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Abstract

This paper concentrates on the study of the decentralized fuzzy control method for a class of fractional-order

interconnected systems with unknown control directions. To overcome the difficulties caused by the multiple unknown

control directions in fractional-order systems, a novel fractional-order Nussbaum function technique is proposed. This

technique is much more general than those of existing works since it not only handles single/multiple unknown control

directions but is also suitable for fractional/integer-order single/interconnected systems. Based on this technique, a new

decentralized adaptive control method is proposed for fractional-order interconnected systems. Smooth functions are

introduced to compensate for unknown interactions among subsystems adaptively. Furthermore, fuzzy logic systems are

utilized to approximate unknown nonlinearities. It is proven that the designed controller can guarantee the boundedness

of all signals in interconnected systems and the convergence of tracking errors. Two examples are given to show the

validity of the proposed method.

Index Terms

unknown control directions, fractional-order system, Nussbaum function, adaptive backstepping control, intercon-

nected system, fuzzy logic systems.

I. INTRODUCTION

Interconnected systems are common in engineering applications, such as power systems, chemical processes,

computer networks, and aerospace systems [1]. The decentralized control method, which relies on the local in-

formation of each subsystem, provides an effective way of handling interconnected systems because of its low

complexity feature. Therefore, decentralized control for interconnected systems has drawn much attention in the

past few years.

The work was supported by the National Natural Science Foundation of China under Grant No. 61703376. Corresponding author: Shiqi

Zheng and Choon Ki Ahn.

B. Liang and S. Zheng are with the School of Automation, China University of Geosciences, Wuhan 430074, China, and also with

the Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China (e-mails: zheng-

shiqi1000@foxmail.com)

C. K. Ahn is with the School of Electrical Engineering, Korea University, Seoul 136-701, South Korea (e-mail: hironaka@korea.ac.kr).

April 14, 2020 DRAFT

http://arxiv.org/abs/2004.03085v2


...... 2

Since the 1990s, the backstepping design technique has been widely employed for nonlinear systems [2]. [3] first

proposed the decentralized control method with the backstepping technique for interconnected nonlinear systems.

Afterward, many studies have reported stabilization and tracking control problems for interconnected systems. For

example, with the consideration of unknown interactions, decentralized adaptive controllers have been proposed for

various kinds of interconnected systems in [4]–[7]. Meanwhile, in [8]–[13], decentralized adaptive controllers have

been studied using a universal approximation method (i.e., utilizing fuzzy logic systems (FLSs) to approximate

interactions).

The control problem without a priori knowledge of the control direction is undergoing active research in the

control community. The problem was first solved by adopting the Nussbaum function in [14]. Benefiting from

pioneering work and the Nussbaum function, numerous control strategies have been presented for nonlinear systems

with unknown control directions (e.g., [15], [16]). In [17], unknown time-varying control gains in nonlinear systems

were handled with a new Nussbaum function technique. However, the above results were related to a single

Nussbaum function technique for single-input single-output systems. The control of interconnected systems with

multiple unknown control directions is more difficult because multiple Nussbaum functions should be adopted. Based

on the backstepping method, a few results on the multiple Nussbaum functions technique have been reported. For

instance, [18]–[21] have proposed new multiple Nussbaum functions to deal with unknown time-varying coefficients.

In the last few decades, fractional-order calculus has attracted considerable attention from the control field because

fractional-order differential equations can describe many physical phenomena concisely and precisely, such as servo

motor systems, viscoelastic structures, and heat conduction [22]. Meanwhile, in contrast to integer-order controllers,

fractional-order ones have more design freedom and robust ability [23]. More recently, various interesting results on

stability analysis and control schemes for fractional-order nonlinear systems have been reported (see [24]–[27] for

examples). Moreover, in [28], [29], researchers have taken the lead in extending the backstepping control scheme

to fractional-order nonlinear systems. [30] presented a backstepping control strategy for nonlinear fractional-order

systems with the direct Lyapunov method [31]–[33]. Moreover, for uncertain fractional-order systems, [34], [35]

proposed two adaptive backstepping control methods by utilizing FLSs. Employing the indirect Lyapunov method

[36], adaptive fractional-order controllers were proposed for state and output feedback nonlinear systems in [37],

[38], respectively. It is notable that so far, very few results on the control of fractional-order interconnected systems

have been obtained. In our previous work [39], we developed a decentralized adaptive control method for a class

of uncertain fractional-order interconnected systems.

However, to the best of our knowledge, there are still no results on the tracking control problem for fractional-

order systems with unknown control directions, especially for interconnected systems. The main difficulty is that the

Nussbaum function technique, which is commonly used for integer-order systems with unknown control directions,

cannot be directly used for fractional-order systems. Fractional-order dynamics present technical challenges to the

solvability of the problem. First, for integer-order systems, the integer-order integral transformation is combined

with the Nussbaum function to establish exponential stability. However, for fractional-order systems, one needs

to utilize the fractional-order integral transformation and Nussbaum function to show Mittag–Leffler stability. The

existence of fractional-order operator, Nussbaum and Mittag–Leffler functions will cause great difficulties in stability
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analysis. Second, fractional-order interconnected systems contain multiple unknown control directions. This will

further complicate the problem since dealing with multiple unknown control directions is not easy even with

integer-order systems and only a few related results have been reported.

Motivated by the above considerations, the tracking control problem for fractional-order interconnected systems

with unknown control directions will be investigated in this paper. A new decentralized adaptive fuzzy control

method is proposed by using backstepping technique. The main contributions of the paper are as follows.

1) A novel fractional-order Nussbaum function technique is proposed to lay the foundation for the stability

analysis of fractional-order systems with unknown control directions. This technique is much more general

than those of existing works [17], [20] since it not only handles single/multiple unknown control directions

but is also suitable for fractional/integer-order single/interconnected systems.

2) As far as we know, this is the first work on decentralized control for fractional-order interconnected systems

with unknown control directions. In particular, unknown interactions among subsystems are bounded by

nonlinear growth conditions. Smooth functions are introduced to compensate for interconnections.

3) FLSs are adopted to approximate the unknown nonlinear functions and fractional-order derivative of the virtual

control law. This technique can handle unknown uncertainties and reduce the computational burden of the

controller considerably.

The organization of the rest of this paper is as follows. Section II provides the preliminaries and problem

formulation Section III proposes the new fractional-order Nussbaum function technique. The decentralized adaptive

controller and its stability analysis are presented in Sections IV and V, respectively. Finally, Section VI provides

the simulation results. Section VII concludes the paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Preliminaries

Before designing the controller, we present some useful definitions and lemmas. For a smooth function f(t),

define the following Caputo fractional-order derivative with order α

0D
α
t f(t) =

1

Γ(n− α)

∫ t

0

f (n)(τ)

(t− τ)a−n+1
dτ, (1)

where 0Dα
t is the fractional-order differential operator and α ∈ [m−1,m), m ∈ N, Γ(α) =

∫∞

0
xα−1e−xdx denotes

the Gamma function. To simplify the expression, 0Dα
t is denoted as Dα. We obtain the following properties for

Caputo’s derivative.

Lemma 1 [24]: For smooth functions f(t), h(t): [t0,∞) → R,

L
(

Dα
t (f(t)

)

= sαF (s)−
n−1
∑

k=0

sα−k−1fk(0),

Dα
t

(

af(t) + bh(t)
)

= aDα
t f(t) + bDα

t h(t),

Dα
t a = 0

hold, where L(·) is the Laplace operator, F (s) is the Laplace transform of f(t), a and b are constants.
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Lemma 2 [33]: For a smooth function x(t) ∈ R, one obtains

1

2
Dα

(

xT (t)x(t)
)

≤ xT (t)Dαx(t), t ≥ t0. (2)

Next, we will introduce the definition of the Mittag–Leffler function, which plays a key role in the stability

analysis.

Definition 1 [24]: Define the Mittag–Leffler function

Ea,b(ν) =

∞
∑

k=1

νk

Γ(ka+ b)
, (3)

where ν is a complex number and a and b are two positive parameters. It is noteworthy that E1,1(ν) = eν . The

Laplace transform of (3) is

L
{

tb−1Ea,b(−γt
a)
}

=
sa−b

sa + γ
, γ ∈ R. (4)

The Mittag–Leffler function has the following property.

Lemma 3 [24]: Given real numbers a ∈ (0, 2), b ∈ R, µ ∈ (aπ2 ,min{π, aπ}), we obtain

|Ea,b(ν)| ≤
σ

1 + |ν|
, (5)

where σ > 0, µ ≤ | arg(e)| ≤ π, and |ν| ≥ 0.

B. Problem formulation

Consider the following fractional-order interconnected nonlinear systems with N subsystems:

Dαxi,j = gi,j(t)xi,j+1 + φi,j(x̄i,j) + fi,j(y),

Dαxi,ni
= gi,ni

(t)ui + φi,ni
(xi) + di(t) + fi,ni

(y),

yi = xi,1, j = 1, . . . , ni − 1,

(6)

where i = 1, 2, . . . , N . α ∈ (0, 1) is the fractional order of the subsystem. xi = [xi,1, xi,2, . . . , xi,ni
]
T ∈ R

ni

and yi ∈ R denote the states and output of the ith subsystem, respectively. x̄i,j = [xi,1, xi,2, . . . , xi,j ]
T

, j =

1, 2, . . . , ni − 1, y = [y1, . . . , yN ]T . ui ∈ R represents the control input. di(t) ∈ R is an unknown external

disturbance. φi,j(·) ∈ R, j = 1, 2, . . . , ni represents unknown smooth nonlinear functions. fi,j(·), j = 1, 2, . . . , ni

represents the unknown nonlinear interactions from other subsystems. gi,j(t) 6= 0, j = 1, 2, . . . , ni represents the

unknown time-varying control coefficient with an uncertain control direction.

The following assumptions are given for the above systems.

Assumption 1: The unknown time-varying control coefficient gi,j is bounded in the closed intervals Ii,j :=

[ḡ−i,j , ḡ
+
i,j ] with 0 /∈ Ii,j , and the signs of gi,j , i ∈ [1, N ], j ∈ [1, ni] are identical and unknown.

Assumption 2: For j = 1, . . . , ni, the nonlinear interactions fi,j(t, y) satisfy

∣

∣fi,j(t, y)
∣

∣ ≤
N
∑

q=1

βi,j,q
∣

∣ψi,j,q(yq)
∣

∣,

where βi,j,q is an unknown positive constant and ψi,j,q(yq) is a known smooth function.
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Assumption 3: There is an unknown positive constant d̄i. For all t ≥ 0, it is established that |di| ≤ d̄i.

Assumption 4: The reference signal ydi and its fractional-order derivative Dαyri are smooth, known, and bounded.

Remark 1: The above assumptions are standard in controller design. Assumption 1 means that the time-varying

control coefficients gi,j are either strictly positive or strictly negative with the same unknown sign. This assumption

is adapted from [20]. Assumptions 3 and 4 are similar to those in [34], [35]. Assumption 2 implies that the unknown

interactions fi,j are bounded by a relaxed nonlinear growth condition. This bounding condition is reasonable and

can be found in [7].

Remark 2: A fractional-order model can characterize the dynamics of many practical applications in engineering

well, such as servo motor systems, robotic manipulators, and power systems. Many valuable results on fractional-

order modeling and control have been reported (see refs. [40]–[43] for details). For example, [43] established a

fractional-order nonlinear model of a permanent magnet synchronous motor. Simulations have verified the advantages

of the proposed fractional-order control scheme. Meanwhile, when some single fractional-order systems are linked

or coupled together, a fractional-order interconnected system is constructed. For instance, several motors are linked

by gear, spring or transmission networks, etc. In addition, some fractional-order multiple-input multiple-output

(MIMO) systems [43], [44] can be expressed as fractional-order interconnected systems (see Example 2 in Section

V for more details).

Our control aim is to develop a decentralized adaptive controller such that all the signals are bounded and the

tracking errors yi − yri, i = 1, 2, . . . , N can converge to a small neighborhood of origin.

C. Fuzzy logic systems

The following FLSs [45] are utilized to approximate the unknown nonlinear functions in this paper. A FLS

contains four ingredients: the knowledge base, the fuzzifier, the fuzzy inference engine, and the defuzzifier. The

knowledge base is constructed with the following fuzzy linguistic rules:

Rk : If x1 is F
k
1 and x2 is F

k
2 and . . . and xn is F k

n ,

then y is P k, k = 1, 2, . . . , N,

where x = (x1, . . . , xn)
T and y denote the input and output of the FLSs, respectively and F k

i and P k
i are fuzzy

sets in R, i = 1, 2, . . . , n.

Utilizing a singleton fuzzifier, product inference and center average defuzzification, FLSs can be expressed as

y(x) =

∑N
k=1 ȳk

∏n
i=1 µFk

i
(xi)

∑N
k=1

(
∏n

i=1 µFk
i
(xi)

)
, (7)

where µFk
i
(xi) is the membership function, ȳk = maxy∈R µPk(y). Here, (7) can be transformed into

y(x) = θTϕ(x), (8)

where θ = [θ1, θ2, . . . , θN ]T = [ȳ1, ȳ2, . . . , ȳN ]T , ϕ(x) =
[

ϕ1(x), ϕ2(x), . . . , ϕN (x)
]T

with

ϕk(x) =

∏n
i=1 µFk

i
(xi)

∑N
k=1

(
∏n

i=1 µFk
i
(xi)

)
, k = 1, 2, . . . , N. (9)
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For FLSs, we obtain an important property.

Lemma 4 [45]: Assuming that f(x) : Ω → R is a continuous function with Ω being a compact set, an FLS

exists such that

sup
x∈Ω

∣

∣f(x)− θTϕ(x)
∣

∣ ≤ ǫ

with an arbitrarily small constant ǫ > 0.

III. NOVEL FRACTIONAL-ORDER NUSSBAUM FUNCTION TECHNIQUE

In this section, we propose a novel fractional-order Nussbaum function technique to address the unknown direction

of time-varying control coefficients gi,j in (6).

The Nussbaum function N (·) has different forms, which is intended to satisfy the properties shown as follows

lim
x→∞

sup

x
∫

x0

N (δ)dδ = +∞,

lim
x→∞

inf

x
∫

x0

N (δ)dδ = −∞. (10)

Here, we choose the Nussbaum function as

N (δ) = eδ
2

sin
δ

2
π. (11)

Based on the Nussbaum function, we will present the key theorem for stability analysis.

Theorem 1: Let V (·) and δi(·), i = 1, . . . , n be smooth functions defined on [0, tf) with V (t) ≥ 0, ∀t ∈ [0, tf) and

all gi(t), i = 1, . . . , n be unknown time-varying parameters that have the same sign and satisfy gi ∈ Ii := [ḡ−i , ḡ
+
i ]

with 0 /∈ Ii. If the following inequality holds:

DαV (t) ≤ −λV +

n
∑

i=1

(

giN (δi)δ̇i + δ̇i
)

+ ζ, (12)

where λ and ζ are positive constants, then V (t), δi(t) must be bounded on [0, tf ) for i = 1, 2, . . . , n.

Proof: See Appendix A.

Remark 3: The form of inequality (12) is the αth-order derivative of the Lyapunov function. Through Laplace

transformation, V (t) is described as

V (t) ≤
n
∑

i=1

t
∫

0

giN (δi)δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

+

n
∑

i=1

t
∫

0

δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

+H. (13)

According to Theorem 1, it can be found that
t
∫

0

giN (δi)δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς and
t
∫

0

δ̇iEα,α(−λ(t−

ς)α)(t− ς)α−1dς are bounded. Moreover, tf is ∞ because the solution is bounded.
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Remark 4: The Nussbaum function technique is widely used for the control of integer-order systems with

unknown control directions. The stability analysis is mainly based on the integer-order integral transformation and

exponential stability. However, the method is not suitable for fractional-order systems because the stability analysis

of fractional-order systems relies on fractional-order integral transformation and the Mittag–Leffler function (see

(13)). The Mittag–Leffler function is an indispensable tool for analyzing the stability of fractional-order systems,

which makes the analysis more complicated. It is challenging to show the boundedness of all the signals based on

the Nussbaum function. Therefore, we present Theorem 1 which successfully overcomes the above difficulties and

lays the foundation for the controller design in Section IV.

Remark 5: Theorem 1 is the stability criterion for multiple Nussbaum functions, which can be adopted for

fractional-order interconnected systems. Note that it can also be adopted for a single Nussbaum function (n = 1)

or integer-order systems (α = 1). In fact, Theorem 1 is new even when n = 1.

IV. DECENTRALIZED ADAPTIVE CONTROLLER DESIGN

The change in coordinates is defined as

zi,1 = xi,1 − yri, (14)

zi,j = xi,j − τi,j−1, j = 2, 3, . . . , ni, (15)

where τi,j is the virtual control law. Then, we follow the following controller design procedures.

Step 1: From equation (14), the αth-order derivative of zi,1 is expressed as

Dαzi,1 = Dαxi,1 −Dαyri

= gi,1xi,2 + φi,1 + fi,1 −Dαyri.
(16)

According to Lemma 4, we use the FLSs to approximate the unknown smooth function φi,1(x̄i,1):

φ̂i,1(x̄i,1, θ
T
i,1) = θTi,1ϕi,1(x̄i,1). (17)

In the bounded compact sets Ωi,1 and Ui,1, the ideal parameter vector θ∗i,1 is defined by

θ∗i,1 = arg min
θi,1∈Ωi,1

[

sup
x̄i,1∈Ui,1

∣

∣φi,1 − φ̂i,1(x̄i,1, θi,1)
∣

∣

]

.

The optimal approximation errors are given as

εi,1(x̄i,1) = φi,1 − φ̂i,1. (18)

Note that an unknown constant ε̄i,1 > 0 exists such that
∣

∣εi,1(x̄i,1)
∣

∣ ≤ ε̄i,1. Then, from (16)–(18), one immediately

obtains

Dαzi,1 = gi,1zi,2 + gi,1τi,1 + φi,1 − φ̂i,1

+ φ̂i,1 + fi,1 −Dαyri

= gi,1zi,2 + gi,1τi,1 + εi,1 + θ̃Ti,1ϕi,1

+ θTi,1ϕi,1 + fi,1 −Dαyri.

(19)
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The virtual control law τi,1 is designed as

τi,1 = N (δi,1)ηi,1,

ηi,1 = ci,1zi,1 + ki,1zi,1 + li,1zi,1 + θTi,1ϕi,1

+ µ̂ihi −Dαyri,

δ̇i,1 = zi,1ηi,1,

hi =
2zi,1

z2i,1 +̟i

N
∑

q=1

n
∑

j=1

ψ2
q,j,i(yi),

(20)

where ci,1 >
1
4 , ki,1, li,1 and ̟i are positive design parameters; hi is a constructed auxiliary smooth function for

compensating for the interactions; and µ̂i denotes the estimation of µi which is the upper bound of
n
∑

q=1

N
∑

j=1

1
4lq,j

β2
q,j,i.

Substituting (20) into (19) and introducing a variable ηi,1 yields

Dαzi,1 = gi,1zi,2 + gi,1N (δi,1)ηi,1 + ηi,1 − ηi,1 + εi,1

+ θ̃Ti,1ϕi,1 + θTi,1ϕi,1 + fi,1 −Dαyri

= gi,1zi,2 + gi,1N (δi,1)ηi,1 + ηi,1 − ci,1zi,1

− ki,1zi,1 + εi,1 − li,1zi,1 + fi,1

− µ̂ihi + θ̃Ti,1ϕi,1.

By multiplying both sides by zi,1 and using Young’s inequality ab ≤ a2 + 1
4b

2, one obtains

zi,1D
αzi,1 = gi,1zi,1zi,2 + gi,1N (δi,1)δ̇i,1 + δ̇i,1 − ci,1z

2
i,1

− ki,1z
2
i,1 + zi,1εi,1 − li,1z

2
i,1 + zi,1fi,1

− µ̂izi,1hi + θ̃Ti,1ϕi,1zi,1

≤ gi,1N (δi,1)δ̇i,1 + δ̇i,1 − c̄i,1z
2
i,1 + g2i,1z

2
i,2

+
1

4ki,1
ε2i,1 +

1

4li,1
f2
i,1 − µ̂izi,1hi

+ θ̃Ti,1ϕi,1zi,1, (21)

where c̄i,1 = ci,1 −
1
4 .

Construct the Lyapunov function as

Vi,1 =
1

2
z2i,1 +

1

2
θ̃Ti,1Λ

−1
i,1 θ̃i,1 +

1

2γi,1
µ̃2
i , (22)

where Λi,1 is a positive-definite matrix and γi,1 is a positive design parameter. From Lemmas 1–2 and (22),

differentiating Vi,1 with the αth order yields

DαVi,1 =
1

2
Dαz2i,1 +

1

2
Dαθ̃Ti,1Λ

−1
i,1 θ̃i,1 +

1

2γi,1
Dαµ̃2

i

≤ zi,1D
αzi,1 − θ̃Ti,1Λ

−1
i,1D

αθi,1 −
1

γi,1
µ̃iD

αµ̂i.

(23)
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Substituting (21) into (23) yields

DαVi,1 ≤− c̄i,1z
2
i,1 + gi,1N (δi,1)δ̇i,1 + δ̇i,1 + g2i,1z

2
i,2

+
1

4ki,1
ε̄2i,1 +

1

4li,1
f2
i,1 − µizi,1hi

− θ̃Ti,1Λ
−1
i,1 (D

αθi,1 − Λi,1ϕi,1zi,1)

−
1

γi,1
µ̃i(D

αµ̂i − γi,1zi,1hi).

(24)

Design the update laws Dαθi,1 and Dαµ̂i as

Dαθi,1 = Λi,1ϕi,1zi,1 − ρi,1θi,1, (25)

Dαµ̂i = γi,1zi,1hi − γi,2µ̂i. (26)

Substituting (25) and (26) into (24) yields

DαVi,1 ≤− c̄i,1z
2
i,1 + gi,1N (δi,1)δ̇i,1 + δ̇i,1 + g2i,1z

2
i,2

+
1

4ki,1
ε̄2i,1 +

1

4li,1
f2
i,1 − µizi,1hi

+ ρi,1θ̃
T
i,1Λ

−1
i,1 θ

∗
i,1 − ρi,1θ̃

T
i,1Λ

−1
i,1 θ̃i,1

+
γi,2
γi,1

µ̃iµi −
γi,2
γi,1

µ̃2
i .

Through Young’s inequality, we obtain

DαVi,1 ≤− c̄i,1z
2
i,1 + gi,1N (δi,1)δ̇i,1 + δ̇i,1 + g2i,1z

2
i,2

+
1

4ki,1
ε̄2i,1 +

1

4li,1
f2
i,1 − µizi,1hi

+
1

2
ρi,1θ

∗T
i,1Λ

−1
i,1 θ

∗
i,1 −

1

2
ρi,1θ̃

T
i,1Λ

−1
i,1 θ̃i,1

+
γi,2
2γi,1

µ2
i −

γi,2
2γi,1

µ̃2
i

≤− λi,1Vi,1 + g2i,1z
2
i,2 + ζi,1,

(27)

where λi,1 = min{2c̄i,1, ρi,1, γi,2} and ζi,1 = gi,1N (δi,1)δ̇i,1+δ̇i,1+
1

4ki,1
ε̄2i,1+

1
4li,1

f2
i,1−µizi,1hi+

ρi,1

2 θ∗Ti,1Λ
−1
i,1 θ

∗
i,1+

γi,2

2γi,1
µ2
i .

Step j ( j = 2, . . ., ni−1): From (15), we obtain

Dαzi,j = gi,jxi,j+1 + φi,j + fi,j −Dατi,j−1

= gi,jzi,j+1 + gi,jτi,j + φi,j + fi,j −Dατi,j−1

+ g2i,j−1zi,j − g2i,j−1zi,j

= gi,jzi,j+1 + gi,jτi,j +Φi,j + fi,j − g2i,j−1zi,j ,
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where g2i,j−1zi,j is an auxiliary term and Φi,j = φi,j − Dατi,j−1 + g2i,j−1zi,j is the unknown nonlinear function.

Using FLSs to approximate Φi,j yields

Dαzi,j = gi,jzi,j+1 + gi,jτi,j +Φi,j − Φ̂i,j

+ Φ̂i,j + fi,j − g2i,j−1zi,j

= gi,jzi,j+1 + gi,jτi,j + εi,j + θ̃Ti,jϕi,j

+ θTi,jϕi,j + fi,j − g2i,j−1zi,j ,

(28)

where the approximation error is |εi,j| ≤ ε̄i,j .

The virtual controller τi,j and adaptation law Dαθi,j are designed as

τi,j = N (δi,j)ηi,j , (29)

ηi,j = ci,jzi,j + ki,jzi,j + li,jzi,j + θTi,jϕi,j ,

δ̇i,j = zi,jηi,j ,

Dαθi,j = Λi,jϕi,jzi,j − ρi,jθi,j , (30)

where ci,j >
1
4 , ki,j and li,j are positive constants and Λi,j is a positive-definite matrix. By using (28)–(29) and

multiplying both sides by zi,j , one obtains

zi,jD
αzi,j ≤ gi,jN (δi,j)δ̇i,j + δ̇i,j − c̄i,jz

2
i,j + g2i,jz

2
i,j+1

+
1

4ki,j
ε2i,j +

1

4li,j
f2
i,j + θ̃Ti,jϕi,jzi,j

− g2i,j−1z
2
i,j , (31)

where c̄i,j = ci,j −
1
4 . Select the Lyapunov function as

Vi,j = Vi,j−1 +
1

2
z2i,j +

1

2
θ̃Ti,jΛ

−1
i,j θ̃i,j . (32)

Then, from (27) and (30)–(32), we obtain

DαVi,j ≤− λi,j−1Vi,j−1 + ζi,j−1 − c̄i,jz
2
i,j + g2i,jz

2
i,j+1

+ gi,jN (δi,j)δ̇i,j + δ̇i,j +
1

4ki,j
ε̄2i,j +

1

4li,j
f2
i,j

+ θ̃Ti,jΛ
−1
i,j (D

αθi,j − Λ−1
i,j ϕi,jzi,j)

≤− λi,j−1Vi,j−1 + ζi,j−1 − c̄i,jz
2
i,j + g2i,jz

2
i,j+1

+ gi,jN (δi,j)δ̇i,j + δ̇i,j +
1

4ki,j
ε̄2i,j +

1

4li,j
f2
i,j

+
ρi,j
2
θ∗Ti,j Λ

−1
i,j θ

∗
i,j −

ρi,j
2
θ̃Ti,jΛ

−1
i,j θ̃i,j

≤− λi,jVi,j + g2i,jz
2
i,j+1 + ζi,j , (33)

where λi,j = min{λi,j−1, 2c̄i,j, ρi,j} and ζi,j = ζi,j−1++gi,jN(δi,j)δ̇i,j+δ̇i,j+
1

4ki,j
ε̄2i,j+

1
4li,j

f2
i,j+

ρi,j

2 θ∗Ti,j Λ
−1
i,j θ

∗
i,j .
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Step ni: Similar to the above steps, the αth-order derivative of zi,ni
is

Dαzi,ni
= gi,ni

ui + φi,ni
+ di + fi,ni

−Dατi,ni−1

= gi,ni
ui +Φi,ni

+ di + fi,ni
− g2i,ni−1zi,ni

= gi,ni
ui + εi,ni

+ θ̃Ti,ni
ϕi,ni

+ θTi,ni
ϕi,ni

+ di + fi,ni
− g2i,ni−1zi,ni

,

(34)

where the unknown nonlinear function Φi,ni
= φi,ni

−Dατi,ni−1 + g2i,ni−1zi,ni
is approximated by FLSs, and the

approximation error is |εi,ni
| ≤ ε̄i,ni

.

Design the control input ui as

ui = N (δi,ni
)ηi,ni

, (35)

ηi,ni
= ci,ni

zi,ni
+ ki,ni

zi,ni
+ li,ni

zi,ni

+ θTi,ni
ϕi,ni

+ bizi,ni
,

δ̇i,ni
= zi,ni

ηi,ni
.

Invoking (35), multiplying both sides by zi,ni
and using Young’s equality, (34) is denoted as

zi,ni
Dαzi,ni

≤ gi,ni
N (δi,ni

)δ̇i,ni
+ δ̇i,ni

− ci,ni
z2i,ni

+
1

4ki,ni

ε2i,ni
+

1

4li,ni

f2
i,ni

+
1

4bi
d2i

+ θ̃Ti,ni
ϕi,ni

zi,ni
− g2i,ni−1z

2
i,ni

.

(36)

Consider

Vi,ni
=Vi,ni−1 +

1

2
z2i,ni

+
1

2
θ̃Ti,ni

Λ−1
i,ni

θ̃i,ni
, (37)

where Λi,ni
is a positive-definite matrix. Then, according to (36) and (37),

DαVi,ni
≤ −λi,ni−1Vi,ni−1 + ζi,ni−1 − ci,ni

z2i,ni

+ gi,ni
N (δi,ni

)δ̇i,ni
+ δ̇i,ni

+
1

4ki,ni

ε̄2i,ni

+
1

4li,ni

f2
i,ni

+
1

4bi
d̄2i

− θ̃Ti,ni
Λ−1
i,ni

(Dαθi,ni
− Λi,ni

ϕi,ni
zi,ni

).

(38)

Design the update law Dαθi,ni
as

Dαθi,ni
= Λi,ni

ϕi,ni
zi,ni

− ρi,ni
θi,ni

. (39)
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Substituting (39) into (38) yields

DαVi,ni
≤− λi,ni−1Vi,ni−1 + ζi,ni−1 − ci,ni

z2i,ni

+ gi,ni
N (δi,ni

)δ̇i,ni
+ δ̇i,ni

+
1

4ki,ni

ε̄2i,ni

+
1

4li,ni

f2
i,ni

+
1

4bi
d̄2i +

ρi,ni

2
θ∗Ti,ni

Λ−1
i,ni

θ∗i,ni

−
ρi,ni

2
θ̃Ti,ni

Λ−1
i,ni

θ̃i,ni

≤− λi,ni
Vi,ni

+ ζi,ni
, (40)

where λi,ni
= min{λi,ni−1, 2ci,ni

, ρi,ni
} and

ζi,ni
= ζi,ni−1 + gi,ni

N (δi,ni
)δ̇i,ni

+ δ̇i,ni
+

1

4ki,ni

ε̄2i,ni

+
1

4li,ni

f2
i,ni

+
1

4bi
d̄2i +

ρi,ni

2
θ∗Ti,ni

Λ−1
i,ni

θ∗i,ni

=

ni
∑

j=1

(

gi,jN (δi,j)δ̇i,j + δ̇i,ni

)

+

ni
∑

j=1

1

4ki,j
ε̄2i,j

+

ni
∑

j=1

1

4li,j
f2
i,j +

1

4bi
d̄2i +

ni
∑

j=1

ρi,j
2
θ∗Ti,j Λ

−1
i,j θ

∗
i,j

− µizi,1hi +
γi,2
2γi,1

µ2
i .

V. STABILITY ANALYSIS

Using the controller designed above, we present the main results.

Theorem 2: Consider the fractional-order interconnected system (6) with unknown control directions satisfying

Assumptions 1–4, the control input (35), and the parameter updating laws (25), (26), (30), and (39). Then, all the

signals in the closed-loop system are bounded. Moreover, the tracking errors zi,1, i = 1, . . . , N tend toward a small

neighborhood around zero.

Proof: Define the following Lyapunov function

V =
N
∑

i=1

Vi,ni
. (41)

Invoking (40), the αth-order derivative of V is denoted as

DαV =
N
∑

i=1

DαVi,ni
≤

N
∑

i=1

(−λi,ni
Vi,ni

+ ζi,ni
)

=

N
∑

i=1

[

− λi,ni
Vi,ni

+

ni
∑

j=1

(

gi,jN (δi,j)δ̇i,j + δ̇i,ni

)

+

ni
∑

j=1

1

4ki,j
ε̄2i,j +

ni
∑

j=1

ρi,j
2
θ∗Ti,j Λ

−1
i,j θ

∗
i,j +

1

4bi
d̄2i

+

ni
∑

j=1

1

4li,j
f2
i,j − µizi,1hi +

γi,2
2γi,1

µ2
i

]

. (42)
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According to Assumption 2, we obtain

ni
∑

j=1

1

4li,j
f2
i,j ≤

ni
∑

j=1

N
∑

q=1

1

4li,j
β2
i,j,qψ

2
i,j,q(yq). (43)

Note that there is an unknown constant µi, which satisfies µi ≥
ni
∑

j=1

N
∑

q=1

1
4lq,j

β2
q,j,i. Hence, one obtains

N
∑

i=1

[

ni
∑

j=1

1

4li,j
f2
i,j − µizi,1hi

]

≤
N
∑

i=1

[

ni
∑

j=1

N
∑

q=1

1

4lq,j
β2
q,j,iψ

2
q,j,i(yq)− µizi,1hi

]

≤
N
∑

i=1

µi

̟i − z2i,1
z2i,1 +̟i

ni
∑

j=1

N
∑

q=1

ψ2
q,j,i(yq) =

N
∑

i=1

Ψi.

(44)

Obviously, for i = 1, . . . , N , if z2i,1 > ̟i, Ψi < 0; instead, if z2i,1 ≤ ̟i, zi,1 is bounded and Ψ̄i exists such that

|Ψi| ≤ Ψ̄i, which is only related to the design parameter ̟i. With this relationship in mind, (42) is denoted as

DαV ≤−
N
∑

i=1

λi,ni
Vi,ni

+

N
∑

i=1

ni
∑

j=1

(gi,jN (δi,j)δ̇i,j + δ̇i,ni
)

+

N
∑

i=1

[

ni
∑

j=1

(
ρi,j
2
θ∗Ti,j Λ

−1
i,j θ

∗
i,j +

1

4ki,j
ε̄2i,j)

+
1

4bi
d̄2i +

γi,2
2γi,1

µ2
i + Ψ̄i

]

≤− λV +

N
∑

i=1

ni
∑

j=1

(

gi,jN (δi,j)δ̇i,j + δ̇i,j
)

+ ζ, (45)

where λ = min{λi,ni
, i = 1, . . . , N} and ζ = +

N
∑

i=1

[ ni
∑

j=1

(
ρi,j

2 θ∗Ti,j Λ
−1
i,j θ

∗
i,j +

1
4ki,j

ε̄2i,j) +
1
4bi
d̄2i +

γi,2

2γi,1
µ2
i + Ψ̄i

]

are

two positive constants.

According to Theorem 1, it is obvious that V is bounded. Therefore, all signals of the closed-loop system remain

bounded.

Remark 6: The work in [17], [20] only considered the control problem for integer-order systems with unknown

control directions. By taking the integer-order integral for the inequality V̇ ≤ −λV +
n
∑

i=1

(

giN (δi)δ̇i + δ̇i
)

+ ζ,

the exponential stability of V can be established. However, it is not applicable when the order is a non-integer.

Therefore, we develop a new fractional-order Nussbaum function technique. From the inequality (45) of DαV ,

Theorem 1 can be used to show the stability of fractional-order interconnected systems. Meanwhile, in contrast

with [34], [35] where the control directions are known, the extra term
N
∑

i=1

ni
∑

j=1

(

gi,jN (δi,j)δ̇i,j + δ̇i,ni

)

can cause

many difficulties.

VI. SIMULATION

Two examples will be provided in this section to verify the proposed results.
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A. Numerical example

The considered fractional-order interconnected system composed of four subsystems is described as


















Dαxi1 = xi2 + φi1

Dαxi2 = giui + φi2 + di + fi2

yi = xi1, i = 1, . . . , 4,

(46)

where α = 0.8, the completely unknown control gains g1 = 2+ sin t, g2 = 2, g3 = 3− cos t, g4 = 3, the unknown

functions φ11 = 0.6x211, φ12 = x12

1+x2
11

, φ21 = 0.5e−x2
21 , φ22 = e−x2

22 sinx21, φ31 = x231, φ32 = (1−x231)x12, φ41 =

0, φ42 = x41x
2
42, the external disturbances d1 = d2 = 0.3 cos(πt), d3 = d4 = 0.4 sin(πt), the unknown interactions

f12 = 0.5x21+x31+sinx41, f22 = x11+0.6x31+0.7x41, f32 = x11+sinx21+x41, f42 = x11+sinx21+0.6x31.

The initial condition is xi(0) = [0.1, 0.1]T for i = 1, . . . , 4. Let the reference signals be yri = sin 2t, i = 1, . . . , 4.

The Nussbaum functions are chosen as N(δ) = δ2 sin δ
2π, which can also be selected as other common forms, such

as N(δ) = eδ
2

cos δ
2π, N(δ) = eδ

2

sin δ
2π, and N(δ) = δ2 cos δ

2π.

The design parameters are selected as c̄11 = 3, c̄21 = 5, c̄31 = 4, c̄41 = 3, c̄i2 = 1, Λi,j = 1, and γi,1 = 1,

where c̄i1 = ci1 + ki1 + li1 and c̄i2 = ci2 + ki2 + li2 + bi, i = 1, . . . , 4, j = 1, 2. In the FLSs, we use the Gaussian

membership functions µF l
i,j
(xij) = e[−0.5(xij−3+l)2], l = 1, . . . , 5 to determine the fuzzy basis ϕij(x̄ij). Let the

initial value of θi,j be zero.

The simulation results are illustrated in Figs. ??–??. It is observed that, in Fig. ??, the outputs yi, i = 1, . . . , 4

can track the reference signals well with small tracking errors. Meanwhile, the trajectories of tracking errors zi1

for i = 1, . . . , 4 are shown in Fig. ??, which converge to the neighborhood of zero. The variations of the control

input and parameters of FLSs are plotted in Figs. ??–??. We can see that these signals remain bounded.

B. Practical example

According to [43], [46], we consider a fractional-order smooth-air-gap permanent magnet synchronous motor

(PMSM) as follows:

Dαω = κ(iq − ω),

Dαiq = −iq − ωid + νω + g1uq,

Dαid = −id + ωiq + g2ud,

(47)

where α = 0.9, ω, iq and id denote rotor angular velocity and d − q axis currents and the parameters κ, ν and

gi, i = 1, 2 are determined by the specifications of PMSM. It is demonstrated in many references [42], [43] that

PMSM can be better described by fractional-order models. It is noted that PMSM is an MIMO system such that

u = [uq, ud]
T and y = [ω, id]. Obviously, coupling exists in the systems (47). Therefore, the PMSM can be regarded
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as an interconnected system and divided into two subsystems:

Dαx11 = κ(x12 − x11),

Dαx12 = −x12 − x11x21 + νx11 + g1uq,

y1 = x11,

Dαx21 = −x21 + x11x12 + g2ud,

y2 = x21,

(48)

where x1 = [x11, x12]
T = [ω, iq]

T , x21 = id. κ, g1 and g2 are unknown control coefficients with unknown signs.

We set the parameters as κ = 2, ν = 3, and g1 = g2 = 3. The initial condition is selected as [x11, x12, x21] =

[0.1, 0.1, 0.1]. The reference signals are yr1 = sin 2t and yr2 = 0. The design parameters are chosen as c̄11 =

c11 + k11 = 10, c̄12 = c12 + k12 + l12 + b12 = 3, c̄21 = c21 + k21 + l21 + b21 = 3, Λ11 = Λ12 = Λ21 = 1,

and γ11 = γ21 = 1. To compute the fuzzy basis ϕij(x̄ij), the fuzzy membership functions in FLSs are chosen as

µF l
i,j
(xij) = e[−0.5(xij−3+l)2], l = 1, . . . , 5. The initial value of θi,j is set as zero.

The corresponding simulation results are exhibited in Figs. ??–??, whose qualitative analysis is similar to that

in Example A. It is clearly seen that the proposed control method is effective for improving the dynamic behavior

for the PMSM system (i.e., it achieves a good tracking performance).

To show the robustness of our proposed method, we conduct two comparative simulations by reasonably changing

the parameters of the systems (48) shown above under the same design parameters. First, we present Fig. ??, which

simultaneously depicts the trajectories of tracking errors in two sets of parameters κ and ν. It can be seen that,

when the parameters of PMSM are changed, the tracking performance almost remains the same. Second, we change

the fractional orders that affect the dynamic characteristics of PMSM [43]. The tracking errors are shown in Fig.

??. It is observed that a good tracking performance can be obtained. The above two comparisons demonstrate the

robustness of our proposed method.

VII. CONCLUSION

In this paper, we propose a new fractional-order Nussbaum function technique for unknown control directions

in fractional-order systems. With the help of this technique, a decentralized adaptive fuzzy control method is

developed for a class of interconnected systems with unknown identical control directions. In future work, more

complex fractional-order interconnected systems will be investigated.

APPENDIX A

PROOF OF THE THEOREM 1

The proof is completed in two parts.

Part 1. Let us focus on the bound of V . From the inequality (12), we obtain

DαV +M(t) = −λV +
n
∑

i=1

(

giN (δi)δ̇i + δ̇i
)

+ ζ, (49)
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where M(t) is the nonnegative time-varying function. Through the Laplace transform, we obtain

V (s) =
sα−1

sα + λ
V (0)−

1

sα + λ
M(s)

+
1

sα + λ
f(s) +

ζ

s(sα + λ)
,

(50)

where f(t) =
n
∑

i=1

(

giN (δi)δ̇i + δ̇i
)

. Then, taking the Laplace inverse transform, we obtain

V (t) =Eα,1(−λt
α)V (0)−M(t) ∗

(

tα−1Eα,α(−λt
α)
)

+ f(t) ∗
(

tα−1Eα,α(−λt
α)
)

+ ζtαEα,α+1(−λt
α), (51)

where ∗ is the convolution operator.

Note that tα−1Eα,α(−λt
α) ≥ 0. Therefore, we can conclude that M(t) ∗

(

tα−1Eα,α(−λt
α)
)

≥ 0. According to

Lemma 3, we obtain

|ζtαEα,α+1(−λt
α)| ≤

ζtασ

1 + |λtα|
≤
ζσ

λ
. (52)

Furthermore, according to Lemma 1, it can be found that Eα,1(−λtα)V (0) is bounded and lim
t→∞

Eα,1(−λtα)V (0) =

0. Now, let us analyze f(t) ∗
(

tα−1Eα,α(−λt
α)
)

, which is expressed as

f(t)∗
(

tα−1Eα,α(−kt
α)
)

=

∞
∫

−∞

(

n
∑

i=1

giN (δi)δ̇i + δ̇i

)

(t− ς)α−1

× Eα,α(−λ(t− ς)α)dς.

(53)

Due to the fact that f(t) and tα−1Eα,α(−λtα) are defined on [0,∞), (53) is rewritten as

t
∫

0

(

n
∑

i=1

giN (δi)δ̇i + δ̇i

)

Eα,α

(

− λ(t− ς)α
)

(t− ς)α−1dς

=

n
∑

i=1

t
∫

0

giN (δi)δ̇iEα,α

(

− λ(t− ς)α
)

(t− ς)α−1dς

+

n
∑

i=1

t
∫

0

δ̇iEα,α

(

− λ(t− ς)α
)

(t− ς)α−1dς. (54)

Based on the above analysis, (51) becomes

V (t) ≤
n
∑

i=1

t
∫

0

giN (δi)δ̇iEα,α

(

− λ(t− ς)α
)

(t− ς)α−1dς

+

n
∑

i=1

t
∫

0

δ̇iEα,α

(

− λ(t− ς)α
)

(t− ς)α−1dς

+H, (55)

where H = Eα,1(−λtα)V (0) + ζσ
λ

is bounded.
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Part 2. We analyze the boundedness of V from the inequality (55) based on the properties of the Nussbaum

function. For convenience, define Vg(tp, tq) as

Vg(tp, tq) = Vg
(

δ(tp), δ(tq)
)

= Vg(δp, δq)

=

n
∑

i=1

tq
∫

tp

giN (δi)δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

+

n
∑

i=1

tq
∫

tp

δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς, (56)

and Vgi(tp, tq) for i = 1, . . . , n as

Vgi(tp, tq) =Vgi(δ(tp), δ(tq)) = Vgi(δp, δq)

=

tq
∫

tp

(giN (δi)δ̇i + δ̇i)Eα,α(−λ(t− ς)α)

× (t− ς)α−1dς,

(57)

where tp ≤ tq . To accomplish the proof, we select the Nussbaum function as N (δ) = eδ
2

sin δ
2π. It is obvious that

N (δ) is positive for δ ∈ (δm1, δm2) = (4m, 4m+ 2) and negative for δ ∈ (δm2, δm3) = (4m + 2, 4m+ 4) with

m ∈ Z.

From the above definitions, Vg(t0, t) for t ∈ [t0, tf ) can be rewritten as

Vg(t0, t)

=

n
∑

i=1

t
∫

t0

giN (δi)δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

+
n
∑

i=1

t
∫

t0

δ̇iEα,α(−λ(t − ς)α)(t− ς)α−1dς

=

ω
∑

i=1

Vgi(t0, t) +

n
∑

i=ω+1

Vgi(t0, t). (58)

In the following, we will show that δi is bounded by seeking a contradiction. We suppose that δi is unbounded.

In particular, δ1, . . . , δω are unbounded, but δω+1, . . . , δn are bounded for 1 ≤ ω ≤ n. Therefore, three cases should

be considered: 1) δi has no upper bound; 2) δi has no lower bound, and 3) δ1, . . . , δj have no upper bound, while

δj+1, . . . , δω have no lower bound, i = 1, . . . , ω and j = 1, . . . , ω − 1.

Case 1: δi(1 ≤ i ≤ ω) has no upper bound on [0, tf).

In this case, there exist a monotonically increasing variable δi = δi(tm), lim
m→∞

tm → tf , and lim
t→tf

δi → ∞.

Moreover, there exist time instants ti1 and ti2 which are defined as ti1 = {t : δi = δm1} and ti2 = {t : δi = δm2}.

From (58), Vg(t0, t) is divided into two sums over [t0, tf ) as

Vg(t0, tf ) =

ω
∑

i=1

Vgi(t0, tf ) +

n
∑

i=ω+1

Vgi(t0, tf ). (59)
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(i) In the first sum of (59), the δi of Vgi is unbounded for 1 ≤ i ≤ ω. Define gmax = max1≤i≤ω{|gi(t)|} and

gmin = min1≤i≤ω{|gi(t)|}.

Firstly, let us consider Vgi(1 ≤ i ≤ ω) with gi(t) < 0.

By defining F1 = infx∈[w−,w+] F (x) and F2 = supx∈[w−,w+] F (x), the integral inequality is shown as (w+ −

w−)F1 ≤
∫ w+

w−
F (x)dx ≤ (w+ − w−)F2. Noting that 0 < Eα,α(−λ(t − ς)α)(t − ς)α−1 ≤ 1 with 0 < α < 1 for

ς ∈ [t0, ti1], according to the integral inequality, we obtain

|Vgi(δ0, δm1)| ≤ (δm1 − δ0)gmaxe
(4m)2(tf − ti1)

α−1

+ (δm1 − δ0)(tf − ti1)
α−1

= (4m− δ0)gmaxe
(4m)2(tf − ti1)

α−1

+ (4m− δ0)(tf − ti1)
α−1.

(60)

Due to N (δi) ≥ 0 for δi ∈ [δm1, δm2], we obtain

Vgi(δm1, δm2)

≤

4m+1+cmi
∫

4m+1−cmi

giN (δi)Eα,α(−λ(tf − ς)α)(tf − ς)α−1dδi

+

4m+1+cmi
∫

4m+1−cmi

Eα,α(−λ(tf − ς)α)(tf − ς)α−1dδi

≤ −2cmigmin inf
δi∈[δm1,δm2]

N (δi)

× Eα,α(−λ(tf − ti1)
α)(tf − ti1)

α−1

+ 2cmiEα,α(−λ(tf − ti2)
α)(tf − ti2)

α−1

=
(

− ai1e
(4m+1−cmi)

2

+ ai2
)

(tf − ti1)
α−1, (61)

where ai1 = 2cmigmin cos (
cmi

2 π)Eα,α(−λ(tf − ti1)
α) > 0, ai2 = 2cmiEα,α(−λ(tf − ti1)

α), and cmi ∈ (0, 1).

Hence, it follows from (60) and (61) that

Vgi(δ0, δm2) = Vgi(δ0, δm1) + Vgi(δm1, δm2)

≤ (4m− δ0)gmaxe
(4m)2(tf − ti1)

α−1

+ (4m− δ0)(tf − ti1)
α−1

+ (−ai1e
(4m+1−cmi)

2

+ ai2)(tf − ti1)
α−1

= e(4m)2
(

− ai1e
[8m(1−cmi)+(1−cmi)

2]

+ (4m− δ0)gmax +
4m− δ0 + ai2

e(4m)2

)

× (tf − ti1)
α−1. (62)

Note that (tf−ti1)α−1 > 0, 1−cmi > 0 and em grow much faster than m. Therefore, we find that Vgi(δ0, δm2) =

Vgi(δ0, 4m+ 2) → −∞ when m→ +∞, which means that Vgi(t0, tf ) → −∞.
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Secondly, we analyze Vgi(1 ≤ i ≤ ω) with gi(t) > 0. Similar to the above derivation, using the integral inequality

in the interval [δ0, δm2], we obtain

|Vgi(δ0, δm2)| ≤ (δm2 − δ0)gmaxe
(4m+2)2(tf − ti2)

α−1

+ (δm2 − δ0)(tf − ti2)
α−1

= (4m+ 2− δ0)gmaxe
(4m+2)2(tf − ti2)

α−1

+ (4m+ 2− δ0)(tf − ti2)
α−1. (63)

It is known that N (δi) ≤ 0 when δi ∈ [δ2, δ3]. Thus, we obtain

Vgi(δm2, δm3)

≤

4m+3+cmi
∫

4m+3−cmi

giN (δi)Eα,α(−λ(tf − ς)α)(tf − ς)α−1dδi

+

4m+3+cmi
∫

4m+3−cmi

Eα,α(−λ(tf − ς)α)(tf − ς)α−1dδi

≤ 2cmigmin supN (δi)Eα,α(−λ(tf − ti2)
α)(tf − ti2)

α−1

+ 2cmiEα,α(−λ(tf − ti2)
α)(tf − ti2)

α−1

= (−ai1e
(4m+3−cmi)

2

+ ai2)(tf − ti2)
α−1, (64)

where ai1 = 2cmigmin cos (
cmi

2 π)Eα,α(−λ(tf − ti2)α) > 0 and ai2 = 2cmiEα,α(−λ(tf − ti2)α). Hence, from (63)

and (64), we obtain

Vgi(δ0, δm3) = Vg−ı(δ0, δm2) + Vg−ı(δm2, δm3)

≤ (4m+ 2− δ0)gmaxe
(4m+2)2(tf − ti2)

α−1

+ (4m+ 2− δ0)(tf − ti2)
α−1

+ (−ai1e
(4m+3−cmi)

2

+ ai2)(tf − ti2)
α−1

= e(4m+2)2
(

− ai1e
[4(2m+1)(1−cmi)+(1−cmi)

2]

+ (4m+ 2− δ0)gmax

+
4m+ 2− δ0 + ai2

e(4m)2

)

(tf − ti2)
α−1. (65)

Similar to (62), we know that Vgi(δ0, δm3) = vgi(δ0, 4m + 4) → −∞ when m → +∞, which means that

Vgi(t0, tf ) → −∞. Hence, a subsequence that results in Vgi(t0, tf ) → −∞ for 1 ≤ i ≤ ω can always be found

whether gi(t) is positive or negative.
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Suppose that δq̄, q̄ ∈ [1, ω] grows the fastest. Therefore, for gi(t) < 0, when δq̄ = δm2, i.e., tm = tq̄2, from (60)

and (62), we obtain

ω
∑

i=1

Vgi(t0, tq̄2) ≤ Vgq̄(δ0, δm2) +

ω
∑

i=1,i6=q̄

|Vgi(δ0, δm1)|

≤ e(4m)2
(

− aq̄21e
[8m(1−cmq̄2)+(1−cmq̄2)

2]

+ ω̄(4m− δ0)gmax +
ω̄(4m− δ0) + ai2

e(4m)2

)

× (tf − ti1)
α−1, (66)

where ω̄ = ω(tf − ti2)
α−1/(tf − ti1)

α−1 is bounded since δi is monotonically increasing.

According to the conclusion of (62),
ω
∑

i=1

Vgi(t0, tq̄2) → −∞ when tq̄2 → tf ; that is,
ω
∑

i=1

Vgi(t0, tf ) → −∞.

Through the similar analysis for gi(t) > 0, we find that
ω
∑

i=1

Vgi(t0, tf ) → −∞. Consequently, we can obtain

ω
∑

i=1

Vgi(t0, tf ) → −∞.

(ii) In the second sum of (59), δi from Vgi is bounded for ω+1 ≤ i ≤ n. With the time interval [t0, tf) divided

into [t0, tf − 1] and (tf − 1, ff), Vgi is rewritten as

Vgi(t0, tf) = Vgi(t0, tf − 1) + Vgi(tf − 1, tf )

=

tf−1
∫

t0

(

giN (δi)δ̇i + δ̇i
)

Eα,α(−λ(tf − ς)α)

× (tf − ς)α−1dτ +

tf
∫

tf−1

(

giN(δi)δ̇i + δ̇i
)

× Eα,α(−λ(tf − ς)α)(tf − ς)α−1dς.

(67)

For ς ∈ [t0, tf − 1], it is obvious that Eα,α(−λ(tf − ς)α) < 0 and (tf − ς)α−1 ≤ 0 with α ∈ (0, 1). Using the

integral inequality, the term Vgi(to, tf − 1) in (67) is denoted as

tf−1
∫

t0

(

giN(δi)δ̇i + δ̇i
)

Eα,α(−λ(tf − ς)α)(tf − ς)α−1dς

≤ (δimax − δimin)(gmaxe
δ2imax + 1), (68)

where δimax = supt∈[t0,tf ]
δi(t), δimin = inft∈[t0,tf ] δi(t).

For ς ∈ (tf − 1, tf ), it is known that (tf − ς)α−1 > 1 and lim
ς→tf

(tf − ς)α−1 → ∞, where the comparison test

of the improper integral will be used to analyze Vgi(tf − 1, tf ). Since δi is bounded, giN (δi)δ̇i + δ̇i is bounded.

Hence, we obtain

tf
∫

tf−1

(giN (δi)δ̇i + δ̇i)Eα,α(−λ(tf − ς)α)(tf − ς)α−1dς

≤

tf
∫

tf−1

κEα,α(−λ(tf − ς)α)(tf − ς)α−1dς, (69)
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where κ is a positive constant and satisfies |giN (δi)δ̇i + δ̇i| ≤ κ. At the present stage, we construct a limitation as

lim
t→t

−

f

(tf − t)1−ακ(tf − t)α−1Eα,α(−λ(tf − t)α) = κ. (70)

Due to 0 ≤ κ ≤ ∞ and 1 − α < 1, we directly conclude that
tf
∫

tf−1

κEα,α(−λ(tf − ς)α)(tf − ς)α−1dς is a

convergence; that is, Vgi(tf − 1, tf) is bounded. As a result, it is derived that

Vgi(tf − 1, tf ) ≤ ~, (71)

where ~ is a positive constant. Combining (68) and (71), we obtain

Vgi(t0, tf ) ≤ (δimax − δimin)(gmaxe
δ2imax + 1) + ~. (72)

Consequently, we can determine that Vgi(t0, tf )(ω + 1 ≤ i ≤ n) and
n
∑

i=ω+1

Vgi(t0, tf ) are bounded.

Finally, according to the above analysis of (i) and (ii), Vg(t0, tf ) from (59) satisfies the constraint that Vg(t0, tf ) →

−∞. From (55), we further conclude that V (t) → −∞ when t→ tf . However, according to the definition of V (t),

V (t) is nonnegative at any time t. Thus, a sequence that results in a contradiction can always be found in (55). As

a result, δi(1 ≤ i ≤ ω) has an upper bound on [t0, tf ).

Case 2: δi(1 ≤ i ≤ ω) has no lower bound on [t0, ff).

First, we define δi = −ξi for i = 1, 2, . . . , n. Therefore, the condition of δi is transformed into ξi(1 ≤ i ≤ ω),

which has no upper bound. Due to the Nussbaum function N (·) in (11) being an odd function, we can rewrite (56)

as

Vg(t0, t)

=

n
∑

i=1

t
∫

t0

giN (ξi)ξ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

−
n
∑

i=1

t
∫

t0

ξ̇iEα,α(−λ(t − ς)α)(t− ς)α−1dς. (73)

Since ξi(1 ≤ i ≤ ω) has no upper bound, the proof is accomplished with similar procedures in Case 1. Hence,

ξi(1 ≤ i ≤ ω) must have an upper bound by constructing a sequence to result in a contradiction. Based on the

definition of ξi(1 ≤ i ≤ ω), we can determine that δi(1 ≤ i ≤ ω) must have a lower bound on the time interval

[t0, tf ).

Case 3: δi(1 ≤ i ≤ j) has no upper bound, while δi(j+1 ≤ i ≤ ω) has no lower bound for j = 1, 2, . . . , ω− 1.

In this case, to differentiate from Case 1 and Case 2, ω is supposed to satisfy ω ∈ [2, n]. Obviously, when n = 1,

the multiple Nussbaum functions problem will be simplified to a single Nussbaum function problem. The proof

can be provided by Cases 1 and 2. Thus, in the following, we will analyze Case 3 for n ≥ 2.

The analysis can be established by combining the results in Cases 1 and 2. Firstly, we define δi = −ξi for

j + 1 ≤ i ≤ ω. Thus, the initial condition is transformed into that δi(1 ≤ i ≤ j) and ξi(j + 1 ≤ i ≤ ω) have no

upper bound. Hence, we can divide (65) into three terms as

Vg(t0, t) = V̄g1(t0, t) + V̄g2(t0, t) + V̄g3(t0, t), (74)
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where V̄gi(i = 1, 2, 3) relate to the corresponding variables that have different bound in the initial condition.

In the V̄g1(t0, t), the variable δi(1 ≤ i ≤ j) has no upper bound. Thus, V̄g1 is expressed as

Vg1(t0, t)

=

j
∑

i=1

t
∫

t0

giN (δi)δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

+

j
∑

i=1

t
∫

t0

δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς. (75)

The boundedness of V̄g1(t0, t) is analyzed in Case 1. For V̄g2(t0, t), with ξi(j + 1 ≤ i ≤ ω) having no upper

bound, we obtain

Vg(t0, t)

=

ω
∑

i=j+1

t
∫

t0

giN (ξi)ξ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

−
ω
∑

i=j+1

t
∫

t0

ξ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς.

(76)

We analyze the stability of V̄g2(t0, t) in Case 2. Meanwhile, V̄g3(t0, t), which has the bounded variable δi(ω+1 ≤

i ≤ n) is denoted as

Vg(t0, t)

=

n
∑

i=ω+1

t
∫

t0

giN (δi)δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς

+

n
∑

i=ω+1

t
∫

t0

δ̇iEα,α(−λ(t− ς)α)(t− ς)α−1dς. (77)

We can know that V̄g3(t0, t) is bounded from the results in Case 1.

According to the analysis in Case 1 and the expression of (80), we can also invoke a sequence to result in the

contradiction. Therefore, it can be determined that δi(1 ≤ i ≤ j) has an upper bound and δi(j + 1 ≤ i ≤ ω) has a

lower bound.

Combining the results in the three cases, we eventually conclude that δi must be bounded on [t0, tf ) for i =

1, 2, . . . , n. Meanwhile, the boundedness of V (t), Vg(t) and Vgi(t) can be obtained on [t0, tf ) for i = 1, 2, . . . , n.

Consequently, the proof is accomplished.
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