the

system as defined by (12) and (13) (with m = 0.007,

b = 0.056, Kp = 3.135, Kd = 0.327, P = 5, λ = 10,

α = 45) with σ1(ẋ(t), u(t)) (hereafter referred to as Snew) and

with σ1(ẋ(t), u(t)) replaced by sgn(ẋ(t)) (hereafter referred

to as Sold). The results are given in Figure 3. Here, the friction

is simulated according to (2) with kc(t) = 8. At the start of

the experiment, the errors ex(t) and ėx(t) are so small that

the nominal controller does not initiate motion. As long as

|u(t)| < kc(t), Sold stays in its initial state. As u(0) 6= 0, k̂c(t)
is directly updated in Snew and as soon as ea(t) is sufficiently

small (the exact convergence rate depends on the tuning of

the parameters λ and P , see Section VII), the system starts

moving towards the desired trajectory. At t = 10, the nominal

control action u(t) equals the static friction force and also Sold

starts moving. As soon as ẋ(t) 6= 0, the friction compensator

is activated and shortly after this moment the two systems

behave identically. However, when the velocity becomes zero

again, the same problem repeats, even though, at this moment,

we have a perfect friction estimate, i.e. ea(t) = 0.
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Fig. 4: Comparison of the two compensation schemes for time-

varying friction behavior. At t = 5, the friction parameter kc(t)
abruptly changes from 3 to 5.

This problem aggravates when the friction force is time-

varying (as is illustrated in Figure 4 for tracking a ramp

reference). As soon as the friction force suddenly increases,

the velocity becomes zero. In this situation, Snew starts moving

again as soon as |w(t) + u(t)| > kc(t), whereas Sold starts

moving when |u(t)| > kc.

From the above analysis, we conclude that the modified

compensator performs significantly better, particularly for

time-varying frictions forces and high-precision tasks.

VI. PRACTICAL IMPLEMENTATION

The derivations so far have been provided in continuous-

time. However, in simulations and real-world experiments, the

system variables are only available at discrete time-instants. To

make the adaptive compensation method suitable for numerical

simulations and real-world implementation, the update law

(10) has to be transformed to a difference equation. This can

be done, for example, by using forward difference (Euler’s

method), backward difference, bilinear approximation (trape-

zoidal rule) or Runge Kutta approximation [27]. Here, we use

the bilinear approximation because it is a relatively simple

and accurate method which preserves the stability properties

of the original differential equation. In this way, the friction

parameter estimate k̂c(t) can be updated by:

k̂c[k] = k̂c[k − 1] +
Ts
2
˙̂
kc[k] +

Ts
2
˙̂
kc[k − 1], (43)

where
˙̂
kc[k] is given by (10). The choice of the sampling rate

1/Ts depends on the frequency content of the sampled signal,

here x(t). Generally, to obtain an accurate representation of

x(t), the sampling rate 1/Ts should be 10-30 times higher

than the highest frequency in x(t).
As it is not a priori known what frequencies the adaptive

compensator will invoke (e.g., stick-slip behavior can result in

rapid changes in the velocity), it is best to chose Ts as small

as possible. However, the minimal value of Ts is constrained

by the computational time required by the control hardware.

Besides these discrete-time limitations, the following re-

strictions must be taken into account:

• The time delay between sensing the system output and

applying the control input;

• Quantization errors;

• Errors due to unmodeled dynamics;

• Velocity estimation errors in the absence of a velocity

sensor.

All of these limitations make the practical implementation

less robust compared to the theoretical situation. However,

most problems will not occur for a realistic practical setting

and some problems can be avoided by making small adjust-

ments to the scheme:

1) Introducing a dead-zone for the friction compensation

action w(t): In practice, x(t) is never exactly equal to

xd(t). Due to this, the compensator remains active and

x(t) may start chattering around xd(t). This can easily

be solved by introducing a small error bound |ex(t)| < ǫ

in which w(t) =
˙̂
kc(t) = 0.

2) As both the controller and the compensator are error-

based, there is no clear separation between the control

task and the compensator task when the reference xd[k]
is directly used in the compensator. In the case of sudden

changes in the reference signal, the compensator not

only reacts to errors due to friction, but also to errors

due to the normal transient response of the system. To

avoid this problem, the compensator can be fed by a

reference signal xd,f [k], obtained by filtering xd[k] by

the desired closed-loop dynamics.

The compensation algorithm, including these modifications, is

given in Algorithm 1.

VII. SIMULATION AND EXPERIMENTAL RESULTS

In this section, the performance of the proposed adaptive

friction compensation method is demonstrated via representa-

tive simulations and experimental studies. First, the compen-

sation scheme is applied to a servo positioning system. Both

simulation and real-world experimental results are given for

this system. Next, experimental results are presented for the

distal link of a 2-DOF robot manipulator.

A. Servo positioning system

To test the performance of the compensation method in

a representative setting, a servo positioning system with an

adjustable friction level is considered (see Figure 5). This sys-

tem consists of a voltage-controlled DC motor which directly

drives a plastic disc (CD-ROM). This system is designed to

have a minimal level of friction, which is almost entirely of

the viscous type, i.e., linearly proportional to the shaft angular

velocity. A mechanical friction brake can be pressed against

the back side of the CD-ROM, which introduces additional,

manually adjustable, dry friction. Without this additional fric-

tion, the system dynamics are described by the following

simplified linear model (neglecting the armature inductance):

τ q̈(t) + q̇(t) = kmuc(t), (44)



Algorithm 1 Adaptive friction compensation in discrete time

Input: Tuning parameters P and λ, sampling period Ts, filtered
reference signal xd,f and its derivative ẋd,f , deadzone ǫ for
the compensation action.

1: Initialize the state [x[0] ẋ[0]]⊤, the input u[0] and the friction

parameter estimate k̂c[0]. Set k = 1.
2: repeat
3: Measure system output x[k].
4: Measure ẋ[k] or estimate it by using backward difference:

ẋ[k] ≈ x[k]− x[k − 1]

Ts
.

5: Calculate the position error and its derivative:

ex[k] = xd,f [k]− x[k],
ėx[k] = ẋd,f [k]− ẋ[k].

6: Compute
˙̂
kc[k]:

7: if ẋd[k] = 0 and |ex[k]| < ǫ then

8:
˙̂
kc[k] = 0,

9: else

10:
˙̂
kc[k] = Pσ1(ẋ[k], u[k])(ėx[k] + λex[k]).

11: Update k̂c[k] using the trapezoidal rule:

k̂c[k] = k̂c[k − 1] +
Ts
2
˙̂
kc[k − 1] +

Ts
2
˙̂
kc[k].

12: Compute the control input u[k] (i.e., the control input
without compensation).

13: Compute the total control action uc[k]:
14: if ẋd[k] = 0 and |ex[k]| < ǫ then

15: uc[k] = u[k],

16: else
17: uc[k] = u[k] + k̂c[k]σ1(ẋ[k], u[k]).

18: Send the actual control input uc[k] to the plant.
19: k ← k + 1.
20: until end of experiment.

with q(t) the angular position of the disc (fulfilling the same

role as the position x(t) previously), uc(t) the input voltage

and km and τ the characteristic motor parameters, lumping

the influence of the torque constant, armature resistance, back-

emf, viscous friction, and the moment of inertia. In state-space

form, (44) can be given as:

[
q̇(t)
q̈(t)

]

=

[
0 1
0 − 1

τ

] [
q(t)
q̇(t)

]

+

[
0
km

τ

]

uc(t). (45)

Fig. 5: Servo positioning system with a manually adjustable

level of friction (using the lever at the right side of the box).

With the armature inductance neglected, the friction torque

can be directly related to voltage, so that the state-space model

including friction becomes:
[
q̇(t)
q̈(t)

]

=

[
0 1
0 − 1

τ

] [
q(t)
q̇(t)

]

+

[
0
km

τ

]
(
uc(t)− Vf(t)

)
, (46)

where Vf(t) is the voltage that generates a torque equal in

magnitude to the friction torque. To control this system, the

following PD-type control law is applied:

uc(t) = Kpeq(t) +Kdėq(t) +
1

km
q̇d(t)

︸ ︷︷ ︸

u(t)

+

k̂c(t)σ1(q̇(t), u(t))
︸ ︷︷ ︸

w(t)

, (47)

with:

Kp =
τ

km
αλ,

Kd =
τ

km
(α+ λ)− 1

km
,

and qd(t) the desired position, q̇d(t) the desired velocity and

eq(t) = qd(t) − q(t) the tracking error. The filtered position

reference is obtained by filtering qd(t) by the desired closed-

loop dynamics:

Qd,f(s) =
λα

s2 + (λ+ α)s+ λα
Qd(s)+

λ+ α

s2 + (λ+ α)s+ λα
sQd(s), (48)

where sQd(s) is the desired velocity, which equals zero for

step references.

We first run simulations in order to get insight into the

behavior of the compensator and the effect of its tuning pa-

rameters. This knowledge is then used to tune the compensator

for real-world experiments, which are reported next.

1) Simulations: In the simulations, the system model given

in (46) is used with km and τ identified from data measured

on the setup with low friction. The parameters are as follows:

km = 17.8 rad/s/V, τ = 0.124 s, αλ = 450, α + λ = 45,

and ǫ = 0.01 rad. The sampling period is Ts = 0.0001 s.

Here, the parameters α and λ are tuned based on pole-

placement (−α and −λ are the desired closed-loop poles)

while taking the restrictions on Kp and Kd, as given by (5),

into account. The dead-zone parameter ǫ is tuned empirically

and independently based on the desired accuracy in the light of

the sensor resolution. For the simulations and the subsequent

experiments, reference signals composed of step and ramp

inputs, covering a wide range of velocities, including velocity

reversals, are used (see Figures 6, 7, 8). In all simulations and

experiments, the state is initialized as:
[

eq(0) ėq(0) k̂c(0)
]⊤

= [ 0 0 0 ]⊤ ,

and in the simulations, a time-varying friction force is consid-

ered. The corresponding voltage is modeled as:

Vf(t) =







4σ0
(
q̇(t), uc(t), kc(t)

)
for t < 10.5,

6σ0
(
q̇(t), uc(t), kc(t)

)
for t < 18,

2σ0
(
q̇(t), uc(t), kc(t)

)
for t ≥ 18,
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Fig. 6: Simulation results: effect of P on the compensation

performance (λ = 15). In the bottom plot, “reference” refers

to the true parameter kc.

which corresponds to harsh step-changes of the friction. From

the simulation results given in Figures 6 and 7, we can con-

clude that the compensator effectively eliminates the steady-

state errors caused by friction. The value of the tuning parame-

ter P influences the adaptation speed, i.e., the speed at which

the compensator responds to tracking errors due to friction.

This is illustrated in Figure 6: at the start of the experiment,

the output corresponding to P = 5 converges faster to the

reference signal than the output corresponding to P = 2. This

difference is also visible at t = 10.5, where the magnitude of

the friction torque changes. Finally, it can be concluded that

the convergence properties of the friction parameter estimate

k̂c(t) are in agreement with the results of Section IV: k̂c(t)
converges to kc(t) unless q̇(t) = 0 and eq(t) = 0.

The tuning parameter λ determines the trade-off between

position and velocity tracking. In Figure 7, we can see that

larger λ results in faster convergence of the output to the

desired position. When λ is chosen small, more weight is put

on the minimization of the velocity error and therefore it takes

more time to reach the desired position.

In summary, larger values of both tuning parameters make

the compensator react faster to position and velocity errors.

However, too large values will make the compensator sensitive

to noise, possibly resulting in oscillations around the desired

position. In real-life scenarios, the actual sensor noise levels

will impose upper bounds on the feasible values of the tuning

parameters P and λ.

2) Experiments: To test the performance in a real-world

setting, experiments were conducted with the actual servo

positioning system shown in Figure 5. The parameters used

are: α = 30, Ts = 0.0025 s and ǫ = 0.01 rad. From

the results presented in Figure 8 we can conclude that the

proposed scheme clearly outperforms a compensation-free

control scheme. The large steady-state error, which occurs in
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Fig. 7: Simulation results: effect of λ on the compensation

performance (P = 2). In the bottom plot, “reference” refers

to the true parameter kc.
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Fig. 8: Experimental results: servo positioning setup (λ = 10,

P = 50).

the absence of a compensatory action, has almost completely

disappeared. Furthermore, it can be seen that the proposed

scheme outperforms integrator-based compensation both at

velocity reversals and for low-velocity tracking, where integral

control results in significant stick-slip behavior.

To illustrate the adaptability, an additional experiment is

conducted in which the friction torque is changed manually at

a number of time instants. This is done by changing the force

(using the lever shown in Figure 5) by which the friction brake

pushes against the disk. The results given in Figure 9 show that

the adaptation is fast even under rapid and significant changes

in the friction torque. The compensation action, plotted in the

bottom panel of Figure 9, gives an indication of the friction

variation. Note that a high value of P is required to track the

rapidly varying friction torque.
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Fig. 9: Experimental results: servo positioning system. In this

experiment, the friction torque is manually changed to test the

compensator’s performance when the friction torque is highly

time-varying (λ = 10, P = 50). The dotted vertical lines

indicate where the friction force is changed.

B. 2-DOF robot manipulator

In this section, we validate the compensation strategy on

the distal link of a two degree of freedom robot arm (see

Figure 10). We chose this system as it has a different type

of actuators (Dynamixel RX-28 servomotors by Robotis) with

different associated dynamics and friction characteristics. In

contrast to the DC motor used in part A, the Dynamixel

servomotors are equipped with gearboxes. The lengths of the

links of this robot are 0.19m (proximal link) and 0.06m (distal

link). The dynamics of the distal link can be well approximated

by a linear model of the same form as the model used

for the servo positioning system discussed in Section VII-A.

The control and compensation scheme used is also identical

to the one explained in Section VII-A. Here, the control

gains Kp, Kd of the nominal controller (5) are designed by

pole placement, where the design parameters are the desired

natural frequency ω and the desired relative damping ζ. The

following parameters are used: km = 7.87 rad/s3, τ = 0.011 s,

ω = 30 rad/s, ζ = 0.9 and ǫ = 0.02 rad. The sampling period

is Ts = 0.005 s. In this case, the nominal control law is chosen

as a PD controller, however, not exactly in the form of (5).

More specifically, the closed-loop poles are complex and the

friction compensator parameter λ is chosen independently of

the nominal controller. Also in this case, the compensator

performs well. Figure 11 shows the tracking results for the

distal link. Again, the addition of the compensator significantly

improves the performance. Compared to the servo positioning

example, the tracking performance for low-velocity references

is less smooth, due to a higher noise level of the angle sensor.

VIII. CONCLUSION

In this work, an adaptive friction compensation technique is

proposed and analyzed. In the proposed method, the friction

3The control signal to the Dynamixel servo is normalized to the range
[−1, 1]. The exact voltage applied to the motor is unknown.

Fig. 10: 2-DOF manipulator.
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Fig. 11: Tracking performance for the distal link of the 2-DOF

robot arm (λ = 10, P = 0.2).

force is computed as the product of a time-varying friction

parameter and a signum function. A realistic definition of

the signum function for the purpose of friction modeling is

specified. As this definition of the signum function depends,

besides on the velocity and control input, on the value of the

friction, which is unknown, it is not useful for compensation

purpose. Therefore, an estimate of this signum function is

derived for the use in the compensation scheme. The resulting

closed-loop system is analyzed and global asymptotic stability

of the position and velocity errors is proven. An important

property of the compensator is that if the system is in standstill

and the position and velocity errors are zero, the compensator

automatically switches off. However, this compensator keeps

on adapting when there is an offset, even if the system is

in standstill. Simulations and experimental results show the

tracking performance improvement achieved by the compen-

sator. The undesired effects of friction are almost completely

eliminated: steady-state errors disappear and the stick-slip

behavior is considerably reduced. Even if the friction force is

extremely high or rapidly varying, the compensation scheme

is capable of eliminating the undesired friction behavior.

A positive feature of the proposed method is that it can

compensate a wide range of friction behaviors reasonably

well, without requiring detailed friction modeling. Because of

this, the compensation method can be easily implemented in

various systems, like a servo motor or a robotic manipulator,

all of which are subjected to different friction behaviors. As

kc is updated based on feedback control, problems may occur

for rapidly varying friction forces. However, except around

velocity reversals, the friction variation over time is fairly



gradual. As the abrupt variations around zero velocity are

captured by the sign change of the signum function and the

other variations can be accommodated by a proper tuning of

the parameter P , in most situations, the feedback control will

not lead to real problems. A limitation of the proposed scheme

is that it is friction-specific and cannot deal with disturbances

that do not always oppose motion. These can, however, be

compensated by other techniques. Another possible room for

improvement is in the low-velocity range, where stick-slip

motion occurs at very high fiction levels.
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