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Abstract

In this paper, we propose a predictive Generalized OBF (Orthonormal Basis Functions)-

Fuzzy flow control scheme for the 5G downlink by deriving an expression for the optimal

control rate of the traffic sources considering minimization of data delay and a minimum traf-

fic rate to the users. The adaptive GOBF-Fuzzy model is applied to predict queueing behav-

ior in initial 5G systems. To this end, we propose to obtain orthonormal basis functions

related to the real traffic flows via multifractal modeling, inserting these functions into the

fuzzy model trained with the LMS (Least Mean Square) adaptive algorithm. Simulations of a

F-OFDM (Filtered Orthogonal Frequency Division Multiplexing) based 5G Downlink are car-

ried out to validate the proposed flow control algorithm. Comparisons with other predictive

control schemes in the literature prove the efficiency of the adaptive GOBF-fuzzy based

control in enhancing the performance of the system downlink as well as guaranteeing some

QoS (Quality of Service) parameters.

1 Introduction

Future 5G systems will provide high data rates and low latency through optimized packet

radio access and flexible bandwidth. Such features can be attained due to some techniques

regarding data transmissions, such as F-OFDM andW-OFDM (Filtered andWindow Orthog-

onal Frequency Division Multiplexing) [1]. In this sense, network traffic control algorithms

will become even more essentials for guaranteeing these features to users.

Data addressed to mobile users in the 5G system is stored in queues at the base station (5G

eNodeB—Evolved Node B) until the transmission rates are provided. These transmission rates

are influenced by the quality of the user channel, so users with better channel conditions tend

to obtain higher transmission rates. If these transmission rates are not sufficient for attaining

the user demands, queue congestion can occur, causing data loss. For this reason, flow rate

control algorithms can be applied to the arriving network traffic flows at the base station in

order to provide more adequate service to mobile users. Flow rate control algorithms when
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applied to 5G systems allow that smaller queue sizes at eNodeB be obtained [2]. Smaller queue

sizes induce the system to attain lower loss rates and shorter waiting times to users.

Network traffic control can be enhanced when considering a precise traffic modeling, such

as that provided by fuzzy approaches. Fuzzy modeling has been widely applied to many

researches since it presents certain advantages over linear models, for example, in the descrip-

tion of unknown real processes with nonlinear and time-varying characteristics such as net-

work traffic [3]. In [4], the authors propose an hybrid technique combining the Type-2 Fuzzy

C-Means and Artificial Neural Network to improve the prediction of highway speed traffic

flow compared to classical methods in the literature. In [5], it is proposed a prediction method

that combines denoising schemes and support vector machine, outperforming models that do

not consider the denoising strategy.

In the last decades, several studies have shown the importance of traffic process analysis

using the wavelet transform due to its multiscale representation [5–8]. One of the applications

of wavelet transform is in network traffic modeling in order to describe behaviors such as

long-range dependence and burst incidences at different time scales [9, 10]. These characteris-

tics may degrade network performance in relation to Gaussian and short-range dependence

traffic flows [8, 11]. Multifractal models precisely describe traffic flows in small scales (ms or

smaller), being adequate for the initial 5G systems, whose scheduling time is of the order of

1ms [10, 12].

The main multifractal models are based on multiplicative cascades, which are structures

where an interval is randomly divided by multipliers, conserving the interval mass [8]. Thus,

at the end of the division process, a correlated sequence is obtained, representing the network

traffic samples. As examples of wavelet domain based multifractal models, we can cite: The

Lognormal Beta [13] model and the MWM (Multifractal Wavelet Model) [8]. The MWM

model consists of a multiplicative cascade in the Haar wavelet domain [14], where multiplica-

tive cascade multipliers are computed based on the signal energy decay. Although the MWM

model being suitable for modeling network traffic, it requires the application of the wavelet

transform to the whole traffic trace or to all samples in a time window that is intending to

apply the model. In other words, in the original formulation of the MWM, its parameters are

not updated at each time instant that a traffic sample is provided. This motivated us to propose

an adaptive wavelet based multifractal modeling approach that is precise even being adequate

for real time applications.

In order to achieve high utilization of resources in communication networks and for better

decision making, traffic prediction can be used and must be as accurate as possible. Fuzzy

modeling is capable of precisely representing a nonlinear complex process such as network

traffic traces through the combination of linear local models [3]. In [15], the authors highlight

the importance and principles of fuzzy logic applications in the area of channel estimation,

channel equalization, handover management and QoS (Quality of Service) management.

Moreover, adaptive prediction algorithms are more appropriate for real time multimedia

applications than on-batch prediction algorithms due to on-line processing capability and

varying nature of network traffic. Taking these into account, we also address the development

of an adaptive fuzzy prediction algorithm that incorporates a wavelet domain modeling of net-

work traffic.

In [16], the authors propose a scheduling algorithm with flow rate control for LTE down-

link systems taking into account the size of each user queue. Thus, users with greater queue

sizes will have higher priority compared to others. Also, in [16], the authors propose to use

flow rate control algorithms to control network traffic that is not sensitive to delay (best effort).

The results presented by the authors show that control algorithms can provide a significant

improvement in the waiting time in the queues.
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There are various proposals of control schemes in the literature that are dedicated to net-

work protocols, such as that presented in [17], that is based on the flow control mechanisms of

the Transmission Control Protocol/Internet Protocol (TCP/IP). Among the proposals for flow

rate control that do not depend on specific network mechanisms, we can mention the Propor-

tional Control method [17, 18]. Such methods can be used to control real-time applications

and are also effective for other control problems.

The authors in [19] propose the use of the Kalman filter in order to predict the end-to-end

delay in networks. By estimating the delay, an analysis of the buffer occupancy is carried out to

send the information of the intensity of the flow rate to the transmitter. In this way, the control

scheme can regulate the flow rate based on this analysis. Thus, the transmitter user makes a

balance between the estimated rate that optimizes the queuing delays and a rate that minimizes

the loss rate.

Some works in the literature aim to control the flow rate in 5G systems with the use of Soft-

ware-Defined Networking (SDN) as is the case of [20]. In [20], the authors propose to control

network traffic flows considering the optimization of some parameters, such as energy con-

sumption of the users’ equipment. In [21], the authors propose a scheduling algorithm with

flow rate control for LTE downlink systems taking into account the size of each user queue.

The results presented by the authors show that control algorithms can provide a significant

improvement in the waiting time in the queues. The authors in [19] propose the use of the Kal-

man filter in order to predict the end-to-end delay in networks. The control scheme can regu-

late the flow rate making a balance between the estimated rate that optimizes the queuing

delays and a rate that minimizes the loss rate. Although, there is an improvement in the quality

of service parameters shown in [20], the proposal overuses the control information exchange

between the central control and the local control in the user equipment. Also, once the simu-

lated annealing is used, a high computational effort is required, becoming the flow rate control

unfeasible to real-time applications. Aiming to reduce the computational effort, in [22, 23] the

authors present a flow control algorithm with low computational complexity for wireless net-

works. To this end, they propose the use of the Linear Quadratic Gaussian (LQG) to control

the network flow rate. Although the computational effort is reduced, the need to perform a

pre-tuning parameter algorithm and the linear modeling of the flow can degrade the perfor-

mance for low-scale aggregated and non-linear network traffic whose variation is high, as in

5G systems.

In this work, we propose a fuzzy based algorithm to control the traffic flow rates in order to

minimize a cost function given in terms of the prediction of the queueing behavior in the

buffer. Differently from the previous works, the aim of this work is to provide a more opportu-

nistic control with the use of the fuzzy logic, providing adequate traffic flow rates according to

the buffer size in order to maintain it below a desired level. Another important factor, not con-

sidered by the mentioned works, is that we also consider in the cost function the minimum

rate required for each user. In addition, we verify that the use of adaptive multifractal modeling

together with the orthonormal basis functions allows us to enhance real-time prediction of the

queueing buffer behavior. To this end, firstly in the next section, we propose an algorithm to

adaptively estimate the parameters of the Lognormal Beta Multifractal model [10] that pre-

cisely describe traffic flows in small scales (adequate for 5G communications).

In summary, the main contributions of the present paper are:

1. Equations to adaptively estimate the moment factor and the scaling function of network

traffic flows;

2. A new algorithm possessing computational complexity O(1) to adaptively estimate the

parameters of the Multifractal Lognormal Beta model;

Adaptive fuzzy flow rate control considering multifractal traffic modeling and 5G communications
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3. A novel fuzzy flow rate control algorithm considering multifractal modeling and orthonor-

mal basis functions that provides network performance improvement compared to others.

This paper is divided as follows: In Section 2, we describe the problem of network traffic

flow rate control to improve QoS parameters, mainly regarding buffer occupation. We address

the problem by considering fuzzy control techniques and multifractal modeling of traffic traces

applied to 5G communications. Therefore, we first present in Section 3 a proposal of an algo-

rithm to estimate the Lognormal Beta Model parameters in an adaptive manner. Next, in Sec-

tion 4, concepts of orthonormal basis function, fuzzy logic and a proposal of flow rate control

named GOBF-Fuzzy Flow Rate Control algorithm are presented. Regarding the wireless com-

munication part of our work, in Section 5, we describe the 5G Downlink system (based on the

first recommendations [1, 12]). In Section 6, we present the results obtained in the simulations

with the considered traffic control algorithms. Finally, in Section 7, we conclude this work.

2 Problem description

The flow rates that arrive in a base station of mobile systems can be store in queues until data

rates are provided. If wireless communication channel quality is low, low data rates are pro-

vided and can increase the buffer occupancy, causing data loss rate. In order to avoid data loss

rate and to improve Qos parameters of the mobile network such as delay and buffer occu-

pancy, flow rate control algorithms can be employed.

A flow rate control algorithm can be applied to the scenario of the Fig 1, representing a 5G

downlink whose standard is described in [12] [1]. This control system aims to adaptively pre-

dict the queue size in the buffer and from the parameters of the traffic prediction model, to

control the source rate in order to minimize the waiting time in the queue.

In the Fuzzy Flow Rate Control Scheme of Fig 1, the following variables are considered:

Fig 1. Fuzzy flow rate control scheme.

https://doi.org/10.1371/journal.pone.0224883.g001
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• Traffic flow rate μi(k) for the user i;

• Round-Trip delay d;

• Queue size bi(k) at the time instant k for the user i;

• Link capacity η of the system output;

• Desired Level for queue size bti for the user i.

The control scheme proposed in [24] accomplishes adjustment of flow rates aiming to indi-

vidually maintain a desired queue length in the buffer to each source. This individual control

makes the user enjoy the remaining bandwidth without knowledge of the queue size of the

other sources. In this work, a new model for flow rate control considering Generalized Basis

Functions for the fuzzy modeling is proposed that takes into account traffic from other sources

of the system.

The proposed fuzzy traffic control scheme aims to take into account the round-trip delay

by predicting the buffer occupancy behavior in order to avoid occurrence of congestion. To

this end, we propose an adaptive algorithm to predict queue size in the buffer based on the

past and present information of the source traffic rates. In addition, to obtain a waiting time

(delay) in the queue as lower as possible, the proposed optimum control rate (see section 4.2)

is applied to regulate the source rate μi(k). In this way, it is possible to confine the user delays

within the required levels.

Due to different types of services and applications, such as data, voice and video being mul-

tiplexed in the nodes of the networks, the buffer occupancy dynamics is a complex and non-

linear process, being an additional motive for the use of fuzzy systems. In this sense, we relate

the optimum control rate to the adaptively computed parameters of the proposed GOBF Fuzzy

model.

In order to present all the components of the proposed fuzzy control algorithm, first we

propose in the next section an algorithm to adaptively estimate the parameters of the Lognor-

mal Beta multifractal model in order to obtain the autocorrelation values to be used in the con-

trol algorithm.

3 Multifractal traffic analysis

Multifractal models can describe network traffic traces presenting long-range dependence,

self-similarity and different scaling laws [25]. A stochastic process X(k) is called multifractal if

its increments Z(k) satisfy:

logE½jZðmÞjq� ¼ t0ðqÞ logmþ log cðqÞ; q > 0: ð1Þ

for q 2 Q, where Q is an interval on the real line, and τ(q) and c(q) are functions with domain

Q, τ(q) is the scaling function and c(q) is the moment factor of the multifractal process.

One of the most important multifractal models present in the literature is the Lognormal

Beta (LB) Model [10] that can be seen as a variation of the MWM (Multifractal Wavelet

Model) [26]. The LB model consists of a multiplicative cascade process where a Beta distribu-

tion is considered for the cascade multipliers and the Lognormal distribution for the mass ini-

tialization [10].

Multiplicative cascades are recursive processes that can be used to generate multifractal

processes [27]. The generation of a multiplicative cascade consists of the following steps: At

stage k = 1, a mass with initial measure is divided, being multiplied by two random variables r

and 1 − r, generating other two new masses, as depicted by Fig 2. The variable r is named

Adaptive fuzzy flow rate control considering multifractal traffic modeling and 5G communications
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multiplier. At the next stage, the masses are divided again by multipliers, repeating the recur-

sive process until the desired number of stages are reached.

By allowing the cascade multipliers to be independent random variables in [0, 1] with prob-

ability density fR(X) and the initial mass measure generation with probability density fY(X), a

more general structure than the deterministic one, in which the multipliers and initial mass

generation are fixed values, is obtained. In this way, the obtained process fmðDtkÞg
2N

k¼1
has in

the stage i of the cascade and in the dyadic interval of length Δtk = 2−k, starting in

t ¼ 0:Z1 . . . Zk ¼
Pk

i¼1
Zi2

�i, the following measure:

mðDtkÞ ¼ Y � RðZ1Þ � RðZ1; Z2Þ . . .RðZ1; . . . ; ZkÞ ð2Þ

where R(η1, . . ., ηi) is the cascade multiplier of the i-th stage. Since the multipliers R(η1, . . ., ηi)
are i.i.d. (independent and identically distributed), it can be shown that the measure μ satisfies

the scale relation [10]:

EðmðDtkÞ
qÞ ¼ EðYqÞ � ðEðRÞqÞk ¼ EðYqÞ � Dt�log2EðRqÞ

k
ð3Þ

According to [10], the multiplicative cascade process can generate a multifractal process

since (1) can be approximated by (3). For this, the variables Y and Rmust meet the following

equations:

tðqÞ ¼ � log 2EðRqÞ ð4Þ

cðqÞ ¼ EðYqÞ ð5Þ

The scaling function τ(q) can be precisely modeled by assuming that R is a random variable

in [0, 1] with symmetric beta distribution Beta(α, α) with α > 0 [10]. Thus, we have:

t0ðqÞ ¼ log2
GðaÞGð2aþ qÞ
Gð2aÞGðaþ qÞ ð6Þ

where Γ(.) is the Gamma function and τ0(q) = τ(q) + 1.

Fig 2. Example of multiplicative cascades.

https://doi.org/10.1371/journal.pone.0224883.g002
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The random variable Y is chosen in [10] as being the Lognormal with parameters ρ and γ,
where its q-th order moment is given by:

E½Yq� ¼ erqþg2q2=2 ð7Þ

In summary, given the average E[X(k)], the variance var[X(k)] and the scaling function τ(q)

of the network traffic flow, the parameters (ρ, γ, α) of the LB model can be determined by the

following equations [10]:

cðqÞ ¼ erqþg2q2=22
Nðq�t0ðqÞÞ ð8Þ

E½XðkÞ� ¼ erþg2=2 ð9Þ

var½XðkÞ� ¼ e2rþ2g2
aþ 1

aþ 1=2

� �N

� e2rþg2 ð10Þ

where N is the stage number in the multiplicative cascade process. Notice that in order to

obtain the parameters ρ, γ and α, the calculation of τ0(q) and c(q) is necessary. Adaptive

approaches for estimating c(q) and τ(q) are addressed in Propositions 1 and 2.

Proposition 1. The moment factor c(q) of a traffic flow can be adaptively computed in func-

tion of the moments of the aggregated increment process Z(m) in the scale m = 1 by:

cðqÞ ¼ kE½jZð1Þjq�ðkÞ
ðkþ 1Þ þ Zðkþ 1Þq

kþ 1
ð11Þ

Proof. Once E½jZð1Þjq�ðkÞ ¼ ð1=kÞPk

i¼1
Z
q
i , the adaptive average operation for the subse-

quent time instant (k + 1) is obtained by:

E½jZð1Þjq�ðkþ 1Þ ¼ 1

kþ 1

k

k

X

k

i¼1

Z
q
i þ

1

kþ 1
Zðkþ 1Þq ð12Þ

Replacing E[|Z(1)|q](k) in (12) and substitutingm = 1 in (1), we obtain the moment factor c

(q) as we wanted to demonstrate.

Proposition 2. The scaling function τ(q) of a network traffic flow X(k) can be given in func-

tion of the moments of the increment process aggregated on scale m by:

t0ðqÞ ¼
logE½jZðmÞjq� � E½jZð1Þjq�

logm
ð13Þ

where:

E½jZðmÞjq�ðkþ 1Þ ¼ bk=mc
bðkþ 1Þ=mcMþ E

q

bðkþ 1Þ=mc ð14Þ

M ¼
(

M; if mod ðk;mÞ 6¼ 0

E½jZðmÞjq�ðkÞ; if mod ðk;mÞ ¼ 0

ð15Þ

E ¼
(

E þ ZðkÞ; if mod ðk;mÞ 6¼ 0

ZðkÞ; if mod ðk;mÞ ¼ 0

ð16Þ
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Proof. The average of the aggregated process Z(m) at time instant k considering a complete

time window of aggregation, can be given by:

E½jZðmÞjq�ðkÞ ¼ 1

bk=mc
X

bk=mc

i¼1

Z
ðmÞ
i ð17Þ

In order to calculate the average of the real aggregated process, it is necessary to consider

data in complete windows of sizem. Therefore, for time interval different from a complete

window, the average can be written as function of a complete window plus an estimate E of the

data before completing a new window, that is:

E½jZðmÞjq�ðkþ 1Þ ¼ bk=mcE½jZðmÞjq�ðkÞ
bðkþ 1Þ=mc þ E

q

bðkþ 1Þ=mc ð18Þ

In order to update the average E[|Z(m)|q](k), the variableM is created. That is, at

time instantmod(k,m) = 0,M is updated with the average of a complete window

according to (15). The estimation E is updated at each time instant with the current incre-

ment process Z(k), when a complete time window is reached (mod(k,m) = 0), E is reinitia-

lized with Z(k) according to (16). ReplacingM in (18), we obtain (14), as we wanted to

demonstrate.

Substituting (9) into (1), the parameters ρ(k) and γ(k) can be written as:

rðkÞ ¼ 2 log ðE½XðkÞ�ðkÞÞ � log cð2Þ
2

þ N

2
½2� tð2Þ� log2 ð19Þ

gðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logE½XðkÞ�ðkÞ � 2rðkÞ
p

ð20Þ

From (10), we can directly estimate the parameter α by:

aðkÞ ¼ ð
ffiffiffiffi

GN
p

�2Þ � ð2� 2
ffiffiffiffi

GN
p

Þ�1 ð21Þ

where G = e(−2ρ(k) − 2σ(k)2) � (var[X(k)](k) + E[X(k)](k)2).

Propositions 1 and 2 in conjunction with (19), (20) and (21) allow us to adaptively estimate

the LB parameters (ρ, γ, α) with an optimum computational complexity of O(1). Once esti-

mated the parameters (ρ, γ, α), the autocorrelation function values of the process X(k) can be

computed by [10]:

rðxÞ ¼ e2rþg2 � aðaþ 1ÞN�1

ðaþ 1=2ÞN
� x�log2ð

aþ1
aþ1=2

Þ ð22Þ

Notice that we propose to compute the autocorrelation values via a multifractal model

instead of direct from the traffic process in order to provide a complete model based control.

Besides, one can predict some network performance factors only by analysing the variation of

the modeling parameters.

4 Generalized OBF fuzzy modeling and control

Orthonormal basis functions have arisen with the principle of searching for alternatives to

express the transfer function of a system, becoming possible to reduce the number of system

inputs and to increase process modeling performance [3]. Among the known bases, we can

highlight the Laguerre basis and the Generalized basis [3]. The generalized basis function is
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given by:

fiðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� jpij
2

q

q� pi

Y

i�1

j¼1

ð1� p�j qÞ
ðq� pjÞ

ð23Þ

where {pj: j = 1, 2, 3, . . .} is an arbitrary sequence of poles that satisfies: pj 2 C : jbij < 1. The

poles can be obtained by the Levinson-Durbin recursion [28].

The output of the orthonormal basis function models can be written as

yðkÞ ¼ Hðl1ðkÞ; . . . ; lnðkÞÞ, where li(k) = fi(q)u(k) is the i-th basis function at time

instant k andH is a non-linear operator. In this work, due to its modeling capability,

we consider to apply a TSK fuzzy system to model the OBF operatorHð:Þ [29]. In the

next section, we describe the LMS Fuzzy algorithm since it is used to update the

parameters of the proposed GOBF Fuzzy Traffic Model as well as the optimal control rates

(section 4.2).

4.1 LMS fuzzy algorithm

Consider the input vector [x(k)] with xðkÞ 2 U � ½C�
1
;Cþ

1
� � ½C�

2
;Cþ

2
� . . . ½C�

n ;C
þ
n � � Rn where

U is the set of filter input samples, R is the output set and [d(k)] the desired response, where

k = 0, 1, 2, . . . is the time instant and Ci is the boundary of the interval ½C�
1
;Cþ

1
�.

In order to obtain the fuzzy system output fkðxÞ : U � Rn ! R, we must minimize the fol-

lowing square error expression:

L ¼ E½ðdðkÞ � fkðxðkÞÞÞ
2� ð24Þ

where fk(x) minimizes (24).

The LMS Fuzzy algorithm design is described by the following steps:

• Step 1:DefineM fuzzy sets Fl
i for each interval ½C�

i ;C
þ
i � of the input space U, with the mem-

bership function given by:

mFl
i
¼ exp � 1

2

xi � �x l
i

sl
i

� �2
" #

ð25Þ

where x ¼ ðx1; . . . ; xnÞ
T 2 U, �x li and sl

i are the mean and the standard deviation of the

Gaussian membership function mFl
i

• Step 2: Build the fuzzy rule set IF-THEN by the following statement:

Rl ¼
(

Se x1 is Fl
1

and . . . and xn is Fl
n

then d is Gl

ð26Þ

where d 2 R and Fl is defined in step 1, with membership function mFl
i
.

• Step 3:Obtain the fuzzy system output value, that is equivalent to equivalent to the fuzzy

basis function (FBF) [29], by the following equation:

fkðxÞ ¼
PM

l¼1
y
lðQn

i¼1
mFl

i
ðxiÞÞ

PM

l¼1
ð
Qn

i¼1
mFl

i
ðxiÞÞ

ð27Þ

where θl is a weight parameter.
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• Step 4:Using the LMS algorithm, update the parameters θl, �x li e s
l
i. The parameters θl, �x li and

sl
i can be initialized by human knowledge (specialized) or be randomly selected. These

parameters are adaptively updated at each iteration by the following equations [29]:

y
lðkÞ ¼ y

lðk� 1Þ þ d½dðkÞ � fk�
zlðk� 1Þ
gðk� 1Þ ð28Þ

�x l
iðkÞ ¼ �x l

iðk� 1Þ þ d½dðkÞ � fk�
y
lðk� 1Þ � fk
gðk� 1Þ zlðk� 1Þ xiðkÞ � �x liðk� 1Þ

ðsl
iðk� 1ÞÞ2

ð29Þ

sl
iðkÞ ¼ sl

iðk� 1Þ þ d½dðkÞ � fk� y
lðk� 1Þ � fk
gðk� 1Þ zlðk� 1Þ ðxiðkÞ � �x liðk� 1ÞÞ2

ðsl
iðk� 1ÞÞ3

ð30Þ

where

zlðk� 1Þ ¼
Y

n

i¼1

exp � 1

2

xiðkÞ � �x liðk� 1Þ
sl
iðk� 1Þ

� �2
" #

ð31Þ

and

gðk� 1Þ ¼
X

M

l¼1

zlðk� 1Þ ð32Þ

for l = 1, 2, . . .,M, i = 1, 2, . . ., n and δ is the learning rate that satisfies 0< δ < 1.

4.2 Optimal control rate

In this section, as part of the proposed flow rate adaptive control scheme, we present an

expression for the calculation of the optimal control rate μ(k) by minimizing the following cost

function:

Jðkþ dÞ ¼ E
biðkþ dÞ

Z
þ l

2
ðmiðkÞ � Ri;minÞ

2

� �

; ð33Þ

where λ is a weighting factor and η is the link capacity. The cost equation J takes into account

the waiting time in the buffer given by bi(k+ d)/η. In order to comply minimum flow rates

Ri;min for user i, the second term is added to the cost function J.

Proposition 3. Considering a downlink system with n users and Ri;min the minimum rate for

user i, the optimal control rate in terms of minimizing J(k + d) in (33) is given by:

mo
i ¼ Ri:min �

ð2� fkðxÞÞ
lZgðk� 1Þ

X

M

l¼1

y
lðmi � �m l

iÞzlðk� 1Þ
ðsl

iÞ
2

ð34Þ

where fk(x) is the fuzzy system output, θl, �x li and s
l
i are fuzzy model parameters, z

l is given by (31)

and g(k − 1) by (32).

Proof. Deriving the function fk(x(k)) (Eq (27)) in relation to xi, we obtain:

@fkðxÞ
@xi

¼ ð2� fkðxÞÞ
gðk� 1Þ

X

M

l¼1

y
lðxi � �x l

iÞzlðk� 1Þ
ðsl

iÞ
2

ð35Þ
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The proposed optimal control rate is given as a function of the value of the queue size in the

buffer d steps ahead. An estimate of the queue size bi(k) in the buffer d steps ahead is provided

by the output of the proposed fuzzy predictor when applied to the prediction of samples of this

process by (27), i.e. fk(x) = bi(k + d). Deriving (33) in relation to μ, we have:

@J

@m
¼ @biðkþ dÞ

Z@m
þ lðm� Ri;minÞ ¼ 0 ð36Þ

Replacing (35) and fk(x) = bi(k+ d) in (36) and isolating μ we obtain the optimal control rate

given by (34).

The proposed fuzzy traffic control algorithm that makes use of generalized orthonormal

basis functions and the optimal control rate is presented in Algorithm 1.

Algorithm 1: GOBF-Fuzzy Flow Rate Control
1: Calculate E[|Z(1)|q](k + 1) and E[|Z(m)|q](k + 1) by (11) and (14).
2: Calculate c(q) and τ(q) by (11) and (13).
3: Calculate (ρ(k), γ(k), α(k)) by (19), (20) and (21).
4: Calculate the GOBF-poles by the Levinson-Durbin Recursion using the
autocorrelation values given by (22).
5: Compute the GOBF Basis by (23) with the obtained poles.
6: Calculate the Optimal Control Rate by (34).
7: Update the GOBF Fuzzy model parameters θl, �x li and sl

i with the LMS
algorithm.
8: Return to Step 1 until the end of iterations.

5 5G downlink system

The fifth generation of mobile communications is intended to provide higher transmission

rates, lower latencies than the earlier generation and support for communications of a massive

number of devices (Internet of Things—IoT). To this end, in 2017, the International Telecom-

munication Union (ITU) group established the following specifications for 5G technology:

bandwidth up to 1GHz in the high frequency region (millimeter waves); Downlink transmis-

sion rate of at least 20Gbps; 10Gbps Uplink transmission rate; reduction in latency for values

less than 1ms and a device density of 1 million per square kilometer [30].

IMT-2020 requires high transmission rate for both Downlink and Uplink to 5G networks

[31]. This high transmission rate can be achieved by two alternatives: to increase the spectral

efficiency or to increase bandwidth. In order to increase the spectral efficiency, one can change

the modulation and the coding. The earliest recommendations for 5G NSA (LTE Release 15

Non-Standalone Architecture) downlink transmission considers advances in the OFDM LTE

for providing robust communication in frequency selective channels [12]. These first recom-

mendations are based on CP-OFDM (Cyclic Prefix OFDM) used in LTE radios, on the carrier

aggregation to increase the amount of available resources and on Multiple Input Multiple Out-

put (MIMO) techniques. In this work, we consider the F-OFDM (Filtered Orthogonal Fre-

quency-Division Multiplexing) as modulation technique. The F-OFDM is a variant of the

OFDM technique that makes flexible the allocation of bandwidth by varying the number of

F-OFDM subcarriers used for transmission and reduces out-of-band (OOB) emissions com-

pared to traditional OFDM [32].

Given the high data rates required to 5G technology, the coding for data transmission is

based on the Low-Density Parity-Check (LDPC) [12]. LDPC codes are attractive from the

viewpoint of implementation; especially at higher code rates, due to their lower complexities

than those of the Turbo codes, which is used in 4G [33].

The second alternative to provide higher transmission rate is to increase the bandwidth.

Due to frequency spectrum occupancy by other technologies, it is difficult to obtain
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bandwidths around the order of 1GHz, as required by 5G technology. This is the reason for

using millimeter waves whose frequencies are between 6GHz and 100GHz [33, 34].

Another requirement for 5G networks is to decrease latency to values less than 1ms. For

LTE (releases from 8 to 14), the shortest allocation time for users is 1ms. In order to decrease

latency, the first specifications of 5G networks establish the following decision times for sched-

uling resources: 1ms, 0.5ms, 0.25ms, 0.125ms and 0.0625ms. With shorter times, it is possible

to reduce the delay.

In the downlink of LTE-based networks, each terminal reports its instant estimate of chan-

nel quality to the base station. This estimate is obtained by measuring a reference signal sent

by the base station. Based on the channel quality estimate, the scheduler can assign resources

to users. A combination of resource blocks can be assigned to each terminal at the scheduling

time interval. Resource blocks consist of 12 subcarriers in one slot. Scheduling decisions are

made at each scheduling interval in the time domain. The Scheduling Block (SB) is defined as

a pair of resource blocks [1].

The basic time slot in LTE systems has six or seven OFDM symbols, depending on the use

of normal or extended cyclic prefix. Fig 3 shows the 5G basic time-frequency resource struc-

ture. For the LTE Release 15 NSA, in order to decrease the latency time of the system, there are

5 possible scheduling times [31]. The scheduling times are defined according to the Table 1,

where each time is classified by a number μ, named numerology. Besides scheduling time,

Fig 3. 5G basic time-frequency resource structure (μ = 0).

https://doi.org/10.1371/journal.pone.0224883.g003

Table 1. Numerology for the LTE Release 15 NSA [1].

μ Time (1ms/2μ) Δf = 2μ � 15[KHz] Ciclic Prefix

0 1ms 15 Normal

1 0.5ms 30 Normal

2 0.25ms 60 Normal, Extended

3 0.125ms 120 Normal

4 0.0625ms 240 Normal

https://doi.org/10.1371/journal.pone.0224883.t001
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numerology defines the entire OFDM structure according to the spacing between the subcar-

riers and number of symbols per block of resources.

In Fig 3, each Resource Block (RB) corresponds to a time slot. In the frequency domain,

this resource block has a bandwidth equal to 180kHz for μ = 0, where 12 subcarriers of 15kHz

are grouped together. Two resource blocks form the Scheduling Block (SB), thus having the

duration time of 1ms [31] [12]. For other numerologies the bandwidths can be seen in Table 2.

In the 5G downlink transmission system, scheduling blocks are allocated to perform data

transmission between the 5G eNodeB and the user equipment. The transmission rate is

directly proportional to the channel quality. The structure of the 5G downlink allows the

choice between some modulations and coding scheme (MCS) with the purpose of optimizing

the transmission according to the channel quality. In the 5G network, the CQI (Channel Qual-

ity Indicator) index dictates the code rate and modulation scheme that will be used.

According to the 3GPP (3rd Generation Partnership Project) specification, in each Trans-

mission Time Interval (TTI), at most one transport (scheduling) block of a certain size is trans-

mitted over the radio interface [35]. There is a Transport Format (TF) associated with each

transport block, specifying how the transport block is to be transmitted over the radio inter-

face. The transport format includes information about the transport-block size, the modula-

tion and code scheme (MCS), and the antenna mapping. The set of modulation schemes

supported in the 5G downlink includes QPSK, 16-QAM, 64-QAM and 256QAM, correspond-

ing to two, four, six and eight bits per modulation symbol, respectively [1]. By varying the

transport format, it can be achieved different data rates.

6 Results and discussions

In this section we present the results and discussions about the simulations of the proposed

fuzzy flow rate control, but first we analyze the adaptive multifractal parameters estimation

performance.

Simulations related to the estimation of multifractal parameters with different network traf-

fic traces were carried out. However, in order to be concise, we present in this paper the results

for one of them that represents the major observed behaviour. The chosen network traffic

trace was the MAWI-201804011400 [36], in this paper named MAWI. The MAWI traces rep-

resent daily data traffic of different applications from the collected at the Internet backbone of

the Measurement and Analysis on the WIDE Internet (MAWI) working group. In this paper,

the MAWI traces were chosen since they correspond to recent and modern wireless network

traffic flows [37, 38].

In order to verify the accuracy of the proposed recursive equations that compose the algo-

rithm to adaptively estimate the LB Multifractal model parameters (ρ, γ, α), we compare their

values to those provided by the on-batch estimation method. Fig 4 presents the values for the ρ

adaptively calculated using (19) and by the on-batch method using all samples of the MAWI

network traffic. The on-batch method consists of computing the moment factor c(q) and

Table 2. Resource Block (RB) bandwidth for the LTE Release 15 NSA [1].

μ RB Bandwidth

0 180Khz

1 360Khz

2 720Khz

3 1440Khz = 1.44Mhz

4 2880Khz = 2.88Mhz

https://doi.org/10.1371/journal.pone.0224883.t002
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scaling function τ(q) of the entire process X(k) all at once and obtaining the parameters ρ, γ
and α. It can be noted that the final values of ρ adaptively estimated are similar to those of the

non-adaptive method at the end of the iterations, with a percent error of 5.63 � 10−4%. Figs 5

and 6 show that the estimation of γ and α achieves similar convergence behaviour to that pre-

sented by the estimation of ρ in Fig 4, presenting a percent error of 0.97 � 10−2% and 1.82 �
10−12%, respectively.

Regarding the simulation of a scenario towards 5G, its characteristics are described as fol-

lows: The Clustered Delay Line (CDL) channel model was chosen to simulate a 5G configura-

tion with MIMO 8x8 antennas and carrier frequency of 26 GHz according to [1]. We consider

two scenarios: The first one is for a channel with a bandwidth of 400MHz and the second one

is for carrier aggregation of 3 carriers with a bandwidth of 400MHz (1.2GHz). Both 5G sce-

nario structures is formed by considering numerology μ = 3, with subcarrier spacing of

120KHz, 6 OFDM symbols per slot, 264 Resource Blocks per carrier, 5G eNodeB Transmission

Power of 44dBm, eNodeB Gain Antenna of 15dBi, User Antenna Gain of 0dBi and Low Den-

sity Parity Check (LDPC) for the channel coding [1]. The choice of numerology μ = 3 was due

to the fact that it is the value that represents the highest transmission rate among other numer-

ologies. Besides, numerology μ = 4 is used only for signaling and control [31]. As modulation

technique, we considered the F-OFDM with a length of 512 subcarriers in the simulations.

The simulations represent the downlink transmission in a unique cell of a multicarrier 5G

system.

We compare the performance of the proposed fuzzy control to those of the Proportional

Flow Rate Control [16] and GCC (Google Congestion Control) [19] and a similar control but

Fig 4. Adaptive and on-batch estimation of ρ for 2000 samples from the MAWI Trace aggregated in 1ms.

https://doi.org/10.1371/journal.pone.0224883.g004
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Fig 5. Adaptive and on-batch estimation of γ for 2000 samples from the MAWI Trace aggregated in 1ms.

https://doi.org/10.1371/journal.pone.0224883.g005

Fig 6. Adaptive and on-batch estimation of α for 2000 samples from the MAWI Trace aggregated in 1ms.

https://doi.org/10.1371/journal.pone.0224883.g006
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using a LMS Fuzzy training algorithm. The Proportional Flow Rate Control monitors the

queue sizes and uses this value to regulate the flow rate. Let bτ be the control reference value of

the queue size in the buffer in eNodeB. In the Proportional Flow Rate Control, if the queue

size is below a minimum threshold, there is an increase of 5% in the flow rate. If the queue size

is between a minimum and a maximum threshold, the flow rate is proportionally increased.

Finally, if the queue size is above a maximum threshold, there is a decrease in flow intensity of

5%. In this work, we considered a buffer size of 60 kB (representing a practical value) for each

user and the desirable size bτ equal to 40% of the total size, that is, bτ = 20 kB.

The GCC algorithm control network traffic flows according to the minimum value between

two rates [19]. The first rate is regulated according to the amount of data lost in the transmis-

sion. That is, if the loss rate is lower than a desired value, an increase in the flow rate occurs, if

the loss rate is higher than the desired value (2%), the flow rate is decreased. If the loss rate is

between the desired minimum and the maximum, no change in flow rate occurs. The second

rate refers to the buffer occupancy. Fig 7 shows the byte loss rate values for the control algo-

rithms considered in the simulations. The lowest loss rate values (zero values) were obtained

by the proposed fuzzy approaches: LMS-Fuzzy Control and the GOBF-Fuzzy Control algo-

rithms. We emphasize that what we call LMS-Fuzzy Control consists of the proposed control

approach but without considering the multifractal based OBF modeling. Notice that the GCC

algorithm presents values of loss rate close to the GCC desired value of 2%. It can be noted

that, although providing a reduction in the loss rate in relation to the method without flow

Fig 7. Byte loss rate (%).

https://doi.org/10.1371/journal.pone.0224883.g007
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control, the Proportional algorithm presents loss rates close to 10%, which in practice can be

considered a relatively high value.

Another important QoS parameter to be analyzed is network delay. Fig 8 presents the wait-

ing times (Delay) of data in the queue for the considered algorithms. In this case, we can

observe that the proposed GOBF-Fuzzy control provided lower delay values than the proposed

LMS-Fuzzy control and the others, but similar to that of the GCC algorithm. The delay is

directly related to the buffer occupancy, so the higher the buffer occupancy, the longer the

delay. In Fig 9, the results of the buffer occupancy (%) are presented. It is noted, that the values

of buffer occupancy presented by the proposed algorithms were the smallest, according to the

behaviour present by the delay values in Fig 8.

The flow control performance is an important factor for the communication quality of

mobile networks. Incoming data can be stored in queues and if the buffer occupancy is

increasing too much, data loss can occur and communication may be inefficient, requiring

data retransmission and reducing the effective transmission data rate of users, which leads to

lower baud rates than those stipulated in the contract with the operator. The results of the sim-

ulations carried out indicate that it is possible to obtain lower buffer occupancy values by

using the proposed network traffic flow control algorithm compared to the others.

We also evaluate the throughput per user provided by the control algorithms. According to

Fig 10, we can state that the throughput values per user provided by the proposed fuzzy control

algorithms are higher than those of the Proportional. That is, it can be observed that the pro-

posed fuzzy approaches are capable of maintaining low delay and loss rate values to the system

Fig 8. Delay (ms).

https://doi.org/10.1371/journal.pone.0224883.g008
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downlink without penalizing so much the throughput per user compared to the proportional

case. Moreover, when compared to the GCC, the proposed algorithm presented slightly infe-

rior performance in terms of throughput values, although it has resulted in a better perfor-

mance for delay and buffer occupancy parameters. Notice also that the minimum flow rates

R(8i;min) chosen to be 100Mbps in the parameter setting of the fuzzy algorithms was attained to

all users in the simulations.

The delay in the network is an important QoS parameter that influences the number of

users that can be allowed in the wireless system under the contract with the service provider.

Let us assume, for example, a limiting value of 5ms. That is, data communication in the consid-

ered wireless network scenario should not exceed this value. It can be seen from Fig 8 that the

proposed flow control algorithm can accommodate up to 87 users in the system, while the

GCC control algorithm can allocate 52 users in the system; a difference of 35 users, that repre-

sents a significant financial loss for the mobile operator. By considering the case without flow

control, it can be accommodated 22 users and 47 users using the proportional control algo-

rithm and 82 users using the LMS Fuzzy algorithm, representing financial losses of 65, 40

users and 5, respectively.

Fig 11 presents the results of the 5G simulation link utilization for the flow control algo-

rithms. It should be noted that the control algorithms did not use all the available rate, thus

being able to control the user’s rate to improve the quality of the system in relation to the other

parameters of quality of service. It should also be noted that the proportional algorithm pre-

sented the lowest link utilization values, while the other algorithms were more opportunistic in

the link utilization of the downlink 5G.

Fig 9. Buffer occupancy (%).

https://doi.org/10.1371/journal.pone.0224883.g009

Adaptive fuzzy flow rate control considering multifractal traffic modeling and 5G communications

PLOSONE | https://doi.org/10.1371/journal.pone.0224883 November 13, 2019 18 / 22

https://doi.org/10.1371/journal.pone.0224883.g009
https://doi.org/10.1371/journal.pone.0224883


In resume, the simulation results show that the GOBF-Fuzzy Control can provide gains to

the network performance in terms of buffer occupancy, loss rate and delay compared to other

control algorithms and a throughput per user almost equal to that without control. Simulations

considering various other traffic traces and scenario configurations were carried out, provid-

ing similar performance results to those presented in this paper. In order to attain better net-

work performance, the OBF-Fuzzy requires a slightly more computational complexity than

the LMS Fuzzy Control, being O(nM + P2) against O(nM) of the LMS Fuzzy, where n is the

number of inputs,M is the number of fuzzy rules and P the number of poles.

7 Conclusion

In this work, we present a fuzzy flow control system applied to a initial 5G downlink system

(LTE Release 15 NSA) considering the F-OFDMmodulation technique. To this end, we pro-

pose an equation to calculate the optimal traffic flow rates for users in terms of minimizing

delay and guaranteeing a minimum rate to them. We concluded that by inserting generalized

orthonormal basis functions derived from multifractal modeling into the fuzzy system, we can

enhance network control performance. In fact, it could be observed that the GOBF fuzzy con-

trol provided better results in terms of loss rate, buffer occupancy and delay than the other

considered algorithms.

The proposed algorithm provided better simulation results in terms of delay, buffer occu-

pancy and loss rate than the other considered algorithms. The enhanced performance of the

proposed fuzzy control algorithm is obtained at the cost of increasing the computational

Fig 10. Throughput per user (Mbps).

https://doi.org/10.1371/journal.pone.0224883.g010
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complexity with the addition of P orthonormal base functions once it is given by O(nM + P2).

Fortunately, it was not necessary to use high values for P to get interesting results. As future

works, we intend to apply lower computational complexity algorithms to obtain the orthonor-

mal basis function poles using the values of the autocorrelation function.
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