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Adaptive Fuzzy Interpolation

Longzhi Yang,Student Member, IEEEBNd Qiang Shen

Abstract—Fuzzy interpolative reasoning strengthens the power  In order to derive a logically consistent result, the re&spn
of fuzzy inference by enhancing the robustness of fuzzy systeam machine must be able to: 1) make assumptions and derive a re-
and reducing systems complexity. However, after a series of gt from these assumptions; and 2) subsequently revise the
interpolations, it is possible that multiple object values for a . .
common variable are inferred, leading to inconsistency in inter- assumptlons, and accoer.eg the results based on_these as-
polated results. Such inconsistencies may result from defective SUMptions, when contradiction appears. The truth maintema
interpolated rules or incorrect interpolative transformations. This  system (TMS) aims to support reasoning machines to achieve
paper presents a novel approach for identification and correc- this goal. Two primary approaches to TMS implementation
tion of defective rules in interpolative transformations, thereby have been proposed in the literature: the JTMS (justificatio

removing the inconsistencies. In particular, an assumption-based
truth maintenance system is used to record dependencies betwee based TMS) [23] and the ATMS [18], [19], [20]. ATMS

interpolations, and the underlying technique that the classi- IS capable of efficiently keeping track of all the dependent
cal general diagnostic engine employs for fault localization is relations amongst logical deductions while JTMS only keeps
adapted to isolate possible faulty interpolated rules and their track of one dependent relation for each logical deduction a
associated interpolative transformations. From this, an algorithm a time. Especially, there is a specific logical deductionsda

is introduced to allow for the modification of the original . . . .
linear interpolation to become first-order piecewise linear. The N ATMS that keeps track of all the inconsistent assumption

approach is applied to a realistic problem, which predicates the Sets.
diarrheal disease rates in remote villages, to demonstrate the GDE is a system for isolation of multiple simultaneous

potential of this work. faults, which was originally designed to find faults in plogi
Index Terms—Fuzzy rule interpolation, assumption-based domains, via the use of an ATMS. Each set of the multiple
truth maintenance, general diagnostic engine. simultaneous faults in GDE is called a candidate. GDE gener-

ates all the possible candidates by exploring the deperatenc
of the special logical deduction “false” recorded by the ASM
I. INTRODUCTION Because all the possible candidates need to be addressed,

. . — . that is every set of inconsistent assumptions needs to be
Fuzzy rule interpolation significantly improves the robust

; . explored, ATMS is therefore utilized for efficiency purpsse

ness of fuzzy reasoning. It provides a way to reduce t e o . o
. " . By artificially viewing the interpolative inference proaee as
complexity of fuzzy systems by omitting those rules whic ; .
. . . . component with respect to each pair of rules that are used to

can be approximated by their neighboring ones. Also, | : : : .
. o : erform the interpolation, possible candidates that maye ha
improves the applicability of fuzzy systems by allowing

certain conclusion to be generated even if the existingbate ed to detected inconsistencies can be generated by agaptin

. . ; th GDE. Note that theoretically, inconsistency may intdica
does not cover a given observation. A number of importan o - . i
contradictions of original observations or failure of milés

interpolating approaches have been presented in thetlitera an initial research in this area, this paper focuses on wisen

|[2c5zl]ud[:5n4g] [?éeglz[g;o[]l?ﬁsg[f 1[]6 EGL [37], [38], [42], [43, [44], tencies that are caused by interpolated rules while asgumin
’ ' ' ' P . . . that given observations and rules are true. In particuldMa
Cqmmon o the_se fuz_zy mterpolatu_)n techniques is the f"’\retcords the dependencies between an interpolated valuésand
thgtllnterpolatlon IS C?‘”'ed out in a.llnea_r manner. Howeveproceeding fuzzy interpolative reasoning componentsmFro
this is not always feasible when dealing with realistic peas this, GDE works out all possible candidates from those sets
and he.nce, may lead to inconsistenqies in inferred ru]es atg\dzontradictory dependent components. Finally, suchtéata
reasoning resu_lt_s_after a sequence of interpolations. pepsr, fault candidates are corrected by a dependency-guided-modi
based on the initial work of [66], [67], proposes a novel Rication algorithm which modifies defective fuzzy reasoning

proach for finding and correcting faults in fuzzy interpaat components by means of refinement of these components

Tlhls |stagcompllstr;]ed Iby: !) a|1 dlag(]jn;stuc syster? that is "(?r’om linear interpolation to piecewise linear interpatati The
plemented using the classical candidate generation puoeed,, ..., approach is outlined in Fig. 1.

.Of General D_iagnostic_ Engine (GDE) [21], _by exploit_ing the The rest of this paper is structured as follows. Section II
inconsistent mter_polatlve results recorded in an Assump_t resents the relevant background, outlining the scale anaém
basedt.Truth i\Aalnttr(]antapcg Sylstenzj ]SATMtSh) [f18]’ anci "). ansformation-based fuzzy rule interpolation techngjuec-
corrective system fthat IS developed from the Tuzzy exIensif,, | gescribes how to represent fuzzy interpolative-rea
of the conventional numerical interpolation theory [17Hats soning concepts in the framework of ATMS and GDE to

application in approximate computation [46], [50] generate candidates for modification. Section IV proposes a
. . . ___modification mechanism for the generated candidates. Whilst
Longzhi Yang (e-mail: lly07@aber.ac.uk) and Qiang Shen (é:ma

qgs@aber.ac.uk) are with the Department of Computer Scidmrystwyth all the key COI’I_CeptS are iIIUStrated_ b_y a ru_nni_ng _example
University, Aberystwyth, UK. throughout Sections Ill and IV, a realistic application igem



at the different stages of the interpolation process. This i
different from interpretability which reflects the need for
the reasoning results to be readily understandable in terms
of their underlying semantics. Note also that the scale and
move transformation-based approach will be adopted as the
Contradiction foundation for the proposed research in this paper, althog
Dependencies 41k s restricted to fuzzy interpolation with 2 rules onhyith
each rule involving multiple antecedents. For completsnas
outline of the restricted scale and move transformaticsetla
approach is given below together with a brief overview of
in Section V, showing the potential of using this approacdther relevant approaches.
for the prediction of diarrheal diseases in remote villages
Section VI concludes the paper, with possible further work. Outline of the scale and move transformation-based ap-

Modified
Components

Interpolator

Justifications

Beliefs

Modifier

GDE

Fig. 1. Adaptive interpolative reasoning process

suggested. proach
For fuzzy rule interpolation, normal and convex fuzzy sets
Il. TRANSFORMATION-BASED INTERPOLATION are of particular interest, which are shortened as fuzzy iset

Since the inception of theompositional rule of inference this paper for simplicity. Letz and y be real variables, and
(CRI)[68], many fuzzy inference methods have been proposéd B, C, ... be fuzzy sets. Given a fuzzy s, the a-cut of
in the literature. However, the great majority of such meltho A is defined as(A), = {z € Dy|pa(z) > o, € [0,1]},
are only applicable to problems where a dense rule basewigere D, is the domain of variable:. All variables which
available. Fuzzy interpolative reasoning has been intedu are involved in the reasoning process satisfy a partial or-
to address this limitation [42], [43]. In order to make thelering, denoted by< [43]. For any two fuzzy setsi and
interpolated result interpretable, convexity is requif@d]. A’ with respect to the same variabld, < A’ if and only
Unfortunately, this is not always the case for the origindl inf{(A4),} < inf{(A’),} andsup{(4),} < sup{(4),}
method [65]. To eliminate this deficiency, various integimn for all o € (0,1], where inf{(4),} and sup{(4),} are
methods have been developed. Amongst these, the initiaé¢ infimum and supremum of4),, and inf{(4’),} and
formulated approach works by introducing the concept efip{(4’),} are the infimum and supremum @) . In
intermediate rules [62]. The approach first interpolates @articular, A < A’ if and only if A < A" and the two fuzzy
intermediate rule such that the antecedent of this rule is g&ts are not identical.
“close” (given a fuzzy distance metric) to the observation For simplicity, single antecedent and single consequédesru
as possible. Then a conclusion is calculated from the givare considered first. Given an observation or a previously

observation by firing the generated intermediate rule. inferred result (with both hereafter being referred to as an
A variety of methods to generate an intermediate rufpservation)
and to infer a conclusion from the given observation by O: xis A%, (1)

the intermediate rule have been developed in the Iiteratug%ppose that rules
e.g. [2], [13], [37], [38], [39]. In particular, the scale &n
move transformation-based approach ([37], [38], [39]) tas R;: If xis A;, theny is B, @)
following properties: R;: If zis Ay, theny is B;,
« It can handle both intel’polation and eXtrapOlation Whicare its two neighboring rules in a sparse rule base, then: |)
involve multiple fuzzy rules, with each rule consisting of4, < AjorAj < A i) A < A* < Ajor Aj < A* <Ay

multiple antecedents. and iii) no individual rule “If z is A, theny is B;" exists
« It guarantees the uniqueness as well as normality agdch thatA; < A, < Aj or A; < A, < A;. The object
convexity of the resulting interpolated fuzzy sets. value B* of variabley can be derived through scale and move

« It preserves piece-wise linearity such that interpolatiofansformation-based fuzzy interpolation. The interpiota
can be computed using only characteristic points whigfocess can be illustrated in Fig. 2.
describe a given polygonal fuzzy set, thereby ignoring This process is outlined as follows with key concepts
any non-characteristic points and saving computatigitroduced after this overview. Given fuzzy sets, A; and
effort. A*, it first uses real numbers;, a; and «* termed as
« It has been applied to problems such as truck backegpresentative valuego represent the overall position dff;,
upper control and computer activity prediction [38]. A, and A* respectively, within the domain of variable,
Note that although many approaches to fuzzy interpolationapped by the real functiofy. Then, the relative placement
have been developed with an aim to improve the interelation between the observatiofi* and the antecedents!(
pretability of interpolated results (as indicated abouwd)s and A;) of the two neighboring rules for interpolation is
paper will focus on the issue of maximising the consisten@ptained, which corresponds otermed aselative placement
of interpolated values throughout an interpolative reaspn factor, and which is calculated by the real functigpn. From
process. Informally, consistency means that a variablaligsev this, an intermediate ruled*’ = B*' can be interpolated
should remain the same whether it is observed or interpblatey applying real functionf; with parameter\ applied to



@~ f @ of fuzzy setA, respectively. A simple weighting scheme is
that thesupportand thecore are assigned the same value (i.e.

N fol=—@~—{f] wo = wy = 1/2), which leads to the case of [13]:
A 1
4# T Rep(A) = Z(a—&—b—i—c—i—d). 4)

This may further degenerate to the case as introduced in [62]

|
I = T | AP
' |

Legend: () - fuzzy set } BB ) | when therepresentative valus solely determined by itsore:
O - real number(s) | ! ‘QE’EPE“: 1
[] - real function | Input; Rep(A) = §(b +¢). (5)
Fig. 2. Transformation-based interpolation The concept ofrepresentative valuean be generalized
straightforwardly to any arbitrary polygonal fuzzy setv&i
K(x) an arbitrary polygonal fuzzy sefl’ with 2(n + 1) char-
T acteristic points, which is denoted as a set of level cuts
! ! AI = {(07 [POyCIO])a(Oéh[P1>(11D7m7(04n7[pm(In])} SUCh tha-t
supp(A’) = [po,q], a1 > 0, an = 1, ap < aupy
(0 € {1,2,.,n —1}) and par(pr) = palq) = o
(k € {1,2,...n}), the representative valuef A’ is computed
‘ ‘ by:
| | Potq N~ Pkt
a b! c \d Rep(A’) = wo + ) W, (6)
—[core I— X 2 2 2
support

which is a generalization of Eq. 3. Similarly, Egs. 4 and 5 can
Fig. 3. Trapezoidal fuzzy set also be generalized in the same manner.
For simplicity, the rest of this paper is developed based on

trapezoidal fuzzy sets only due to the following reasony: (a
both the antecedents and consequents of the neighboresy riln arbitrary polygonal fuzzy set can be seen as a collection o
for interpolation. Therepresentative valuef the resulting nested trapezoids (while triangles are special cases pé-tra
antecedentl*’ is guaranteed to be equal to that4f by real zoids) and thus the concepts about arbitrary polygonalyfuzz
functions f, and f3, though the two fuzzy sets are Usua")Sets can be generalized straightforwardly from those about
not identical. Next, the similarity degree betweéh and A*"  trapezoidal fuzzy sets. (b) The scale and move transfoomati
is calculated by a predefined similarity measure. Sped¥icalbased interpolation approach with arbitrary polygonalzfuz
scale rates, scale ratidS and move ratéV are used in scale sets is a generalization of that with trapezoidal fuzzy.sets
and move transformation-based interpolation to repretent
similarity degree, which is achieved by functigh. Finally,
the consequence of the interpolated ruks is computed C. Relative placement factor
by applying the transformation functiorfs to B*', while

imposing the same similarity degree. Therelative placement factok of the observatiom*, with

respect to its corresponding two neighboring rule antetsde
A; and 4;, is defined as the ratio af(A;, A*) to d(A;, A;):

The representative valuef a fuzzy set captures its overall A= d(Aii’A),
location in the underlying definition domain [37]. It proeisl d(Ai, 4;)
a useful linkage between conventional numerical inteffmta whered(A, A’) is the distance between fuzzy setsand A’
and fuzzy interpolation. When fuzzy sets are replaced Ifsneasured by a certain distance metric). Such a factor teflec
their representative valuesuzzy interpolation degenerates tahe relative location of the interpolated rule regarding tivo
numerical interpolation. neighboring rules. Thanks to the concept representative

Consider a trapezoidal fuzzy sdt as illustrated in Fig. 3, valug the distance between two fuzzy setsand A’ can be
which can be concisely expressed as a quadruple= defined by:

a,b,c,d) [53]. In particular, [a, d] is termed thesupport of
1£uzzy se)tA, ie. supp(A) :[{x }e Dalpa(z) > 0} [b,d] d(4, A') = Rep(4') — Rep(4). )
is termed thecore of fuzzy setA, i.e. core(4) = {& € Note thatRep(A;) # Rep(A;) becaused; < A; or A; < A;.
D, |pa(z) =1}; and[a,b] and[c, d] are termed théeft slope

andright slopeof fuzzy setA, respectively. Theepresentative

B. Representative value

()

value of such a fuzzy set is defined by: D. Generation of intermediate rule
a+d b+c ; _
Rep(A) = wo + wy ’ 3 From the/ calcula:[ede/zlatlye p/)lacement'factov\, the an
2 2 tecedentA*’ = (a*',b*',c*’ d*’") of the intermediate rule

where wy and w; are the weights of thsupportand core A*' = B*' can be generated. In particular, the characteristic



points of A*' are computed as follows: suppose that rules

a*' = (1 — )\)Cll + )\CLJ‘ b = (1 — /\)bZ + )\bj ) R;: If z1is Ay; and... andx,, is A,.;, theny is B;,
¢t = (1 — )\)Cl + )\Cj a’ = (1 - /\)dl + )\d] Rj Az s Alj and... andz,, is Amj, theny is Bj,

hich llectively abbreviated to: (15)
which are collectively abbreviated to: are used for interpolation with respect to the observatign
A = (1= NA; + AA;. (10) which are referred to as that “ruleR; and R; flank the

| doi h ) uef th culatedA®” observationD”. For simplicity, such two rules will be referred
n so doing, therepresentative valuet the calculate to as the “neighboring rules” hereafter. Similar to the &ng

is guaranteed to be equal to that of the given observatighiecedent rule situation, the neighboring rules and R,
A (refer to [37] for details). Similarly, the consequence af, st satisfy: i)Ay; < Ay; or Ay < A, Vk € {1,2,...,m);
the intermediate rule is generated using the sagiative i) Ap < AL < Akjj or A,:j =< AZ =< A7m" v’k; e

placement factorA by analogy to the generation of thery 5 ;1- and i) the distance between the antecedents of

antecedent: y rules R; and R; is the smallest amongst those of all the rule
B = (1-\)B; + AB;. (11) pairs in the rule base satisfying i) and ii) at the same time.

Note that the interpolated intermediate rule is normal and Knowing the distance between each pair of fuzzy skts
convex. (1 < k < m) and Ay; calculated by Eqg. 8, the distance
between the antecedents of rulBs and R; can be defined
as the Euclidean distance within the input space (though
E. Firing the intermediate rule other alternative distance metrics may be used). Howeker, t
absolute distances within different dimensions may not be
Having generated the intermediate rule, the next step is dgmpatible because different attributes have differemtaios.
execute the rule with the given observation, which is a@tdev|n order to make them compatible, the normalized attribute
by employing asimilarity reasoningmechanism. Suppose thatyistance is defined by:
the interpolated intermediate rule i$*' = B*', and that
the observation isA*. The conclusionB* is calculated with d. = M7
respect to the following intuition: maxy — Mg
Lo " Co ., Wheremax; andmin; are the maximal and minimal values
The more similar4™ is to A™, the more similarB™ is t0 5. in the domain of attributek, respectively. From this, the

_ ) _(12) normalized distance’ between the antecedents of ruls
Given two fuzzy sets with the same representative valug,q R; is calculated by:

the similarity between them is assessed through a process of
two transformation steps, namelgcale transformatiorand
move transformatianin particular, three parameterscale d =
rate, scale ratio and move rateare introduced to measure

the scales of these two transformatioBsale rateandscale Then, the distance between the antecedents of rulgs and
ratio measure the “fuzziness” difference of the two sets by i : isati

comparing the lengths of a certain level cut, whibeve rate ¥, is defined as the denormalisation i

(16)

E (17)
m

measures the “position” difference by comparing their tshif & .
on the given level cut. From this, the consequetie can d=d | (max) — ming)?. (18)
be obtained by modifying3*’ with the same scale and move k=1

parameters as used for transformidy to A*. For simplicity, Note that if the neighboring rules of Eq. 15 degenerate teeho

the two transformation steps are jointly represented by apg single antecedent of Eq. 2, Eq. 18 degenerates to Eq. 8.
integrated transformation function such that: ) . ) i )
Having known the neighboring rules for interpolation, the

T(B*,B*) = T(A*, A%), (13) process of deriving the object valuB* of the consequent
f variable y is illustrated in Fig. 4. In this figure, there are

which ensures that the degree of the similarity betw&s ; . )
m repeated components which are identical to the core of

and B* is the same as that betweett’ and A*. The details

of these transformations and the computation of the scale a{ne single-antecedent rule interpolation (Fig. 2). Eacthese
move rates are omitted here due to limitations of space, mponents does exactly the same as the common core of the

can be found in [37], [38]. single-antecedent situation. That is, relative placenfactor
A (1 < k < m) and similarity rates q, S, M) are
calculated from each term of the observatidrj, and the
) ] ) corresponding two fuzzy setd;; and Ag;. Function fs is
F. Multiple-antecedent rule interpolation introduced to combine all thesg, (k € {1,2,...,m}) to a
single scale\, as isf; to combine all the similarity rates{,
Sk, My) to (s,S,M). Various combination functions may be
chosen forfs and f; [5], [6]. For instance, the chosen function
(14) could be weighted average operator or medium value operator

Multiple-antecedent rule interpolation is a general@atdf
single-antecedent rule interpolation. Given an obseyuati

O: xis Aj, and... and X,, is A

mx?



s, S,

Legend: () - fuzzy set ol g
O - real number(s)
[ ] - real function

Fig. 4. Transformation-based interpolation for multipléesedent rules

The simplest case is the arithmetic average operator: corresponding fuzzy set of the resulting interpolated .rite
Lo order to measure the similarity degree between two fuzzy set

r=__ Zr,ﬁ (19) with the samecore, only their left slopesand right slopes

m.= need to be compared. Two transformations, thatnisrement

transformationand ratio transformationare utilized for this

placement factors. This operator will be used in the runningPUrPOSe, with one aiming to increase the length of a certain
example below. level cut of aslopeduring the transformation, and the other to

The combined similarity rate reflects the similarity degref€crease the length. A group of intermediate rule generatio

between the observation and the antecedents of the inf&pd firing algorithms have also been reported in [2] by means
mediate rule. The conclusioB* can then be estimated byof fuzzy relations and semantic relations. For details ekth

transforming the consequer®* of the intermediate rule implementations, refer to the corresponding referencesngi
via the application of the combined similarity rate, usind?°Vé:

transformation functiorys:

T(B*,B*) =T((A;,, ... A%, (Ai, ooy Amz)). (20)

where r stands for similarity rateg, S and M or relative

I1l. MINIMAL CANDIDATE GENERATION

In fuzzy reasoning, including fuzzy interpolation, it is
. . possible that more than one object value of a single variable
G. Other implementations is derived. This implies that certain inconsistencies Hasen
The discussions throughout this paper focus on the scadached. For example, variahtés used to illustrate a person’s
and move transformation-based approach (due to its bak@&ght. It is possible that is tall is held in one situation and
properties stated previously). However, the work is dgyetb thatx is short in another, while it is contradictory far is tall
with an aim to suit a variety of intermediate rule-basedndzx is short to be held simultaneously in one single situa-
interpolation approaches, including the following impmit tion, knowing thattall and short represent two semantically
implementations. The technique of [62] employs the sand#ferent object values. Given such an inconsistency, diazy
method for generating intermediate rules as outlined gbowaterpolation, unless it is caused by contradictory obestons,
but therepresentative valués restricted to the middle point the method employed is the only cause of contradiction &f th
of core(i.e. Eq. 5). The similarity degree is captured using theeighboring rules used are presumed to be true).
so-calledlower similarity and upper similarity By reference  In this work, each pair of neighboring rules is seen as a
to the middle point of thecore a normal and convex fuzzy fuzzy reasoning component which takes a certain number of
set can be divided into two parts, namely the lower part arfilzzy sets as input and produces another fuzzy set as oatput,
the upper part. Théower similarity measures the differenceillustrated in Fig. 5. The input is an observation or a pragig
of the lower parts of two fuzzy sets by comparing the lengthisferred result, which is of the form (1) or (14). Rulesand
of a certain level cut, andipper similarity does that of the j flank the given observation and are of the form (2) for
upper parts. single-premise, or form (15) for multiple-premise. Theules
The approach of [13] ensures that tbere of each fuzzy is inferred from the input observation by such two neightgri
set of a created intermediate rule is equal to that of tmeles as explained earlier. Accordingly, a contradiction i
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Fig. 5. Fuzzy reasoning component

this context means that at least one of the fuzzy reasonwere Sy, is the area of fuzzy sefl,. Given a trapezoidal
components that it depends on is defective unless the atigifuzzy setA; = (a,b,¢,d), Sy can be calculated by:
given observations are themselves inconsistent. 1

To efficiently record the dependencies between a derived Sk = 5l[d=a) +(c - b)]. (22)

proposition aqd Its .precedlng fugzy interpolative reasgnl e penefits of using thiepresentative valubased matching
components, including those which lead to contradictions

ATMS is used here. GDE, which is built on the basis of ATMSmeasure are: i) a unitanepresentative valuer each fuzzy
' ' set is used for both the fuzzy rule interpolation phase and

i employed to _generate m|n|m.al faulty Te.as"”'ﬂ% contradiction calculation phase; and ii) ttepresentative
component candidates, with each of which explaining the

entire set of current contradictions. A minimal candidatei value for each fuzzy set only needs to be calculated once,

; - ; . %aving computational effort.
possible minimal set of defective components which neeeto 2) Set th based tching dearekn alt i
corrected at one time in order to remove all the contradistio ) Set theory-based matching degreén alternative way

to measure the similarity degree between two fuzzy sets is
developed from the set theory. This approach is rooted in
the assertion that the assessment of similarity may berbette
described as a comparison of features rather than as a compu-
In classical reasoning, at a given time, if two unequal v&lugation of metric distance between points [58]. For instante
are derived (or one derived and another observed) for ore siase-based reasoning, the determination of the most neéleva
gle variable, there is a contradiction. The situation ifedént (or optimal) case that is to be retrieved is based on the
in fuzzy reasoning, as “unequal” in fuzzy representation issimilarity degrees which are usually computed by compariso
matter of degree. For fuzzy systems, the concept of contif-the involved features [52]. In the area of pattern rectigmj
diction is replaced by the concept of dissimilarity betweethe similarity between an object and a pattern class can be
the derived logical consequences for any given variable Thientified also by comparison of features [4]. Similarityang
degree of matching is frequently used for expressing thengéxtobjects is expressed as a linear combination of the measfires
of similarity between two fuzzy sets. Numerous method&eir common and distinct features, which degeneratestto se
have been proposed to calculate fuzzy matching degreesoperations when special parameters are chosen. A number of
the literature [15], [69], which can be typically categeriz fuzzy distance measures have been proposed in the literatur
into two classesgeometric distance-based measugggl set as the extensions or generalizations of this concept [24], [
theory-based measureshe former are the extensions of thg28]. Particularly, the matching degree between two fuzg s
classical concept of metric space and the associated déstan;, and A;, denoted asM (A;, 4;), in the domainD, of
function, while the latter are built on the basis of set of® variablex can be defined as:

such ast-norms andi-conorms. MA A — ) 23
1) Geometric distance-based matching degrdéis ex- (4i, 4;) = msggm[mm(w‘i(x)’“f‘j (@)]. (23)

tends the Euclidean distance between two points to a fuzﬁﬂis is in accordance with the implication-based inteigiet

distance between two fuzzy sets, to express the extent whwhi . X X
. i . of fuzzy rules, as opposed to the conjunction-based irgerpr
the fuzzy sets match. An extensive mathematical literature

exists for computing such measures (e.g. [10], [11], [22%)] tatg>nth[29.], [|30]t d ab follow th
[34], [49], [51]). Having defined theepresentative valuef oth simiiarily measures proposed above 1oflow the prop-

a fuzzy set, the matching degree between two fuzzy sets cea{HeS ofsymmetry andreflexivity which are necessary for

be easily calculated. This is because the distance between Zgog?;Chltr;g tﬂggrei\?err??ncl.icgt]izi, ar(f:éﬁe maya?t?cm:rde
fuzzy sets degenerates to the geometric distance betweien t Y ne g pplication p - np o
e representative valubased similarity measure is sensitive

representative val h he matchin r ween tw . ) .
epresentative valueghus, the matching degree between t among different pairs of disjoint fuzzy sets, while tket

fuzzy setsA; and A;, denoted as\/(A;, A;), in the domain i . . "
D, of variablez can be defined by: theory-baseds sensitive among different pairs of joint fuzzy

A. Contradictions in interpolation

sets.
1, 3) Specification of contradictionBased on the concept of
if d(A;,A;)=S;=8;=0 matching degree, the degréeof a contradiction with respect
M(Ai, Aj) = | _ __dAnA) (21) to two propositionsP(z is A;) and P'(z is A;) is specified
d(Ai,Ay)+ 5L by:

otherwise B=1—M(A; Aj). (24)



A predefined threshol@, (0 < 8, < 1) can be adopted in if A; and A; are not identical. Due to fuzzy matching, such
order to determine those values assigned to a common ariatdntradictions are to a certain degrgéeWheng is not higher
with an unacceptable contradictory degree. A contradictidthan a given threshold,, the contradictory degree is deemed
is called agsp-contradiction if the corresponding degree ofacceptable and the two considered propositions are treasted
contradiction > . being consistent in ATMS. Otherwise,®-contradiction is
In fuzzy interpolation, when two or more values of aleduced, which is represented as:
common variable are obtained, the degree of contradiction ,
between each pair of values is calculated as above. From this PP =g, L. (28)

the fO”OWing interpretations will be adopted in this paper 2) Label and |abe|-updatingA label is a set of environ-
(i) B = 0, that is M(4;, A;) = 1, which means that the ments each supporting the associated node. An environment
two propositionsP and P’ are not contradictory at all; in contains a minimal set of fuzzy reasoning components that
other words, they are totally consistent; () < 5 < S0, jointly entail the node from an observation, thereby déscg
that is1 — By < M(A;, A4;) < 1, which means that the how the node depends on those fuzzy reasoning compo-
two propositionsP” and P’ are slightly contradictory and the nents. An environment is said to b&-inconsistentif J,-
degree of contradiction is tolerable in the computatioi) (i contradiction is derivable propositionally from the ewvir
Bo < B <1, thatisO < M(A;, A;) < 1— By, which means ment and a given justification. An environment is said to be
that the two proposition® and P’ are seriously contradictory (1 — B)-consistentf it is not S,-inconsistent.
and the degree of contradiction is intolerable; ()= 1, that  The |abel of each node is guaranteed to be —
is M(A;, Aj) = 0, which means that the two propositios 3y consistent, sound, minimal and complete, except that the
and P’ are totally contradictory, and not consistent at all.  |ape| of the special “false” node i&-inconsistent rather than

(1 — Bo)-consistent. The interpretation of these properties is
B. Representation of interpolation concepts in ATMS summarized as follows:

In this work, ATMS is used to record the dependency of « (1 — f3y)-consistencymeans that all environments in the
the interpolated results as well as the contradictionsvedri label are at leasfl — j;)-consistent;
from those fuzzy reasoning components. That is, propositio « (1 — 5p)-soundnessndicates that the node is derivable
contradictions and fuzzy interpolative reasoning comptse from each environment in the label at least to the consis-
are all represented as ATMS nodes. In addition to the so- tent degree ofl — §y);
called datum field [18], which trivially denotes a propamiti  « (1 — Sy)-minimality states that the removal of any ele-

(including the term “false” to represent inconsistency)eor ment from any environment will cause the node to be
fuzzy reasoning component, an ATMS node has two other underivable from that environment and hence violating
fields: justification and label. the label's(1 — 5y)-soundness;

1) Justification: A justification describes how a node is « (1 — fp)-completeness implies that every

derivable from other nodes. Each fuzzy reasoning component (1 — Sy)-consistent environment, from which the node is
is assumed to be initially true and may be detected to be false derivable, is a superset of a certain environment in the
later. For such a node (i.e. an assumption in classical ATMS label. In other words, all minima(l — j,)-consistent
terms [18]), its justification just assumes itself to be trier environments of the subject node are held within the
any given observatio® (i.e. a premise [18]), its corresponding label.
ATMS node has a justification with no antecedent because itype label-updating algorithm of the ATMS ensures that the
is supposed to hold universally, which can be represented 8ove four properties are held. The extended algorithm for
-~ 0. (25) label-updating in this work is exactly the same as the oabin
given in [18], except that the environments of a proposition
Any ATMS node with an inferred proposition (i.e. a derivethre now at least1 — f3,)-consistent rather thai-consistent
node [18]), which is obtained through fuzzy interpolativend that the environments of a contradiction are at least
reasoning, can be represented by an ATMS justification asj,-inconsistent rather thahrinconsistent (i.e. a contradiction
O,RiR; = C, (26) is a_t least Sy-contradictory rather th:':m 1-"contradictory). In
particular, the label of the special “false” node gathefs al
where R;R; stands for the fuzzy reasoning component witB,-inconsistent environments. Wheneveggacontradiction is
respect to the two neighboring rulég and R; (i # j) that detected, each environment in its label is added into thel lab
have been used to infer the outcorfiefrom the observation of the specific “false” node and all such environments and
O. More generally, a nod#' that is inferred byn other nodes their supersets are removed from the label of every othege.nod
My, Ms, ..M, (each of which may be itself a derived nodeilso, any such an environment which is a superset of another
or an observation) by interpolation through two neighbgrinis removed from the label of the node “false”.
rulesR, and R, (u # v) is denoted by: Accordingly, the concept of an ATMS context with respect
to a (1 — By)-consistent environment, is herein defined by
My, My, oo, My, BBy = N. @7 the ci)llectior)1 of both the assumptions contained withirs thi
In addition, as discussed previously, any two propositiomsivironment and all those nodes that can be derived from
P (z is A;) and P’ (z is A;) are considered contradictorythese assumptions. Of course, these derived nodes can not be



Bo-inconsistent because they are deduced froffl & Gy)- P11 : {xg = F*,{{}});

consistent environment. Note that there are a number of/fuz?;, : (a:7 = G5, {{R3R4, RsRs, RoR10}});
extensions of de Kleer's ATMS in the literature, such as [7Pi5 : (x7 = GF, {{R1R2, RsR4, R5Rs, RoR10}});

[8], [26], [55]. All these extensions introduce truth vasuato P14 : (z7 = G5, {{RsR4, R7Rs, R11R12}, {RoR10}});
ATMS. They may be of great significance when this work i®;5 : (x7 = G, {{R1R2, RsR4, R7Rg, R11R12}});

extended to deal with truth values of propositions or rutes, L;: {L,{{R1R2, R3Rs, R7Rs}});

(

are beyond the scope of this paper. 1o :{L,{{R3R4, RsRs}});

Example 3.1:Suppose that the sparse rule base for a prats : (L, {{R1Ro, R3R4, R5R¢}});
tical problem is given as follows: L4: (L, {{R3Ry, R5R¢, RoR10}});
Ry: If 1 is Al, thenfEQ is By; 15 <J_ {{R1R2,R3R4,R5R6,R9R10}}>
Rs: If xr1 is AQ, then:cg is Bs; lg: <J_ {{RlRQ,R3R4,R7R8,R11R12}}>
Rs: If X9 is Bs, thenmg is Cs; 17 <J_ {{RlRQ,R3R4,R R@,R7R8,R9R107R11R12}}>
Ry: If X9 is By, thenmg is Cy; 1lg: <l {{Rle,R3R4,R5R6,R7R8,R9R10,R11R12}}>
Rs: If z3 is Cs, thenxg is F; By the label-updating algorithm, a specific ATMS node
Rg: If x5 is Cg, thenxg is F; “false”, denoted byP, , which collectively represents all the
Ry If x3is C7; andzy is D7, thenxs is E7; contradictions listed above from; to g, is given as follows:
Rs: If xs is Cs andx4 is Dg, then:rg, is FEg; P, : <L, {{Rle, R3Ry4, R7R8}, {‘Rg‘R;;7 R5R6}}>
Rg: If zg is Fy, thenzy is Gg; There are just two minimal environments in the label of the
Rio: If g IS Fig, thenzy is Gio; “false” node. This is because all the others are the super-
Ri1: If x5 is Fqq, thenzy; is Gqy; sets of at least one of these, which are therefore removed.
Rio: If 25 IS E1o, thenzy; is G1o. The label of P, means that at least one element of set

In this example, trapezoids are used to represent fuzzy sgid R,, R3R4, R7Rs} and one element of s¢f; Ry, Rs Rg }

with representative valuesalculated by Eq. 4. For simplicity, are faulty simultaneously. Also, the labels of nod@s i €

the set-theory based similarity measure given by Eq. 23 {i,9,10, 12,13, 15}, become empty after the removal of those
used to calculate the contradictory degree. Giylgn= 0.5 environments which are supersets of at least one enviradnmen
and four observationsz; = A* = (9.0,9.5,10.0,10.5), of the “false” node.

x9 = B* = (7.0,7.5,8.0,8.5), x4 = D* = (5.5,6.0,6.5,7.0) Fig. 7 summarizes the results obtained through the above-
and z¢ = F* = (11.0,11.5,12.0,12.5), the interpolation described process, including the observations and thepimte
procedures are illustrated in Fig. 6. lated results.

In this figure, an arrowed line flanked by two rulés
andR;+1, 1 € {1,3,5,7,9,11}, represents a fuzzy reasonin
component, which is denoted &R, ,, whereR; and R; 1
are the neighboring rules used for interpolation. ATMS sode GDE [21] generates minimal candidates by manipulating the
and contradictions are represented by circles. Partigutach label of the specific “false” node. A candidate is a particsket
of F;, j €{1,2,..,6}, is a node denoting a fuzzy reasoningf assumptions which may be responsible for the entire set of
component; each aP, k € {1,2,...,15}, is a node denoting current contradictions. Becausejginconsistent environment
a proposition; and each af;, I € {1,2,...,8}, denotes a,- indicates that at least one of its assumptions is faulty, a
contradiction. For instance, nodg is inferred from node¢?, candidate must have a nonempty intersection with eagh
and P; by fuzzy reasoning compone#t,, whose justification inconsistent environment. Thus, each candidate is catstiu
is therefore P, Ps, Fy = Ps, where P, is an observation by taking one assumption from each environment in the
and P is a previously interpolated result. The label of nod&@bel of the “false” node. Supersets removal then ensures
Py ({{R3R4, R7Rgs}}) is derived from the labels of fuzzy such generated candidates to be minimal. In light of this, a
reasoning component, ({{R;Rs}}), node P, ({{}}) and successful correction of any single candidate will remoe a
nodePs ({{R3R4}}) by the ATMS label-updating algorithm. the contradictions (see later).

All these ATMS nodes and contradictions are listed as fatlow Example 3.2:Consider Example 3.1 further. Traditionally,

gC. Minimal candidate generation by GDE

with all justifications omitted GDE is used to solve physical world problems which are usu-
Fy : (R1Rs, {{R1R2}}); : (R3Ry, {{R3R4}}); ally represented by component-based diagrams, by analogue
F3: (RsRe, {{RsRs}}); : (R7Rg, {{R7Rs}}); to which the previous reasoning procedures can also be-repre
F5 : (RoR10,{{RoR10}}); : (R11Ry2, {{R11R12}}); sented (Fig. 8). From this point, GDE can be readily applied
Pz = A {{})); < = B, {{R1R,}});  in order to identify and isolate those components which have
P : <.233 = Cl,{{R1R2,R3R4}}> led to faulty interpolated results. According to the “fdlse
P, <$4 = D* {{}}> node of the ATMS and its |abe{{R1R2,R3R4,R7R8},

Ps: (xo = B*, {{}}); {RsR4, R5Rs}}, it is obvious that three minimal candidates
Ps: (zg = 027{{R3R4}}> can be generated:

P < Ts E17 {{R1R2, R3Ry4, R7Rg}}>, - - .

Ps: (w5 = B3, {{RsRy, ReRs}}); C1=[R3R4] Cy=[RiRo, R5Rs] C3 = [R5Re, R7 1]

Py :( re = F5, {{RsR4, RsR¢}}); which means that fuzzy reasoning compondtyRz, may

: {xg = F}, {{R1R2, RsRy, R5R¢} }); be defective or that fuzzy reasoning componeRisk, and
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RsRg or R Rg and R; Rg may both be defective at the same
time. This result can be better understood by examining the
following:
« By 1,, at least one element dfR; Ro, Rs R4, R7Rg} IS
faulty;
« By L, at least one element ¢fR3 R4, RsRg } is faulty;
» By L3, at least one element ¢fRy Ry, R3 R4, RsRg} IS

faulty;

o By L4, atleast one element §R3 R4, RsRg, RoR1o} IS
faulty;

« By L5, at least one element of
{RlRQ, R3R4, RsRg, RgRlo} is faulty;

o By L, at least one element of

{Rle, R3R4, R7R8, R11R12} is faulty;
e By 1; or 1g, at least one element of
{R1R27 R3R4, RsRg, R7Rg, Ry R0, R11R12} is faulty.
What GDE deduces is that at least one of the following
three sets of fuzzy reasoning components is faylfy; R4}
or {R1R2,R5R6} or {R5R6,R7R8}. The set{R3R4} is
considered as a candidate becauggR, belongs to every
contradiction given above and if it is faulty, all these seve
assertions are explained. Similarly, the $&; Ry, RsRg} is
considered as a candidate becaus&?ifR, and R5Rg are
faulty simultaneously, they jointly explain all these atisas
due to at least one element R, Ry, R5Rs} belonging to
each conflict listed above. The s¢R;Rs, R7Rs} is also
considered as a candidate for the same reason. Any other
candidate is a superset of at least one of these three céeglida
and thus removed.
In terms of interpolation, that fuzzy reasoning component
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R3R, is defective means that any interpolated rule whose
antecedent is flanked by the antecedentBp&nd R, is faulty

and needs to be modified. That fuzzy reasoning components
Ri1Ry; and R5Rg are defective at the same time means that
those interpolated rules whose antecedents are flankedeby th
antecedents of?; and Ry, and by those ofR5; and Rg,

are faulty and need to be modified simultaneously. A similar
implication exists given that fuzzy reasoning components
RsRg and R; Rg are defective. This leads to the development
of the following procedure for modification of the identified
faulty fuzzy reasoning components.

Ranked candidates

IV. CANDIDATE MODIFICATION

Having described the method for minimal candidate gen-
eration, this section deals with how to correct such deiectiF. ) . )
. . ) ig. 9. The flowchart of consistency restoring algorithm
fuzzy reasoning components. It exploits the presumptien th
any observed inconsistencies are dependent upon the foundConsISTENCYRESTORINGQ)

faults. Input:
Q, a sequence of candidates, each elemétof
A. Consistency restoring algorithm which is a set of fuzzy reasoning component} (
Output:

Since each single candidate explains the entire set ofrdurre
contradictions, consistency can be restored by succéssful
correcting any single candidate. A candidate of the sntalles (1) success « False
cardinality is the easiest to be modified. Therefore, thdlssta @ do
candidate in cardinality is always the one to be modified.first 3) C « Dequeue(Q)

However, there are still situations in which more than one ca (@) foreach ;{ co

didate have the same size. In this case, the algorithm btkaks 5) « MoDIFY(f)

tie at random. An alternative way to prioritize the candisas EG) ;u(ccess ~ Falsa

through the use of the degree of contradiction. Obvioubly, t 7) ng}:;is T

higher the threshold taken to detect the contradictory elegr (8) until ((success ——True) or (Q == o))
the less sensitive the candidate generation procedurehasd t (9) return success T T
the fewer candidates that may be generated. Also, the higher

the degree of contradiction caused by a candidate, the maore
likely the candidate to be the actual culprit. Fig.

Given a set of ranked candidates, the consistency restoring

algorithm tries to correct the candidates one by one unfilse,ich However, when the termination is due to a suadessf

a czndd|datehsuczlceeq§ (or. all fail). For the hcurf"_amdvggk'r}godification, it means that consistency has been succhssful
candidate, the algorithm tries to correct each of its ct restored and there is no need to try any other candidate.

fuzzy reasoning components and propagate the modificatlor]EX‘,:lmple 4.1:For the running example, there are three

to all the interpolated rules which depend on this defeCtcheandidates in the candidate set. For simplicity, the sizet
component by the method to be given in the next section. If tl?&nking method is used in this example (with the set theory-

modification is successful, that is _aII the coptradlcuomm based similarity measure used to calculate the contragicto
been removed through the correction of all mterpolateésruldegrees) Because candidate is smaller tharC, and Cs in

involved in the candidate, the algorithm terminates; ote, cardinality, C; is chosen to be modified first. Two rules have

the algorithm tries t_he next highgst Ta”"ed candidate._ TB8en interpolated using this fuzzy reasoning componerth, bo
flowchart of the algorithm is shown in Fig. 9 and the algorlthr'Bf which therefore need to be modified:

itself is outlined in Fig. 10, where ®DIFY(f) is the modifi- R
cation procedure for a single fuzzy reasoning component é)R;

True, if the modification succeeds;
False otherwise.

10. The ©NSISTENCYRESTORING procedure

2 If x4 is Bf, thenzs is CY;
D If zo is B*, thenzs is C5.

As indicated above, the algorithm terminates under two ) ) )
situations. When the termination is caused by an emd?y Slngle-prem|se—based defective reasoning component co
candidate set, it means that the modification fails and tHeFtion
proposed modification method is not suitable for the given Inconsistencies result from the failure of interpolatiom<{
problem. This implies that the detected inconsistency mégss observations and/or original rules have been indtyrec
have been caused by incorrect observations or incorregs rugjiven, which are beyond the scope of this paper). The reason
originally given, which have mistakenly been presumed for such a failure is that the santelative placement fac-
be true. Further modifications in this case remain for fututer is used in both the antecedent and the consequent part
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of an interpolated rule. That is, the interpolation pressime Bnyf ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, P7An:Bn

that the relationship between the antecedent variable faad t gl Ps
consequent variable is linear. An intuitive way to addréds t Bl i
issue is to shift theepresentative valuef the consequence Ax 3p3

. . L . B] b . p5 |
of a culprit reasoning rule within the interval constructed ;

by the representative values of the two consequences of the
neighboring rules that were used for interpolation. Thipse

to explain all other propositions in the context. In so doithg Ej I P

consequent value of the computed intermediate rule is @thng ' | 1

with respect to the change of thepresentative valuef the Bi |-/ P

consequence of the culprit interpolated rule. Howeverhbot , | : : ;
move and scale rates that are generated by measuring the Bay®o =~
transformation from the antecedent of the intermediate rul AFBLlAL A A Ak An
to the antecedent of the interpolated rule remain intaceyTh At A, B AL ey A ey A

are used to transform the consequence of the intermediate

rule to the consequence of the modified interpolated rufdg. 11. Single-premise-based defective reasoning companedification
This ensures that the similarity between the consequence of

the intermediate rule and the consequence of the modified .
interpolated rule keeps the same as that between the aatgcefPmponent, thatds, A3, ..., A;,_, are observations located
of the intermediate rule and the antecedent of the intetpala PetweenA: and A,,, and thatA; (2<j<n-1)isthe
rule. middle-most one. It is interesting to observe that in cormgut

Based on these considerations, a set of simultaneous ed{}§-transformation-based interpolation, the relatiomien an
tions can be set up regarding all the interpolated rules whightecedent variable and the corresponding consequeabieri
are dependent on the same defective fuzzy reasoning cdifi? Pe represented by a linear line in a coordinate plane (lin
ponent, in order to modify their consequent values. THe P in Fig. _11). The modification break_s this straight line
modification is carried out such that their correspondirgppr  S€gMent 1 into two connected straight line segmemrs;
sitions are(1 — f3,)-consistent with the current context. Theaf‘dp5p7 as illustrated in Fig. 11. That is, it uses a first-order

solution of these simultaneous equations forms the regult RJECEWISE linear approximation to replace the originagain

the modification. For convenience, Bt denote the modified Method. _ o _
consequence of a culprit interpolated rule = B* and B*' The effect of this proposed modification is to refine the

and 5. denote the corresponding modified intermediate ruff¢fective fuzzy reasoning component by dividing it into two

consequence and thelative placement factoof §*' respec- more accurate fuzzy reasoning componer_lts. In Fig. 11, this

tively. The following sub-sections describe the requiratae COTESPONdS to replacing the fuzzy reasoning component rep

that the modification should satisfy and their reasons. resented by Pr with two fuzzy reasoning cpmponent; rep-
1) Unique correction rate for rules interpolated from thd©Sented by’ s and Ps Pr. In so doing, & pair otorrection

same defective reasoning componefithere may be more ratesc™ and ¢ are '”FrPdUFEd' denoted W,_’CJF)' Here,
than one interpolated rule dependent on the same defecfive'ePresents the modification rate Qf those interpolatedsrule
fuzzy reasoning component. If an interpolated rule is atter WN0Se antecedents are on the left side of the antecedert valu
because it depends on a defective fuzzy reasoning compon&hthe original (to be modified) interpolated rule (thosenfro
the same must also be applied to all other interpolated rutds 0 47—1 in Fig. 11), whilec™ represents the same for those
which depend on the same fuzzy reasoning component. "ght located interpolated rules (those frafy,, to A7, in
In this research, all those rules initially provided in th&i9- 11). The method for computing a correction rate pair is

sparse rule base for interpolation are assumed to be fiy@&fcribed below. . .
and true, and are referred to as base rules. Naturally, the'S illustrated in Fig. 11, if the logical consequence of the
more similar any two rules are to each other, the closer tAdddle-most antecedent; has been modified from8; to Bj
values of the attributes involved in these rules. Therefdre (I-€- from pointp; to point ps), the logical consequence of
interpolated rule whose antecedent is located farthesn fr@ny antecedent; located betweenl; and A} is accordingly
both antecedents of a pair of base neighboring rules is th@dified from B} to B; (i.e. fromp; to p4). That is, if the
one that is most dissimilar to these neighboring rules. Thightecedent variable takes a value betwegnand A7, the
this farthest rule should be chosen for initial modificatiorinterpolating mapping line (between the antecedent vriab
In other words, the rule antecedent which sits nearest thed the consequent variable) is modified from the line segmen
middle of the neighborhood of the two base rules is the omep2 t0 pops. For any given antecedent valug lying between
most likely to be wrong and needs to be modified the most: and Aj, the ratio of the distance betwee; and the
Any other interpolated rules dependent on the same fuzmpodified consequenc®; to the distance betweefs; and
reasoning component can then be modified with referencet@ original unmodified consequenég’ is a constant. It is
the modification of this one. this ratio that is represented by the correction rate ¢t is
Suppose that the neighboring rulés = B, andA,, = B, computed in exactly the same way, but replacing the left base
are the two base rules used by a defective fuzzy reasoniude consequencB; with the right base rule consequenBg.
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Formally, thecorrection ratepair (¢~,c*) are defined as: Particularly, in the case of using thset theory-based
similarity measure, if the intersection point between twpzy

¢ = M et = M (29) sets is lower tham,, the contradictory degree between them
(B, B})’ d(B;, Bn) is higher thans,. There is an equivalent way to represent a
From (7) and (29), it follows that; Bo-contradiction_ by usingﬁo-lcut due tp the convexity of the
R aB1B) fuzzy sets con_s,ldered herein. If tht_a intersectionBgfcuts of
- = ¥BLB) TELESy _ Bl two fuzzy sets is empty, the contradictory degree betweemth
d(B1,B7) % Apr’ is higher thans,. This indicates that the contradictory degree
- d(B},B,) _ d(B1,By)~ d(By1,B) (30) of fuzzy sets Con_cerning a common v_ariable can be calculated
d(B},Bn) ~ d(B1,Bn)—d(Bi, 1) according to their membership functions. Therefore, Eq. 33
| ABLBBL B PR 1A can be simplified as follows:
= AWB1.Bn)-d(B1.B]) . d(B1.B}) . 1-Ags’ m
T BB T B, Bn) i

()(Ai)s, # 2. (34)

i=1

where (4;),, denotes thedy-cut of fuzzy setA,.

For any given antecedemt! (2 < ¢ < j — 1), which is
located on the left side ofl}, its consequenc®; is modified
to B* whose correspondlngelatlve placement facto&B*

satlsfles Example 4.3:For the running example, fuzzy seis“ and
Ag. = Apr - (31) 02 must satisfy the following constraints with respect to this
' ‘ requirement;
Similarly, for any antecedent;, (j+1 < k <n—1), whichis 1— M(Cy,C3) < Bo.

on the right side of4}, the correspondingelative placement

factor )‘E; of its modified consequencﬁ,’; satisfies: Specifically, if theset theory-basedimilarity measure given

by Eq. 23 is used for this example, the requirement can be
expressed as follows:

Example 4.2:Continue the running example. Because (ED)s0 N (C2)e0 7 2.
fuzzy setBj is located nearer the middle thd, the culprit 3) Consistency over modified proposition propagati@v-
interpolated rulel R, will be modified first. Suppose that theery modified value of a given variable is propagated throdgh a
relative placement factoof the modified consequence/\% possible subsequent interpolations that depend on thablay

1= s = (1= Ag:)-ct. 32)
Bk k

Then, the correction rate pair are: as dictated by the dependencies recorded by the ATMS. The
Man 1— Ma. corresponding propositions of such updated values aréreshju
Ch.m, = )\&; 62334 =1 )\Cl ) to be(1— Sy)-consistent. The propagation process follows the
cy —ACY standard transformation-based interpolation approaittlgt

Accordingly, TR, should be modified with respect to the For simplicity, let functionI (A}, R;R,) = B} denote the
generatedcorrection rate pair (cp, R4,c§3 r,)- The relative transformation-based interpolation from the antecederntyf
placement factor\ 5 & of the modified consequence satisfies:set A7 to the consequent valug;, based on the fuzzy
reasoning component involving the neighboring rulgsand
Aé; =Ac; " Crym, R,. Suppose that object valuesd;, A%, ..., A}, of variablex
are modified which are located between the antecedent values
of rules R, and R,, that the corresponding modified object

values of variabley are B, i € {1,2,...,m}, and thatn

The modified interpolated rule consequenc?qsand 5; can
thus be expressed as follows:

é*/ (1- g )03 + g Cu; object valuesB;, | € {1,2,...,n}, of variabley are already
Ot — ( )03 Y ! Cu: obtained by one way or another. If the modified consequences
Gy~ B} are all(1 — fy)-consistent, then they must satisfy:
T(Cy, ) (B, BY); . ~
T(Cy',C5) = T(B*, B"). B = 1A}, laRy),
_ . . . max(1 — M(B* B*)) < Bo, 35
2) Consistency of modified propositionghis requirement max( M(B?, B) < fo, (35)

ensures that the consequence of each modified interpolated ax(1 — (B B,) < B

rule is at least(1 — j3y)-consistent with the current context. = Fo

In general, suppose that object valuesA,, As, ..., A, are whereu,v € {1,2,....m}(u #v); p,q € {1,2,....,n}(p # q).

obtained for variabler. If they are (1 — (5y)-consistent, the Specifically, if theset theory-basedimilarity measure given

matching degree between any pair of these object valugs Eq. 23 is used, this can be simplified as follows:

is not higher than the giver8,. In accordance with the B 71(2* RiR,):

concept of contradictory degree (as introduced previgusly i AN .

this requirement can be expressed as follows: (ﬂ (E;‘)B[)) N <ﬂ (Bl)ﬁ(J) # o
=1

max(1 — M(A;, A;)) < Bo, (33) o

(36)

The above discussion addresses the situation where modified
wherei,j € {1,2,...,m}(i # j). proposition propagation is restricted to single-anteneddes.
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This can be readily generalized to multiple-antecedergstul Cal
Let function I((A}, Bf,C},...), RiR,) = Z; denote the et
transformation-based interpolation from the antecedenzyf eAN
sets (A}, Bf,Cf,...) to the consequent valug;, based on SN An By =Cp
the fuzzy reasoning component involving neighboring rutes &l " _4Py(An,BnCn)
andR,. The consequencg needs to be accordingly modified S D, e
if any fuzzy set of(A}, Bf,C/,...) has been modified such (é:j.
that the modified(A;, Bf,C;,...) is flanked by the neigh- RS
boring rulesk; and R,.. If the modified consequences are all §p2 o
(1 — Bo)-consistent, the contradictory degree of every pair of Ay,B1 =>(c:1 Ve 3A*,- A Ao An
fuzzy sets with respect to the consequent variable mustsse le Po(Ar B 1) T
than or equal tg3,, no matter whether they are modified or R
not. y j

Example 4.4:Continue the running example, the modified BHBT‘ """""""""""""
fuzzy setsCy andC3 of variablexs need to be propagated in X2 Ps

order to modify the subsequent variables x¢ andx,. Since
the set theory-basedimilarity measure has been used in this
example previously, the propagated object values of viariab

x5 must satisfy the following equations simultaneously: ¢ Multiple-premise-based defective reasoning component

Fig. 12. Multiple-premise-based defective reasoning corappmodification

E; = I(CY, D*), Rz Rs); correction
E2 —I((C%D*) R7Ryg); The problem space ofi-antecedent(n > 1) rule in-
(Et)go 0 (E3)p, # 2. terpolation is (n + 1)-dimensional. Without losing gen-

erality, for simplicity, two-antecedent rules are taken

Similarly, for the object values of variables, they must here to illustrate the underlying approach. Suppose that

satisfy: Fr = 1(Cr, Ry Ry ): (A3, B3), (A%, BS), ..., (A:_,,B}_,) are observations, and
L S8 that the neighboring ruled,, B, = C; and A,,, B, = C,
F; = I(C2LR5R6)§ flank all these observations. Similar to the single-antened
()80 N (F5 )8, N (F7), # . rule interpolation as illustrated in Fig. 11, in computing
Also, for the object values of variable,, the following interpolation involving two antecedent variables, a linea
equations need to be satisfied: lation is assumed between the antecedent variables and the
~ ~ corresponding consequent variable. This can be represente
GT = I(FY, RoRio); by a line in a 3-dimensional space (lif&P; in Fig. 12) if
Gz =1 (Fz , RoR1o); fuzzy sets are expressed using thepresentative value&ine
G3 = I(EQ,RHRM) Py Ps, the projection of lineP, P, onto planer;xs, provides
G4 = I(EI,RHRH) a partial order amongst all possible antecedent value pairs
ni_, (G Vo N (G5)p, # 2. of variablesz; and z9. In particular, as shown in Fig. 12,

observations(A7, BY), (A}, Bf) and (Aj, By) are mapped
4) Combination of correction requirement criterighs de- onto points D;, D; and Dy, respectively, on the line% Ps.
scribed above, each requirement induces a set of consigainthis is done by the combineetlative placement factoic:
equations over the interpolation. For a detected incoemstgt (/ ¢ {2,3,. —1}) calculated from\ 4 and - (Eq. 19)
all such induced equations must be satisfied simultanedfisly Assume thaD (2 <j <n—1)sitsinthe location which is

there exists at least one solution for these equationsah@ic the middle- most amongst all the observations on thefig;.

date has been modified successfully. Otherwise, this catelidThen, interpolated ruléA*, B) = C: will be modified first.

is discarded and the next one of the smallest Cardlnallty V\f‘i’he modification breaks the Stra|ght |nterp0|at|0n ||ﬁ@P1

be tried as indicated in the algorlthm glven in Section |VA|nto two connected Stra|ght line segmemi$P3 and P;P, as
Example 4.5:For the running example, with respect to canshown in Fig. 12. The effect of this modification method is

didateC1, no solution is arrived at by solving all the equation$o refine the defective fuzzy reasoning component by divid-

listed above simultaneously, which means the modification ing it into two more accurate fuzzy reasoning components.

C: has failed. Therefore, candidatg is discarded and’, This corresponds to refining the fuzzy reasoning component

is then taken for tentative modification, but the modificatiorepresented by P; into two represented by, P; and P P, .

to Cy also fails (the derivation of this is omitted here due For consistency, all interpolated rules based on the aigin

to space limitations). Thu€'s needs to be modified. Notice defective fuzzy reasoning component need to be modified by

that there are multiple-premise rules involved in candidaf, the two replacement fuzzy reasoning components. This can be

the modification of which is not covered by the approactione conveniently thanks to theorrection ratepair defined

introduced above. However, the present approach is readilyEq. 29. In particularc™ represents the modification rate

extendable to deal with this, which is introduced in the nextf those interpolated rules whose antecedents are less than

subsection. the antecedent of the first modified rule (i(el}, B;)) by the
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partial order, and:™ represents the same for the greater one®llows:

That is,c™ measures the difference of the interpolated results Ap- 1— Mg
by interpolation linesP, P, and P, Ps; from those antecedent CR,Rs = )\—1; CReRs = T % L.
pairs which are greater thaol;, By) and less tharfA}, B}) By By
according to the partial order, while" does the same but by The relative placement facton B (of the modified con-

interpolation linesP, P; and P; P; from those pairs which are sequenceE2 of IR,) is computed accordmg to Eq. 31, such
between(4;, Bj) and(A,, By). Having calculated the uniqueéthat \ ;. = A, -cp, _r,- With such assumeelative placement

rrection r ir for h fuzzy r nin mponen
correctio atepa or each fuzzy reasoning component, ?actors fuzzy setsE1 and E2 are calculated by:
set of constraints can be set up in exactly the same way

as that for single-premise situation outlined in Sec. IV-B. Ef’ =(1- )‘E*)E7+>\E*E87
The modification result is then computed by solving these ! R a— 5 TYRY).
constraints simultaneously. gfi’?) \ (s ’f ), (C1, DY));

Several factors affect the complexity of these constraints 2= E*)E7 * E*Eg’
the maximal number of variables involved in a constraint is T(E}', E3) = ((05/717*/) (C3,D")).
equal to the number of premises of rules; the number of pog C3 is located nearer the middle thaf, the mod-
constraints depends on the lengths of the reasoning chaihs tﬂcat,on for fuzzy reasoning componemt; R starts from
need to be modified; and the order of all these equationsfe interpolated ruld Rg. Similarly, assume that theelative
inequations is the highest order of functiofigi € {1,2,..7})  placement factorf the consequence dfRg is modified to
as |“Ustrated |n F|g 4. In partlcular for the Scale and mOVAﬁ then the fo||OW|ng equa“ons can be set for those |nter_
transformation-based approach, the highest order is geliar pofated rules which are based on fuzzy reasoning component

due to the complexity of the transformation functiofisand RsRg according to the requirement of Section IV-B1:
f5. Therefore, the complexity of the proposed modification

algorithm is equivalent to the complexity of solving thig se =
of inequations and equations. Because there is no standard

algorithm for solving such problems, different methods may CESRG = 14;}3
be applied. These include continuous Constraint Satisfact 1=-Xp) =01~ AF;) CRsRg’
Problem techniques [59] and stochastic approaches [33]. Ac Ser _ (1 ~ -

. ; SO Fy' = (1= Xp.)Fs + Ap. Fy;
cordingly, the complexity varies significantly. Howeveqr f ) 1
fuzzy reasoning applications (e.g. systems control and-dia By = (E_ /\ﬁ;)FE) + Ap; Fe;
nosis), the interpolation chain is usually not very long and T(Ff",lil) T(Cy,Cy);
(symmetric) fuzzy numbers are quite often used to specify T(F3', F35)=T(C3',C3).

guantity spaces. Therefore, the set of constraints can
reduced to a linear inequality problem. In this case, patyiab
time complexity is guaranteed [1].
Example 4.6:Continue the running example, four rulesD
ase
have been interpolated through the two fuzzy reasoning ComS
ponents that comprise the candidétg

Iggquirements given in Sections IV-B2 and IV-B3 ensure
that the modified propositions and their propagation are
— Bo)-consistent. Because of the use of thet theory-

dsimilarity measure in the example, this can be expressed

IR3: If 23 ts Ci andxzy |§ D*:k.thenxg, is EY; (B)so N (B g # 2
IR5. If xr3 IS Cl' thenZCG IS Fl’ (ﬁ*) N (ﬁ*) N (F*) 7& ]
IRy If x3is C4 andz, is D*, thenzs is E3; @*1_601 P 21%653 ok ;
IRg: If 23 is C3, thenzg is Fy. Gi = I(FT, RoRao);

For a given candidate, the modification is a process to set up G3 = I(F5, RoRyo);
a set of simultaneous equations and inequations. The soluti Gz = I(E3, Ri1 Ri2);

of these equations and inequations leads to the end reshlk of Gy = IA(ET, Ri1R12);
modification to the candidate (unless there is no solution fo 121(G3)g, N (G3) g, # 2.
the set of equations). For candidatg, both fuzzy reasoning . . . . _
componentsis Rg and R; Rg need to be modified, by Semngto Solving these simultaneous equations and inequations lead

one solution which is illustrated in Fig. 13. It is clear
up simultaneous equations and inequations jointly. Sihee t
rom this result that there is n@y-contradiction any more
solution of a set of simultaneous equations is irrelevant

and thus consistency has been restored. This means that the
the order of its equations, the result of the modification for
original inconsistent interpolation process has beenected
a candidate is irrelevant to the order of handling its fuzz

reasoning components. That is, eith@sRs and Ry Rs can Aith consistent interpolated results throughout.
be taken for modification first. In this examplB; Rs is arbi-
trarily taken first. Following the requirement of Section@/
the modification starts from the interpolated riilg;. Assume It is well known that environmental change influences
that therelative placement factoof the consequence diR; disease burden [16], [48]. In particular, intensive stadiave

is modified toAE*, the correction ratepair (¢c—,c¢") for the been conducted in an effort to identify the logical relasibip

culprit fuzzy reasonlng componeft; Rg can be calculated as underlying such influences in order to build models that may

)

V. APPLICATION TODIARRHEAL DISEASE PREDICTION
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p(xs) B3 B1 Eiz Eg As a demonstrative example, the object value of “remote-
PP 0 2 WY 0 20 O A /—\ 7777777777777 ness” is herein reasonably assume to be causally determined
o by two factors [32]: the distance to the closest town and the

e e e w e e w e e w w055 connectivity level to modern transportation systems. @her
e F3 E*Fi‘ Fg Fip are two kinds of land ways considered, railway and road.
o 03 / 77777777777777777777777777777777777 The connectivity level to modern transportation systems is
° therefore dependent on the connectivity situation to trarewt

e e e e e w e e w56 railway station and road. The overall causal network model
1) Gn Aé’é G3 é} G Guz used in this example is shown in Fig. 15.

G3 Gi
oo » Aoy A, B. Knowledge representation and model construction
<=

PO TR e e All the factors considered in this example are represented
Fig. 13. The solution for the running example as variables and each relation between any two directly con-
nected factors is represented as a rule containing thearglev
variables. Note that different variables are defined orediff

predict the consequence of environmental change eventh. S@nt domains. To simplify knowledge representation, vagiab
models can be used to predict the diarrheal disease rate iflognains are mapped onto the real line and normalized. For
village. The prediction is of policy importance. For exampl instance, suppose that the maximum distance between any
when the World Bank makes decisions about whether Ydlage amongst all the villages considered and its nearest
invest or how best to proceed in large-scale infrastructuf@vn is 200 kilometers (KM) then the domain of variable
projects, their impact assessments have begun to payiattentdistance to the nearest town” is frodf'M to 200K M. If
to variables associated with environmental, social andttheathere is a village which is abot0K M away from its nearest
factors [61]. town, the vague term “aboutd0 K M” can be represented as
Models built this way are often very complicated as ther@ trapezoidal fuzzy set94K M, 98K M, 102K M, 106K M).
are many factors affecting the relationship which are néffter mapping this variable domain onto the real line and
linearly related, but typically interact with each other an normalization, the vague term “aboli0 X' M™ is then repre-
grid network. Consequently, problems in this domain ma§ented ag0.47,0.49,0.51, 0.53).
only be partially learned or comprehended, which implit th  The procedures of building the rule base and defining the
solutions to such problems are only derivable from a spar&&zy sets (the object values of the domain variables) are
knowledge base. In addition, the factors concerned ardlysu®mitted here to save space. There are eleven variables in the
difficult, if not impossible, to be precisely measured orreep Problem, denoted as;, i € {1,2,...,11}, which are listed
sented. Therefore, such problems provide a potentialtpisig in Table I. Note that only part of the constructed rule base is
testbed for fuzzy interpolation techniques. Four exisfurgy ~ directly employed in this example, including those rulesalih
interpolation approaches and the adaptive fuzzy intetjpoia flank an observation or a previously interpolated resuleskh
proposed above will be applied below to a specific problefd!€s are given below, with those object values used withen t

in this area. rules all represented as trapezoidal fuzzy sets and alsal lis
in Table I:
Ri: If z1is A; andxy is By, thenzs is C;

A. Problem specification Ry: If 1 is Ay andxy is By, thenzs is Csy;

. . . . . Rs: If 23 is C3 andxzy is D3, thenxs is Es;
The particular application problem considered here isdhas If 2 s Oy andzy is Dy, thenas is By

on the study of [32]. It addresses the issue of measuring hgy' If 2 is B thena is FL-
the construction of a new road or railway in a previously,”: i > i EE” then 0 i F5
roadless area may affect the epidemiology of infectious dis’’ It 5 is FG’ then 6 is Gb"
eases in northern coastal Ecuador. A causal diagram has bﬁéjnlf iﬁ ic F7, thenf ic G7f
developed which captures the insight relationship betweefi. . zﬁ i ES’ thenx7 isHSl'
the key factors driven by road construction, as illustrateg®". i > E9 th 8 ?LI _
in Fig. 14. This causal diagram shows that the diarrheal'”: i 5 1S Hm’ thenms IS 1_10_’
disease rate of a village is affected by its remoteness in t%}lj i T8 1S H“’ thenxg IS IH:

ways: (a) Localized migration facilitated by roads can lead ~ %' i T8 1S I 12,th eNnzy 1S JIQ’,

a community whose residents have few social connections.®: i 9 :2 113’ thg:xw :2 J13f

which tends to lead to failure in creating adequate Wat(ﬁ“j i o G}‘l’ dfglo. J14'th s K.

and sanitation infrastructure because the residents dikeilyn .157 || ©7 1S tr15 @N0T10 1S a5, TNEN, 1S K15,

to know one another well and share social norms [3], [35],"¢" If 271 Ghg and o IS Jig, thenayy is K.

[40]. (b) Road proximity can increase the contact between o ) )

the residents within a village and those outside of the gilla C- Application of fuzzy interpolation

thereby increasing the rate of introduction of pathogerd an Suppose that the diarrheal disease rate of a village needs
raising the diarrheal disease rate. to be estimated based on several pieces of information



16

Demographic Social

A ——= { Infrastructure
?change v Connectedness \ \
4 Diarrheal diseas

rate
Contact outside ’ Reintroduction of

of village pathogenic strains

+ Remotenes

Fig. 14. Causal diagram between remoteness and diarrhealseigate

Distance to the Demographic Social
—_—

closest town / change Connectedness Infrastructure \
Railway station Diarrheal diseas

P \ Remoteness
proximity rate
Connectivity to . . .
transportation Contact outside Reintroduction of
/ systems of village pathogenic strains
Road proximity

Fig. 15. The causal network model used

TABLE |
FUZZY VARIABLES AND THEIR NORMALIZED OBJECT VALUES

Var | Meaning Object value
xz1 | Railway station proximity A1 ={0.02,0.04,0.06,0.08}; A, = {0.28,0.30,0.32,0.34}
z2 | Road proximity B = {0.18,0.20,0.22,0.24}; Bs = {0.39,0.41,0.43,0.45}

Cy = {0.46,0.48,0.50,0.52}; C2 = {0.62,0.64, 0.66,0.68}

z3 | Connectivity to transportation systems Cs = {0.52,0.54,0.56, 0.58}: Cy — {0.85.0.87.0.89.0.91}

T4 Distance to the closest town D3 = {0.52,0.54,0.56,0.58}; D4 = {0.82,0.84,0.86,0.88}
Es = {0.41,0.43,0.45,0.47}; E4 = {0.72,0.74,0.76,0.78}
s Remoteness Es = {0.27,0.29,0.31,0.33}; Es = {0.58,0.60,0.62,0.64}

Eo ={0.39,0.41,0.43,0.45}; F1o = {0.62,0.64,0.66,0.68}

| . . Fs = {0.62,0.64,0.66,0.68}; Fs = {0.30,0.32,0.34,0.36}
we | Contact outside of the community Fr = {0.38,0.40,0.42,0.44}; Fs = {0.70,0.72,0.74,0.76}

Reintroduction of pathogenic strains|  C7 = {0-46,0.48,0.50,0.52}; Gs = {0.65,0.67,0.69,0.71}
r pathog Gis = {0.30,0.32,0.34,0.36}; G16 = {0.60,0.62,0.64,0.66}

. Ho = {0.60,0.62,0.64,0.66}; H1o = {0.30,0.32,0.34,0.36}
vs | Demographic changes Hyy = {0.46,0.48,0.50,0.52}; Hi = {0.68,0.70,0.72,0.74}

L1 = {0.52,0.54,0.56,0.58}; I12 = {0.20,0.22,0.24,0.26}
Lis = {0.28,0.30,0.32,0.34}; I, = {0.55,0.57,0.59,0.61}

Jiz = {0.26,0.28,0.30,0.32}; J14 = {0.61,0.63,0.65,0.67}
Jis = {0.36,0.38,0.40,0.42}; Jy6 = {0.58,0.60,0.62, 0.64}

r11 | Infectious disease rates K15 ={0.18,0.20,0.22,0.24}; K15 = {0.68,0.70,0.72,0.74}

To Social connectedness

x10 | Hygiene and sanitation infrastructure

which have been obtained by different agencies. Thesderpolation has a natural appeal. In particular, fourzfuz
pieces of information are expressed as observations, whicie interpolation methods are applied to the problem for
are: z; = A* = (0.16,0.18,0.20,0.22), zo = B* = comparison purposes, which are KH [44], KH stabilized [57],
(0.34,0.36,0.38,0.40), z4 = D* = (0.65,0.67,0.69,0.71), HS [37] and MACI [56]. The interpolated object values for
and zg = H* = (0.54,0.56,0.58,0.60). Note that all the variableszy, 219 andz,; by these approaches are shown in
left closest and right closest rules to each observatiore havigs. 16 - 19 (they are generated using the FRI Toolbox [41]
been explicitly presented above. Given the sparse rule, baaed the in-house HS program).

none of these observations overlap with any rule antecedent

This means that the problem cannot be solved by ordinarylf set-theory-based similarity measure given by Eq. 23 is

fuzzy inference techniques. In such a situation, fuzzy rulgilized to calculate the contradictory degree and3gt= 0.5,
it is obvious thatgy-inconsistencies will result from all these
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Fig. 16. Interpolated result by the HS method Fig. 17. Interpolated result by the KH method
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Fig. 18. Interpolated result by the KH stabilized method Fig. 19.

interpolation methods. uéxa
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D. Application of adaptive fuzzy interpolation

In order to arrive at an consistent solution, the propor o010z 0 o0d 0
adaptive fuzzy interpolation approach is then applied. 7*
overhead is the requirement of defining all the fuzzy reawpr
components involved in the problem. Fortunately, this islen:
straightforward by mapping the causal network of Fig. 190 . ‘ ‘ ‘ ‘
a component-based diagram. For the current problem,tlnerlpw0 oo e
8 fuzzy reasoning components which are linked as illustre
in Fig. 20.

From the fuzzy reasoning components upon which
detected contradictions depend, which are recorded in | ———— o,

ATMS network, four minimal candidates are generated by the

GDE: C; = [Fl], Cy = [F2], Cs = [F5] andCy = [FG]_ One Fig. 21. Interpolated result by the adaptive approach (basethe HS
of the solutions resulted from the modification of candidaf®Pr2ch

Cy is shown in Fig. 21.

From this figure, it can be seen that the interpolated regult b
the proposed adaptive approach is consistent, which demon©Of course, in real applications, such a result needs to be
strates the potential of the present work. Note that althoughapped back onto its original domain in order to retrieve the
the adaptive approach is built on the basis of the scale am@dl meaning. In particular for this example, the interpada
move transformation-based fuzzy interpolation methochia t result by the adaptive approach can be interpreted as about
paper, as argued earlier, it may also be utilized to suppbero 0.55 in the real domaifo, 1]. Suppose that the original domain
intermediate rule-based interpolation approaches. of variablez; is from 0% to 10%, then the diarrheal disease

] E S i P B o B |

] e o T i B e e
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Fig. 20. Component-based diagram of the model

Component i
R3R4

Xgo——=|

X3

X1+—~| Component I
X2 R1R>

rate is predicated as abott% for the studied village.
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approach to transform potentially inconsistent rules bkinma

their consequents more imprecise. Such a technique partic-

VI. CONCLUSIONS

Inconsistency may result after a series of fuzzy interpo
tions. This paper has made use of popular symbolic Al too
ATMS and GDE to support fuzzy interpolation by means of
efficiently finding and isolating possible faulty interptd

dependencies between interpolated rules and the neigigboﬁ‘
rules employed for interpolation, while GDE generates mint
mal candidates, with each of which explaining the entire set
of contradictions in a given situation. The paper has furth&>
proposed a method to modify the identified culprit interpadia
rules in an effort to restore reasoning consistency. Théouet
works by first extracting the entire set of interpolated sr;uler
which depend on the same pair of neighboring rules in th
generated candidate list. Then, it imposes a group of eqlﬁ -
tions and inequations which not only constrain the modifie
propositions and ensure their propagation to be consjdtant
also guarantee the original similarity-based reasonirfgZmy
interpolation to be followed. Finally, the approach cotseihe
culprit interpolated rules by solving the set of simultango
equations and inequations.

The working of the adaptive approach is illustrated with
practically significant example (running through Sectidkis
and V) to explain the relevant theoretical concepts. Farth
has been applied to a realistic problem that predicts the dia
rheal disease rates in roadless villages. This probleneptes
itself as a suitable testbed for evaluating fuzzy interpoha

ularly aims at the type of inconsistency which has resulted
I‘fj‘r_om over-tight domain partitions. This work differs frornther
r;sonsistency restoring techniques in that the inconsigtésc
aused by imprecise modeling, which assumes linear ralatio
ships between premises and conclusions. However, it may be
aggreat interest to compare this research with that of inftee
etworks, especially when rules in a clique are taken into
ccount. This remains as active research.

Whilst the proposed work is promising, it relies upon the
sumption that all rules for interpolation which are pded

In the initial rule base are totally true and fixed. This may
not be always the case, despite the fact that it is a common
assumption made in the literature of fuzzy interpolation.
é]us, further development on the work that allows such rules
become themselves diagnosable and modifiable may be
sirable. Also, the work reported herein is applicable to
cases where interpolation involves two multi-antecedalesr
only. How this may be extended to interpolation with mukipl
rules and to extrapolation remains an interesting area for
further research. Note that initial investigation into lsussues
has recently been reported [67]. Finally, it is worthwhite t
gevelop a unified inconsistency diagnosis and fault camect
mechanism on a fuzzy reasoning platform that implements
both standard fuzzy inference and fuzzy interpolation.
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vague rule base that is available for modeling the problem.
Four typical existing fuzzy interpolation approaches ane t
proposed adaptive approach were applied to this problem)
for which the proposed approach results in an improved
consistency. o

This application has illustrated the potential of the adlapt
approach in producing more consistent interpolated resdt
compared to the original work. An interesting piece of ferth
work is to identify and apply a set of data which would
support the comparison between values interpolated ukiag t [4]
approach and the underlying ground truth of such data. This
will help to better establish the correctness and stalulitthe
present research.

Note that consistency-restoring problem has been adwess[g]
in the literature. For instance, the work of [24] has propose

(3]
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