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Adaptive Fuzzy Controller for the Nonlinear System with 

Unknown Sign of the Input Gain 
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Abstract: We propose and analyze a robust adaptive fuzzy controller for nonlinear systems 
without a priori knowledge of the sign of the input gain function. No assumptions are made 
about the type of nonlinearities of the system, except that such nonlinearities are smooth. The 
uncertain nonlinearities are captured by the fuzzy systems that have been proven to be universal 
approximators. The proposed control scheme completely overcomes the singularity problem 
that occurs in the indirect adaptive feedback linearizing control. Projection in the estimated 
parameters and switching in the control input are both not required. The stability of the closed-
loop system is guaranteed in the Lyapunov viewpoint. 
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1. INTRODUCTION 
 
The theory of explicitly linearizing the input-output 

response of nonlinear systems to linear systems using 
the state feedback has received great attention. 
However, it relies on an exact cancellation of 
nonlinear terms to obtain linear input-output behavior. 
For many nonlinear dynamical systems, which are 
highly nonlinear, it is generally difficult to develop 
accurate mathematical models, i.e., there are 
inevitable uncertainties in the constructed models. 
Therefore, the design of a robust controller that can 
deal with model uncertainties is very important. 

Universal function approximators (UFAs) such as 
fuzzy logic systems and artificial neural networks 
have been successfully applied to many control 
problems because they need no accurate mathematical 
models of the system under control. It is a well-known 
fact that they can approximate certain classes of 
functions to a given accuracy and furthermore the 
output of the system can be represented by a linear 
combination of basis functions such as fuzzy basis 
functions or radial basis functions [1-4]. Based on this 
property many researchers have presented adaptive 
control architecture for uncertain nonlinear systems 
[5-15]. 

However, all the previous results need the 

assumptions that the input gain, which is the function 
of the system states in general, is away from zero and 
its sign is known a priori. The sign, called control 
direction, represents motion direction of the system 
under any control, and knowledge of this sign makes 
adaptive control design much easier. In this paper, we 
eliminate these assumptions. In addition, no 
assumptions are made about the type of nonlinearities 
of the system, except that such nonlinearities are 
smooth. 

In the area of adaptive control, by incorporating 
Nussbaum gain technique [16] into backstepping 
design, adaptive control schemes have been developed 
for parametric-strict-feedback nonlinear systems [17, 
18] and output-feedback nonlinear systems [19] with 
unknown control direction. An alternative method, the 
so-called correction vector approach [20] has been 
applied to first-order nonlinear systems [21]. The 
above mentioned papers consider nonlinear systems 
whose nonlinearities are linear in the unknown 
parameters and, as far as we know, no research results 
have been presented on controlling general nonlinear 
systems whose nonlinearities are functions of system 
state variables. 

We propose an indirect adaptive fuzzy controller 
and new learning algorithms such that all the signals 
involved are stable in the Lyapunov viewpoint. In the 
indirect adaptive control of the feedback linearizable 
system, the fuzzy systems are employed to estimate 
the plant dynamics and these estimates are used to 
generate the control input that achieves tracking of a 
desired output. Since we have no information on the 
input gain, its estimate may be zero at some instances. 
Thus, the conventional adaptive input-output 
linearizing control scheme where the control law’s 
denominator is the estimate of the input gain cannot 
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be employed in this situation. We also propose a new 
singular-free control scheme. No projection as in [5-7] 
and no switching in the control as in [8] are needed. 
The stability of the closed-loop system is guaranteed 
in the Lyapunov standpoint. 

The outline of the paper is as follows. Section 2 
presents a brief description of the fuzzy system and 
universal approximation theorem. In Section 3, a new 
control law and adaptive algorithms are proposed and 
stability analysis is given. Simulation examples are 
illustrated in Section 4. The conclusions are finally 
given in Section 5. 

 
2. DESCRIPTION OF FUZZY SYSTEMS 

 
In this paper, the fuzzy systems are used to capture 

the unknown nonlinearities of the system. In general, 
the output of the multi-input single-output fuzzy 
system with singleton fuzzifier, product inference, 
centroid defuzzifier and Gaussian membership 
functions is described by 

ˆ ( )| ( )T
h h hh θ θ ξ=x x

,   (1) 

where nR∈x  is the input vector to the fuzzy system, 
ĥ R∈  is the output, L

h Rθ ∈ is the adjustable 
parameter vector with its elements being the point at 
which membership function in the consequent part of 
a fuzzy rule achieves its maximum, L denotes the 
number of the fuzzy rules, ( ) : n L

h R Rξ ⋅ →  is a 
nonlinear vector function with its element being the 
normalized firing strength represented by 
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in which ( )i
j

jA
xμ  are the Gaussian membership 

functions of x j associated with the ith fuzzy rule. 
Function (2) is called the fuzzy basis function (FBF) 
in [1]. 

The key advantage of the fuzzy system described 
above is that it has the capability to approximate 
nonlinear mappings to any degree of accuracy, which 
is summarized in the following theorem. 

Theorem 1 (Universal Approximation Theorem): 
For any given real continuous function h on a compact 
set n

x RΩ ∈  and an arbitrary 0hε > , there exists a 

fuzzy system ĥ  in the form of (1) and optimal 
parameter vector *

hθ  such that 

*ˆ ( )sup ( ) | .| |
x

h h
x

h h x θ ε
∈Ω

− <x   (3) 

A proof of this theorem is given in [1,2]. Note that 
the reconstruction error arises as a result of the 
inadequacy of the fuzzy systems to match exactly an 
uncertain nonlinear function even if optimal weights 
are selected. However, we can make hε  arbitrarily 
small by highly increasing the number of fuzzy rules. 

 
3. CONTROLLER DESIGN AND  

STABILITY ANALYSIS 
 

3.1. Problem formulation 
In this section, we first set up control objectives, 

and then show how to design an adaptive controller 
based on the fuzzy system to achieve the objectives. 

Consider the nth-order nonlinear systems of the 
form  

( ) ( ) ( ) ,
,

n
nx f g u

y x
= +

=

x x    (4) 

where fn and g are unknown smooth functions, u R∈  
and y R∈  are the input and output of the system, 

respectively, and 1 2[ , , , ] [ , , ,T
nx x x x x= =x  

( )1 ]n Tx − nR∈  is the state vector of the system that is 
assumed to be measurable. Note that the previous 
research results [5-8,22] require conditions on g (x) in 
which its sign and lower bound are known. These 
conditions are required not only for affine systems but 
nonaffine systems [11,23]. Such conditions on g (x) 
are not needed in this paper. The control objective is 
to force the output y(t) to track a given bounded 
reference signal yd(t), under the constraint that all 
signals involved must be bounded. 

Before preceding, let us rewrite (4) as  

( ) ( ) T
nx f g u= + −x x k x ,   (5) 

where 

( ) ( ) T
nf f= +x x k x  

and 1[ ]Tnk k=k is determined such that the 

polynomial ( ) 1
1

n n
nh s s k s k−= + + +  is Hurwitz. 

We estimate the functions f (x) and g (x) using two 
fuzzy systems and denote them as ˆ ( )f x  and ˆ ( )g x  
respectively. 

 
3.2. Controller design and stability proof 

Typical adaptive input-output linearizing controllers 
are of the form [5,6,22]: 
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where ( )1,[ ]n T
d d d dy y y −=x , β is an additional 

robustness term. However, since the numerator of the 
control input (6) is ˆ ( )g x , it must not be zero. In the 
situation that the sign of ( )g x  is unknown, its 
estimate, ˆ ( )g x , may cross the zero line to search for 
its correct sign, which causes a singularity problem. 
Thus, a new control law that is free form input-
singularity is proposed as 

( )
( )
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ˆ ˆ ,
ˆ
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where 0ε >  is a design constant and β  is a 
robustness term defined later. It can easily be 
observed that if ε  approaches zero or if ˆ ( )g x  
becomes much larger than ε , the modified term 
ˆ/g 2ˆ( )gε +  approaches ˆ1/g . See Fig. 1. 

Let de y y= − , ( )1, , . ne e e −⎡ ⎤= ⎢ ⎥⎣ ⎦
e . Substituting (7) 

into (5) can yield the following error dynamics. 
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The above equation can be rewritten as 
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where 
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0 1 0 0 0
0 0 1 0 0

,

1n n n

A b

k k k k− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

 (10) 

and *
f f fθ θ θ= − , *

g g gθ θ θ= − , *f̂ , *ĝ are shortened 

denotations of *ˆ ( ), ff θx , *( )ˆ , gg θx , respectively. *
fθ  

and *
gθ  are optimal approximation parameters and 

they are assumed to exist according to the universal 
approximation theorem such that *f̂ , *ĝ can 

approximate ,f g as best as possible. *ˆ
f f fδ = −  

and *ˆg g gδ = −  denote the corresponding minimum 
approximation errors. 

Since A is a stable matrix, there exists the positive 
symmetric matrix P and positive constant q satisfying 

.TA P PA qI+ = −    (11) 

Remark: The term ˆ/u gε  in (9) is generated 
because of the ε -term in the denominator of the 
control law, i.e., if 0ε = , the term also becomes zero. 
This newly-introduced disturbance will later be 
compensated by additional conditions on the design 
constants. 

According to Theorem 1, there exist unknown 
constants , 0f gε ε >  such that 

| ( ) |

| ( ) |
f f
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δ ε

≤

≤

x

x
    (12) 

for all x∈Ωx . For the stability proof, we need the 
following assumption. 

Assumption 1: There exists a constant γ  such 
that 
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for all x∈Ωx . 
Assumption 1 is reasonable since, as already 

mentioned in Section 2, gε  can be made arbitrarily 
small according to the universal approximation 
theorem and, moreover, ε  is the positive design 
constant. That is, there are two ways to make γ  as 
small as desired: highly increasing the structure (e.g., 
number of the membership functions and rules) of the 
fuzzy system and choosing ε  sufficiently large. 

Before presenting the main theorem, we define the 
following constants: 
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Note that *ψ  is a lumped uncertain constant related 
to fε  and gε , which are assumed to be unknown. 

We adopt the estimation scheme for *ψ  and denote 
its estimate as ψ . 

Theorem 2: Consider system (4) with the control 
input (7). If we choose the update laws for fuzzy 
parameters ,f gθ θ and estimate of bounding 
parameter ψ  as 

( ) ,T
f f f f fPθ γ ξ σ θ= −e b   (15) 
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where fγ , gγ , ψγ  are adaptation rates, ( )h ⋅  is a 
hysteresis switching function defined as 
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fσ , gσ , ψσ , c , 1μ , 2μ  are positive design constants 

and LRθ ∈  is a constant vector determined such that 
( ) 0Tθ ξ >x  for all x∈Ωx . The robustifying term 

β  is chosen as 

tanh
'

TPβ ψ
ε

⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠

e b    (19) 

with ' 0ε ≥  being a design constant. Then, we can 
guarantee that all the signals e , fθ , gθ , ψ  are 
uniformly ultimately bounded. 

Note that the update law (17) guarantees ( ) 0tψ ≥  
for all 0t >  if ( )0 0ψ ≥  since 0ψ ≥  at 0ψ = . 

The definition of the function ( )h ⋅  can easily be 
understood by looking at Fig. 2. 

Before the proof process, we briefly explain why 
the hysteresis function is introduced in the update law 
for gθ  (16). If we set ( )ˆ 0h g =  for all ĝ , i.e., we 

do not perform any modification for gθ , the adaptive 

system cannot escape 0gθ =  point. This is because 

0gθ =  at 0gθ = since 0.u =  The hysteresis 

functions are employed to go around the 0gθ =  
point. Moreover, the exponential term has its 
maximum value at ˆ 0g = , which means it has its 
maximum effect at 0gθ =  and has less effect if ĝ  
goes away from 0 . The modification of the gain of 
control input (7) and employing hysteresis function in 
the adaptive law for gθ  (16) are the key ideas for 
controlling without control direction. 

Proof: Consider the Lyapunov function 
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Fig. 2. The hysteresis function ˆ( )h g . 
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Substituting (15) and (16) into (21), we have that 
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where 
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Using (12), (13) and (14), and determining the 
robustifying term β  as (19) yields 
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We have used 0T P β ≤e b  which leads to  

( ) ( )2ˆ ˆ1 /( ) 1T T
fP g g Pδ ε β γ β+ + ≤ −e b e b  in the 

second line of (24). Choosing the update law for 
adjusting ψ as (17) and using ( )0 | | tanh / 'η η η ε≤ −  

'κε≤  with 0.2785κ = , we have that 
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Combining this result with (22) and using the 
following relations 
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where ( )sgn ( )h g= x . We have also used the facts 
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Then (30) can be written as 

.V cV λ≤ − +     (32) 

From (32), we have 0V <  provided that /V cλ> . 
Thus we can prove the uniform ultimate boundedness 
of V  with respect to the set 

( ) : .V t V
c
λν ⎧ ⎫= ≤⎨ ⎬

⎩ ⎭
   (33) 

This completes the proof.                      � 
Remark 1: Letting ' 0ε =  makes β  as 

( )sgn TPβ ψ= − e b    (34) 

and the constant λ  is defined by 

( )

* 2 * 2

* 2 2 2
1 3

| | | |
2 2

1
| | .

2

f g
f g h

c cψ

σ σ
λ θ θ θ

γ σ
ψ

= + +

−
+ +

  (35) 

In this case, although we can acquire better 
performance, the chattering phenomenon may occur 
in the control input due to the sign function in (34). 

Remark 2: In our previous work [10], the designer 
must determine the constant γ  in order to determine 
control input, which is not required in this paper. This 
is due to a slight modification of the Lyapunov 
function (20). 

 
4. SIMULATION EXAMPLE 

 
To illustrate the control procedure and the 

performance we apply the proposed robust adaptive 
controller to control the mass-spring-damper system 
described by [24]: 

1 2x x= ,    (36) 

2
( ) ( )K Bf f u d

x
M

− − + +
=

x x
,  (37) 

where 1y x=  represents the deviation of the mass, 

2x  represents its velocity, ( )Kf x  is the spring force 
due to spring constant ,K  ( )Bf x  is the friction 
force due to friction constant ,B  M  is the body 
mass, and u  is the applied force (control). The 
overall block diagram is illustrated in Fig. 3. 
We chose the nominal parameters as 0 1 ,M kg=  

0 2,K =  0 2B =  and the perturbations of system 
parameters as 10.1sin( ), 0.5, 0.5M x K BΔ = Δ = Δ =  
in the following simulations. Furthermore, the 
nonlinear spring and friction forces are assumed to be 

3
0 1 1( )Kf K x Kx= + Δx  and 

2
0 2 2( )Bf B x Bx= + Δx . The 

disturbance is assumed to be ( ) 0.10.2sin 2 td t e−= . 
We chose the reference signal ( ) ( )sin /30dy t tπ= . 

The compact set xΩ  is chosen to be | | 0.2jx ≤  for 

both 1,2j = . The membership functions for 1x  and 

 

M

y

u

Kf

Bf

K

B

 
Fig. 3. A mass-spring-damper system. 
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2x  chosen as a Gaussian-shaped form are described 
by 

2

2

( )
( , , ) exp

2
j

j jj
j

j ij
j i ii

i

x p
A x p q

q

⎡ ⎤−
⎢ ⎥= −
⎢ ⎥
⎣ ⎦

 (38) 

with 3
ji jp i= − +  and 22 0.0425

jiq =  for 1,2,ji =  

, jN  and 5,jN =  1,2j = . The controller 
parameters are given in Table 1. 

First, we select the initial values as 0 0
ifθ = and 

0 0.5giθ =  for all 1, , 25i =  and 0 0ψ =  where 
0
ifθ  and 0

igθ  denote the i th element of the initial 

vector of fθ  and gθ  respectively. In this case, 

( )ˆ 0 0g > , i.e., the designer has guessed the correct 

sign of ( )g x . The initial state is ( )0 [0.1 0]T=x . 
The system output, control input and trajectories of 
( )ĝ x , ( )g x  are illustrated in Fig. 4 through Fig. 6.  

From the results, it can be inferred that the system 
output tracks the desired output well by the proposed 
controller. 

Second, we set the simulation parameters as the 
same values as before except 0 0.5giθ = − , 1, , 25i = . 

Note that ( )ˆ 0 0g < , which means the designer has 
guessed wrongly the sign of ( )g x  since it is always 
positive. The system output, control input and 
trajectories of ( )ĝ x  and ( )g x  are illustrated in Fig. 
7 through Fig. 9. From the results, it can be inferred 
that the system output tracks the desired output well 
by the proposed controller although the control 
direction is incorrectly guessed. Moreover, as 
illustrated in Fig. 9, we can observe that even if the 
trajectory of ĝ crosses the zero line, input singularity 
does not occur. 
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Fig. 4. Reference signal (dotted line) and output of the 

system (solid line). 
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Fig. 5. Control input. 
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Fig. 6. Trajectory of ( )g x  (dotted line) and ( )ĝ x  

(solid line). 

Table 1. Controller parameters. 
Parameter(s) Value(s) 

1 2,k k  2,1 
q  100 

, ,f g ψσ σ σ  0.1, 0.1, 0.1 
, ,f g ψγ γ γ  1000, 10, 1 

ε  10 
'ε  0.001 

c  0.1 

1 2,μ μ  0.1, 0.11 
, 1, ,25i iθ =  1 
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Fig. 7. Reference signal (dotted line) and output of the 

system (solid line). 
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Fig. 8. Control input. 
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Fig. 9. Trajectory of ( )g x  (dotted line) and ( )ĝ x  
(solid line). 

5. CONCLUSION 
 
We have proposed the robust adaptive fuzzy 

controller for uncertain nonlinear systems with 
unknown input gain sign. In other words, even though 
we have no information on the control direction, we 
can robustly control the system using the proposed 
scheme. Moreover, it completely overcomes the 
singularity problem that occurs in the indirect 
adaptive feedback linearizing control scheme. 
Projection in the estimated parameters and switching 
in the control input are not needed in order to avoid 
the input singularity. The stability of the closed-loop 
system is guaranteed in the Lyapunov viewpoint, and 
all the signals involved are shown to be uniformly 
ultimately bounded. 
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