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Abstract

Adaptive fuzzy observers have been introduced in the recent past, which are capable of esti-
mating uncertainties along with the states of a nonlinear system represented by an uncertain
Takagi-Sugeno (TS) model. Application of such an observer to obtain estimates of the un-
certainties in the state matrices and subsequently use them in the control of TS fuzzy models
is the subject matter of this thesis.

To demonstrate the adaptive observer and the controller design we use a 2-DOF robot arm
model. The parameters of the robot arm are estimated for a laboratory-scale setup. The
nonlinear model of the robot arm, consisting of six nonlinearities is simplified to contain only
two nonlinearities. Then a four-rule TS fuzzy model is constructed using sector nonlinearity
approach. The simplified nonlinear model and hence the fuzzy model almost exactly repre-
sent the complete nonlinear model. The mismatch in the plant and the nonlinear model is
attributed to unmodelled dynamics in the state matrices. Assuming constant uncertainties
in specific locations of the state matrices, an adaptive observer is used to estimate them
and the simulation results are presented. The possibility to use the information about the
structure of the uncertainties in the TS fuzzy model in designing the uncertainty estimation
experiment is also presented. The uncertainty estimates provided by the adaptive observer
are used to update the fuzzy model of the nonlinear system. The new model is used in the
design of a robust state feedback stabilizing controller. Since the estimates obtained from the
adaptive observer are used in controller design, the uncertainty distribution structure used
in the design of both adaptive observer and the robust controller need to be same. Hence,
a robust controller design is developed that uses the same uncertainty distribution structure
as the adaptive observer. From the experimental results, it is concluded that stability can
be guaranteed with a higher decay rate when using the updated model in robust controller
design.

Master of Science Thesis Sangeetha Bindiganavile Nagesh



ii

Sangeetha Bindiganavile Nagesh Master of Science Thesis



Table of Contents

Acknowledgements v

1 Introduction 1

2 Fuzzy models for nonlinear systems 5

2-1 Fuzzy systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2-2 Fuzzy models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2-3 TS fuzzy approach to modelling nonlinear systems . . . . . . . . . . . . . . . . . 10

2-4 Lyapunov stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2-4-1 Lyapunov’s direct method . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2-4-2 Lyapunov stability analysis for LTI systems . . . . . . . . . . . . . . . . . 13

2-4-3 Stability analysis of TS systems . . . . . . . . . . . . . . . . . . . . . . . 14

2-5 Fuzzy regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2-6 Fuzzy observers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2-7 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Fuzzy modelling of 2-DOF robot arm 21

3-1 Nonlinear model of a 2-DOF robot arm . . . . . . . . . . . . . . . . . . . . . . 21

3-2 Modelling of the robot arm joints . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3-3 Finding the parameters of the nonlinear 2-DOF robot arm . . . . . . . . . . . . 23

3-4 Simplification of the nonlinear model . . . . . . . . . . . . . . . . . . . . . . . . 25

3-5 TS fuzzy model for the simplified 2-DOF robot arm . . . . . . . . . . . . . . . . 28

4 Robust fuzzy state feedback controller design 35

4-1 Fuzzy state feedback controller . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4-2 Uncertain TS fuzzy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4-3 Robust stability conditions with norm-bounded uncertainty . . . . . . . . . . . . 38

Master of Science Thesis Sangeetha Bindiganavile Nagesh



iv Table of Contents

4-4 Performance specifications for the controller . . . . . . . . . . . . . . . . . . . . 43

4-4-1 Decay rate specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4-4-2 Constraint on control input . . . . . . . . . . . . . . . . . . . . . . . . . 46

4-5 Controller design for 2-DOF robot arm . . . . . . . . . . . . . . . . . . . . . . . 46

4-6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Adaptive observer 53

5-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5-2 Adaptive observer design for the simplified 2-DOF robot arm . . . . . . . . . . . 56

5-3 Uncertainty structure information . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5-4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Adaptive observer and robust controller 69

6-1 Uncertainty estimates in controller design . . . . . . . . . . . . . . . . . . . . . 69

6-2 Parallel operation of adaptive observer and robust controller . . . . . . . . . . . 71

6-3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Conclusions and proposals for future work 77

7-1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7-2 Future research proposals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Sector nonlinearity approach 83

B Application examples 87

B-1 2-DOF helicopter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

B-2 Delft robot arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B-3 2-DOF robot arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C Robust controller design with relaxed stability conditions 95

D Computational complexity 101

D-1 Number of LMIs in robust controller design . . . . . . . . . . . . . . . . . . . . 101

D-2 Number of LMIs in adaptive observer design . . . . . . . . . . . . . . . . . . . . 102

E Glossary 105

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

References 107

Sangeetha Bindiganavile Nagesh Master of Science Thesis



Acknowledgements

I sincerely thank my supervisor prof. dr. ir. Robert Babuška for his valuable guidance
during the course of my thesis work. I thank dr. ir. Zsófia Lendek for her ever enthusiastic
supervision and motivating guidance. My gratitude also goes to ir. Amol Khalate who guided
me with appropriate inputs during the course of my thesis. I express my appreciation for the
time, patience and understanding each one of them have shown towards me. Their timely
suggestions have been of great help in leading me to the completion of my thesis.

I thank my mother and sister for their unconditional support and for being my source of
strength. I thank my friends for their care and understanding.

Delft, University of Technology Sangeetha Bindiganavile Nagesh
November 10, 2011

Master of Science Thesis Sangeetha Bindiganavile Nagesh



vi Acknowledgements

Sangeetha Bindiganavile Nagesh Master of Science Thesis



Chapter 1

Introduction

Systems generally are nonlinear in nature. Traditional control strategies developed involve
control methods that approximate them as linear systems. However, the associated disad-
vantage is that the linearized systems fail to completely represent the real plants that are
highly nonlinear. Linear control theory is aimed at the analysis and control of nonlinear
plants through linearization about an equilibrium point. This results in controllers being
applicable only around the equilibrium point [1]. As the applications nowadays concern the
area of precise control and control over wide operating ranges, control of nonlinear systems
has been a subject of research.

Methods for analysis and design of general nonlinear systems have been described in [2]. A
knowledge based way of representing and controlling nonlinear systems is proposed in [3].
Specifically, Takagi-Sugeno (TS) model-based control design strategies have been a popular
field of research due to their ability to closely approximate or exactly represent the nonlinear
systems [4]. Since then, this promising area has been widely researched.

In this thesis, nonlinear systems represented in the form of TS fuzzy models are considered.
In particular, uncertain TS fuzzy models are considered to accommodate uncertainty in the
system models. The TS fuzzy model is created using the sector nonlinearity approach [5]. In
this approach, the nonlinearities in the system are termed as scheduling variables and fuzzy
membership functions are associated with them. The TS fuzzy representation of the nonlinear
system contains a number of rules with each rule associated with a linear state space model.
The value of the scheduling variables decide to what extent these linear models are valid. The
fuzzy combination of the rules exactly represents the nonlinear system. An introduction to
sector nonlinearity and its application to three examples are presented in Appendices A and
B.

Control of nonlinear systems represented by TS fuzzy models has been a topic of research
since the inception of the idea in 1985 [3]. One of the widely researched controller structure
is Parallel Distributed Compensator (PDC) [6, 7] in which each controller rule is designed
from the corresponding rule of the TS model. The controller rules have linear state feedback
control laws associated with them. Considering uncertain TS fuzzy models as the target
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2 Introduction

area of application, design of state feedback controllers that accommodate for a particular
representation of norm bounded uncertainty blocks in the state and the input matrices of the
linear state space models are available [5, 8]. This design area can be categorized as TS fuzzy
robust state feedback controller design for norm bounded uncertainties. Performance indices
like the rate of decay of the states and input constraints can be added to the controller design
[5].

In practice, all the states of a system may not be measurable due to factors such as cost and
sensor availability. In such a situation, observers are used in the design to provide estimates
of unmeasured states. In the recent past, observer design that can estimate unmodelled dy-
namics along with the states of a system represented by a TS fuzzy model has been presented
[1]. These observers, referred to in the literature as adaptive observers, are shown to be
asymptotically stable. They are shown to be useful to estimate constant or slowly varying
uncertainties in the local linear models of the TS system.

In this thesis, we use the adaptive observer to estimate a constant uncertainty in the state
matrices of uncertain TS fuzzy models. The influence of thus obtained uncertainty estimates
on the controller design is analyzed. This analysis necessitates the uncertainty considered in
the designs of both robust state feedback controller and the adaptive observer to be repre-
sented by same uncertainty distribution structure. Hence a robust state feedback controller
design is developed for the uncertainty distribution structure similar to that used in adap-
tive observer in the literature. The influence of a controller stabilizing the system, while the
adaptive observer is estimating the uncertainties is also investigated. Further, the possibility
to design uncertainty estimation experiments based on the structure of the TS fuzzy models
is investigated. A 2-DOF robot arm is chosen as an application to illustrate the robust con-
troller design, the adaptive observer and to analyze the effects of using an updated model in
the robust controller design.

In the following, the layout of chapters in this thesis is outlined. Chapter 2 presents the
general concepts of fuzzy systems and describes in detail TS fuzzy systems. The chapter also
presents stability analysis of TS fuzzy systems, and a brief introduction to TS fuzzy regulators
and TS fuzzy observers. The final part of this chapter contains the mathematical details of
the research problem addressed in this thesis. Chapter 3 describes fuzzy modelling of the
2-DOF robot arm. The TS fuzzy model of the 2-DOF robot arm is used in the rest of the
chapters.

Chapter 4 presents the robust state feedback controller design for the uncertainty distribu-
tion structure similar to that used in adaptive observers [1]. In the first part of the chapter,
stabilization criteria for systems controlled by state feedback controllers is presented. This
is followed by the mathematical formulations of the robust state feedback controller. Perfor-
mance criteria namely the decay rate and control input constraint are considered as part of
the controller design. This is followed by simulation results for the simplified 2-DOF robot
arm model assuming a constant uncertainty in the state matrices.

Chapter 5 presents the design of adaptive observer for a constant uncertainty in the state
matrices of the 2-DOF robot arm model. An introduction to the adaptive observer design
concept is presented in the first part of the chapter followed by design of the adaptive observer
for the robot arm and simulation results. The effect of increasing the uncertainty norm bound
for which the adaptive observer is designed, is illustrated through experimental results. A
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possibility to exploit the structure of a TS fuzzy model in designing the estimation experiments
is provided for the specific example of simplified 2-DOF robot arm.

Chapter 6 presents the use of the uncertainty estimates obtained from the adaptive observer
in redesigning the robust state feedback controller with a lower uncertainty norm bound and
a higher decay rate for the 2-DOF robot arm. The possibility of using the adaptive observer
and robust state feedback controller in parallel operation is discussed, assuming a constant
uncertainty in the state matrices of the local linear models of a TS fuzzy system.

Chapter 7 presents the conclusions derived from the work done, followed by future work
proposals.
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Chapter 2

Fuzzy models for nonlinear systems

In this chapter, a brief overview of fuzzy systems is presented and Takagi-Sugeno (TS) fuzzy
systems are discussed in particular. Stability analysis of TS fuzzy models based on Lyapunov
stability theory is presented subsequently. A brief introduction to TS regulators and observers
is provided. Finally, in the last section, the mathematical details of the research problem
addressed in this thesis is presented.

2-1 Fuzzy systems

Systems that make use of if-then type of rules to characterize the system behaviour are called
fuzzy systems. The if-then rules are usually formulated based on expert practical knowledge
about the system. The following introduces the different attributes of fuzzy systems and
illustrate them on examples.

Fuzzy logic is an analytical way of representing the human way of thought process and im-
precise, inexact phenomena. For instance, this approach makes it possible to mathematically
represent a statement like:

"John is tall"

It is to be noted in the statement above that the word tall is an inexact measure of height
and is relative. Fuzzy logic enables the representation of this inexact measure as a degree of
tallness. Statements like John is tall are called fuzzy propositions. Unlike in classical logic
where an element either belongs completely (100%) to a particular set or not (0%), in fuzzy
sets an element can belong to a particular set with a certain degree. This certain degree of
belonging to a particular set is indicated by the membership value of the element in the set.
Since the degree of membership can range between 0% and 100%, the membership value of
an element in a set is always in the closed interval [0.0, 1.0].

A relation that provides for every element of the set a particular membership value is called
a membership function. A set where every element associates itself with the set with a
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6 Fuzzy models for nonlinear systems

membership value ranging between 0.0 and 1.0 is called a fuzzy set. Let us consider for
example, the following statement:

"The Speed is low"

The membership function of the fuzzy variable Speed can be represented as in figure 2-1. In

low

0.5

1

0 100 Speed (km/h)

Figure 2-1: Membership function for the fuzzy variable Speed.

the above statement,

• Speed is a fuzzy variable which can take the value low (a fuzzy set).

• A crisp value of the real physical quantity speed, like 100 km/h, can have a degree of
membership 0.5 in the fuzzy set low, that is, µlow(100km/h) = 0.5.

Hence if X is the universe of discourse, A is a fuzzy set with every member of A associated
with a membership value and x a crisp value in X, we can represent the relation as:

µA(x) : X → [0, 1] (2-1)

Most commonly used membership functions are triangular and trapezoidal [9].

2-2 Fuzzy models

Traditional methods for process/plant modelling involve formulation of mathematical equa-
tions describing the system dynamics. However, a mathematical formulation is not suitable in
some situations for instance, complex chemical processes which involve interaction of several
physical laws. In such a scenario, availability of human experience and knowledge about a
process/plant in the form of if-then (more formally, antecedent-consequent) rules to formulate
process/plant models is considered to be a promising direction. The models that evolve on
this paradigm came to be known as fuzzy models.

There are two major classes of fuzzy models called Mamdani fuzzy models and TS fuzzy
models.
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2-2 Fuzzy models 7

In Mamdani models, the antecedents and the consequents are both fuzzy propositions. For
instance, a Mamdani fuzzy model of a system with r rules is as shown below:

Ri : If x is Ai then y is Bi, i = 1, 2, . . . , r (2-2)

where

• "x is Ai" corresponds to the antecedent proposition of the rule.

• "y is Bi" corresponds to the consequent proposition of the rule.

• x is the input fuzzy/linguistic variable.

• Ai is the antecedent fuzzy/linguistic term which is associated with a membership func-
tion.

• y is the output fuzzy/linguistic variable.

• Bi is the consequent fuzzy/linguistic term which is associated with a membership func-
tion.

• r is the number of rules.

In TS models, the antecedents are fuzzy sets and the consequents are crisp functions of the
antecedent variables. A TS model of a system with r rules is for instance:

Ri : If x is Ai then yi = fi(x), i = 1, 2, . . . , r (2-3)

where fi(x) is a function of the antecedent variables and all the other variables in (2-3) are
as described above.

Fuzzy models can be used to represent processes or to develop controllers. For more infor-
mation on the different kinds of fuzzy models and further background material, the reader is
referred to [10] and the references therein.

A typical fuzzy system can be represented as shown in Figure 2-2.

Crisp 

Input

Fuzzy

Input

Fuzzy

Output
Crisp

Output
Fuzzifier

Fuzzy

System
Defuzzifier

Figure 2-2: A typical fuzzy system.

The components of Figure 2-2 and their functions is described below.

• Fuzzifier/Fuzzification: The process of mapping a crisp input to a membership value
and hence to a fuzzy value is called fuzzification.
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8 Fuzzy models for nonlinear systems

• Inference: The result of fuzzification is a fuzzy value which is then passed through the
fuzzy system itself or the fuzzy inference engine. The fuzzy inference engine consists of
a set of rules. For instance, consider the rule

"If speed is low, then fuel injected is high"

The above statement indicates that when speed is low, an action is to be performed to
inject more fuel into the engine thus increasing the speed.

• Defuzzifier/Defuzzification: The fuzzy inference engine results in a fuzzy output. In
the example above, it says the result is high fuel injection. The output value does not
indicate what the exact quantity of fuel to be injected is. The task of providing an
exact value is accomplished by the defuzzifier which performs a fuzzy value to crisp
value conversion. This gives the exact amount of fuel to be injected. The process is
called defuzzification.

In many fuzzy control systems there are several inputs that are fuzzified and passed onto the
inference engine. The inference engine usually consists of more than one rule to decide on the
fuzzy output value. The defuzzification process involves a one-to-one conversion between a
fuzzy value to a crisp value. There are certain concepts central to the idea of inference engine
which are briefly presented below.

Since a fuzzy system can have many inputs with each input fuzzified by a fuzzifier, the
inference engine needs to combine all the fuzzified inputs as per the rule base to produce a
fuzzified output. This process is called inference and makes use of fuzzy logical operators
to combine the fuzzified inputs. The fuzzy rules that we described earlier are the decision
makers in the inference process. An example of a fuzzy rule is shown below: Consider the
rule,

If x is A AND y is B, then z is C (2-4)

where

• x, y and z are fuzzy variables.

• A, B and C are fuzzy sets.

The membership values of the variables x and y in the fuzzy sets A and B can be combined
to obtain a degree of relevance of the entire rule. To perform this kind of combination, three
basic operations on fuzzy sets are defined: complement of a fuzzy set, intersection of fuzzy
sets and union of fuzzy sets.

Definition 1. [11] Complement of a fuzzy set: If A is a fuzzy set defined in the universe of
discourse X, the complement of the fuzzy set A is defined as:

A′ = {x ∈ X | µA′(x) = 1 − µA(x)} (2-5)

Definition 2. [11] Intersection of fuzzy sets: If A and B are two fuzzy sets defined in X, the
intersection of the two sets A and B is defined as:

C = A ∩ B (2-6)

with
µC(x) = min(µA(x), µB(x)) (2-7)
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2-2 Fuzzy models 9

Definition 3. [11] Union of fuzzy sets: If A and B are two fuzzy sets defined in X, the union
of the sets A and B is defined as:

C = A ∪ B (2-8)

with
µC(x) = max(µA(x), µB(x)) (2-9)

Other definitions of complement also exist (e.g: λ complement [12]). Similarly, other inter-
section and union operators exist [11]. A commonly used intersection operator is the product
operator since it results in smooth operations. The product operator is as defined below:

µC(x) = µA(x) µB(x) (2-10)

An algebraic sum based union operator is for instance:

µC(x) = µA(x) + µB(x) − µA(x) µB(x) (2-11)

The inference mechanism used may differ based on the kind of fuzzy model used. Hence,
Mamdani and TS inference mechanisms are possible. For more information on these mecha-
nisms, the interested reader is referred to [13] and the MATLAB Fuzzy Logic Toolbox.

The number of rules in a rule base is generally more than one. The effects of all the rules
have to be combined to get an output which is representative of the entire rule base. This
is called aggregation. The last component of the system is the defuzzifier which converts the
fuzzy output value after aggregation to a crisp value that can be used to control a plant.

The concept of aggregation/defuzzification is illustrated on an example of TS fuzzy model in
which the output membership function is linear in the input variable. Consider the rule base,

R1: If x is A1, then y = 5x
R2: If x is A2, then y = 3x

The membership functions for the sets A1 and A2 are taken as in the Figure 2-3. Given the

A1 A2

0.5

1

0
10 x

Figure 2-3: Membership value of variable x in the sets A1 and A2.

input x = 10, the membership values of x = 10 in the sets A1 and A2 can be found from
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10 Fuzzy models for nonlinear systems

the membership functions Figure 2-3 as µA1
(x) = 0.5 and µA2

(x) = 0.5. The output of the
system is

y =
µA1

(x) yR1
+ µA2

(x) yR2

µA1
(x) + µA2

(x)
(2-12)

where yR1
and yR2

are the outputs of rule 1 and rule 2, respectively.

In case of Mamdani models, the aggregration and defuzzification processes are more distinct
from one another than in TS models. The interested reader is referred to [11].

Further material in this report will focus only on the TS fuzzy model as this thesis involves
investigation of properties of nonlinear systems represented using TS fuzzy models. Informa-
tion pertaining to the use of Mamdani fuzzy models for nonlinear systems is not discussed as
it is out of the scope of this master thesis.

TS models have been proven to be universal approximators [4]. Thus TS models can be used
to represent any nonlinear system to a desired degree of accuracy [3, 14]. The next section
will briefly describe the TS fuzzy approach of modelling nonlinear systems.

2-3 TS fuzzy approach to modelling nonlinear systems

Dynamic TS models represent a nonlinear plant by a combination of several locally valid
linear models. Each linear model is valid in the regions of state space as indicated by the
antecedents of the fuzzy rule. A fuzzy combination of several such rules provides a close
approximation or an exact representation of the nonlinear plant.

The TS models used to represent the nonlinear system can be either continuous time or
discrete time. In this thesis, continuous time TS systems are considered.

A TS model for a nonlinear system is generally of the form:

Ri : If z1 is N1
i and z2 is N2

i , . . . and zp is Np
i , then

ẋ = Aix + Biu

y = Cix (2-13)

for i = 1, 2, . . . , r

• The variables z1, z2,. . . , zp are the antecedent or the scheduling variables that are
dependent on states, inputs or other external factors.

• N1
i , N2

i . . . and Np
i are the fuzzy sets of the ith rule.

• x represents the state vector and u represents the input vector.

• Ai and Bi represent the state and the input matrix of the ith model or subsystem.
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2-4 Lyapunov stability analysis 11

Let wij(zj) represent the membership value of zj in fuzzy set N j
i in rule i. Then the degree

of relevance of the entire antecedent in equation (2-13) can be represented as wi(z), where
z=[z1, z2,. . .,zp]T is the scheduling vector comprising all the scheduling variables.

If there are r rules to represent the system, then we can represent the entire nonlinear system
by the following fuzzy model :

ẋ =

r∑

i=1

wi(z)(Aix + Biu)

r∑

i=1

wi(z)

(2-14)

Let

hi(z) =
wi(z)

r∑

i=1

wi(z)

(2-15)

be the normalized value of the degree of relevance of the ith rule.

Hence, the system in (2-13) can be represented as

ẋ =
r∑

i=1

hi(z)(Aix + Biu)

y =
r∑

i=1

hi(z)(Cix) (2-16)

TS fuzzy models with a bias in the consequent parts are called affine TS fuzzy models and
the biases are called affine terms. These systems are represented as

Ri : If z1 is N1
i and z2 is N2

i , . . . and zp is Np
i , then

ẋ = Aix + Biu + ai

y = Cix + ci (2-17)

for i = 1, 2, . . . , r, where ai and ci are the biases in the local models and the remaining terms
are as defined for (2-13). Representation similar to (2-14) of the nonlinear systems with affine
terms can be formulated, but are not detailed here.

In the following section, stability analysis concepts are introduced. Lyapunov stability analysis
for linear systems and its extension for TS fuzzy models is presented.

2-4 Lyapunov stability analysis

Stability of a control system is of crucial importance since any functionality that is desired
is performed well only if the system is stable. The Lyapunov method is the most generally
used method to perform stability analysis of nonlinear systems. Some important definitions
are presented before continuing to the Lyapunov stability method.
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12 Fuzzy models for nonlinear systems

Consider a system in state space form

ẋ = f(x, t) (2-18)

where

• x ∈ R
nx is the n-dimensional state vector.

• f(x, t) ∈ R
nx is a n-dimensional vector consisting of functions of elements of the state

vector x and time t.

If the initial conditions are x = x0 at t = t0, then the solution of the system is φ(t, x0, t0).

Definition 4. [15] Equilibrium state: is a state of the system where the variation in the states
become 0 (that is, the derivatives of the states are zero).

f(xe, t) = 0 ∀ t (2-19)

A nonlinear system can have more than one equilibrium state. Any equilibrium state can be
analyzed by considering it to be situated at the origin of the state space. This is because an
equilibrium state can be shifted to the origin by coordinate translation.

Definition 5. [15] Lyapunov stability: An equilibrium state xe is stable in the sense of
Lyapunov, if there exists δ and ǫ such that starting from an initial state of x0 within a radius
δ from the equilibrium point, the state of the system remains within a radius ǫ from the
equilibrium as t → ∞.

If || x0 − xe ||≤ δ, then || φ(t, x0, t0) − xe ||≤ ǫ ∀t ≥ t0 (2-20)

δ is usually considered as a fraction of ǫ and δ may be dependent on t0. If δ is not dependent
on t0, then the equilibrium is uniformly stable.

Definition 6. [15] Asymptotic stability: An equilibrium state xe is asymptotically stable if
starting from an initial state x0 within a radius δ from the equilibrium, the state of the system
converges to the equilibrium.

Definition 7. [15] Asymptotic stability in the large: If asymptotic stability holds for all states
from any initial condition, then the equilibrium is considered to be asymptotically stable in
the large.

Definition 8. [2] Exponential stability and decay rate: The equilibrium point xe = 0 is
exponentially stable if there exist positive constants δ, k and α such that

‖x(t)‖ ≤ k‖x0‖e−α(t−t0), ∀‖x0‖ < δ and ∀t ≥ t0 (2-21)

and globally exponentially stable if the above condition is satisfied for any initial state x0.
The largest constant α that can be utilized in (2-21) is called the decay rate.
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2-4 Lyapunov stability analysis 13

2-4-1 Lyapunov’s direct method

This method of determining stability is based on the idea that for a system with an asymp-
totically stable equilibrium state, the energy of the system displaced from its equilibrium
decreases with time and assumes a minimum value at equilibrium state. It makes use of a
Lyapunov function similar to energy functions to determine stability. The Lyapunov function
is denoted by V (x) where x is the state vector of the system. Lyapunov’s stability theorem
is as follows.

Theorem 1. Consider a system described by,

ẋ = f(x, t) where ẋ = 0 at x = 0. (2-22)

If there exists a scalar function V (x, t) having continuous partial derivatives and satisfying
the conditions:

• V (x, t) is positive definite and

• V̇ (x, t) is negative definite

then the equilibrium state at origin is uniformly asymptotically stable in the large.

The condition that V̇ (x, t) is negative definite can be relaxed to V̇ (x, t) is negative semidefi-
nite, in which case the condition that V̇ (x, t) does not vanish along any trajectory except at
origin is imposed.

The following subsection provides the mathematical details pertaining to Lyapunov stability
analysis of linear time invariant (LTI) system which will be used later.

2-4-2 Lyapunov stability analysis for LTI systems

Consider an autonomous LTI system represented as

ẋ = Ax (2-23)

where A ∈ R
nx×nx is the state matrix whose size corresponds to the dimensions of the state

vector. The system (2-23) is obtained by linearizing the nonlinear system (2-22). A possible
Lyapunov function for the system (2-23) is:

V (x) = xT Px (2-24)

and hence,

V̇ (x) = ẋT Px + xT P ẋ

= (Ax)T Px + xT P (Ax)

= xT (AT P + PA)x (2-25)

For asymptotic stability, since we require V̇ (x) to be negative definite, we can consider

V̇ (x) = −xT Qx < 0 (2-26)
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14 Fuzzy models for nonlinear systems

with Q = −(AT P + PA) to be positive definite. The Lyapunov function (2-24) is called
quadratic Lyapunov function and the system (2-23) is called quadratically stable if the con-
dition (2-26) is true.

The next section presents the Lyapunov stability analysis for continuous time TS fuzzy sys-
tems.

2-4-3 Stability analysis of TS systems

For linear systems of the form,

ẋ = Ax (2-27)

stability is confirmed by the existence of a positive definite matrix P satisfying the inequality

AT P + PA < 0 (2-28)

which ensures that there exists a Lyapunov function V (x) resulting in V̇ (x) < 0 (See Section
2-4-2 for details).

Consider the system represented by equation (2-13). Every local model of the TS system is
individually stable if a separate positive definite matrix P exists for every Ai satisfying the
this equation AT

i P + PAi < 0. However, it has been proven in [16] that a nonlinear system
represented by a fuzzy system need not be globally stable even if all the component linear
systems (Ai matrices) are stable.

Based on Lyapunov stability theory, the conditions for global asymptotic stability of a TS
fuzzy model are presented in [17]. The conditions are as per the following theorem.

Theorem 2. [17]If there exists a common symmetric positive definite matrix P ∈ R
n×n

satisfying

AT
i P + PAi < 0, i = 1, 2, . . . r (2-29)

then the TS fuzzy model in equation (2-13) is globally asymptotically stable.

In the following two sections, a brief introduction is given to TS fuzzy regulators and observers
thus providing the background concepts required to present the mathematical details of the
problem addressed in this thesis in the last section of this chapter.

2-5 Fuzzy regulators

Fuzzy regulators have been introduced in [6] and [7] to stabilize fuzzy systems. Regulators are
in general designed to ensure that the states decay to 0 as time increases infinitely (x(t) → 0
as t→ ∞). The most common technique used is Parallel Distributed Compensator (PDC) for
TS fuzzy systems. In this technique every rule of the fuzzy system will be compensated by a
corresponding rule of the regulator with a linear feedback law as its consequent.

Let us consider the system

Ri : If z1 is N1
i and z2 is N2

i , . . . and zp is Np
i , then
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2-6 Fuzzy observers 15

ẋ = Aix + Biu

y = Cix (2-30)

for i = 1, 2, . . . , r.

The rule of the fuzzy regulator corresponding to the system (2-30) can be written as:

Ri : If z1 is N1
i and z2 is N2

i . . . and zp is Np
i , then u = −Fix (2-31)

for i = 1, 2, . . . , r where

• Ri represents the ith rule of the controller.

• Fi represents the gain matrix of the linear state feedback corresponding to the ith rule.

Considering u = −
r∑

i=1

hi(z)Fix in the equation of the system (2-16) we have,

ẋ =
r∑

i=1

r∑

j=1

hi(z)hj(z)(Ai − BiFj)x (2-32)

PDC controllers for TS fuzzy models have been designed in [18] and is one of the first papers
where the linear matrix inequality (LMI) technique is used to prove asymptotic stability. The
paper also referred to the dependency of the basin of attraction of an equilibrium state on
membership functions.

Results dealing with stabilization of TS fuzzy models by PDCs are presented in [7, 19].
Performance specifications such as decay rate, control input constraint and output constraints
are considered in [19]. Given that the initial conditions x(0) are known such that || x(0) || ≤ φ,
LMI conditions for || u(t) || ≤ ζ to be true for all t ≥ 0 are given in [19]. Here ζ is the upper
bound on the control input norm and φ is the bound on initial condition norm. Further
details on these results are discussed in Chapter 4 that presents the design of robust state
feedback controller.

Fuzzy regulators can be used to control the TS fuzzy systems provided that the states of the
system are measured. However, due to practical constraints, sensors may not be available to
measure all the states. Then observers can be used to provide an estimate of the states of
the system. The following section presents the concept of TS fuzzy observers.

2-6 Fuzzy observers

Observers use the control input and the system’s output to estimate the system’s states. They
are designed to ensure that the estimated states converge to the true states as time progresses
infinitely ((x(t) − x̂(t)) → 0 as t → ∞).

An approach for designing fuzzy observers has been given in [6, 7], the outline of which is
given in the following. Consider the TS system

Ri : If z1 is N1
i and z2 is N2

i . . . and zp is Np
i , then
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16 Fuzzy models for nonlinear systems

ẋ = Aix + Biu

y = Cix (2-33)

for i = 1, 2, . . . , r.

The observer for the fuzzy system in (2-33) can be represented as:

Ri : If z1 is N1
i and z2 is N2

i . . . and zp is Np
i , then

˙̂x = Aix̂ + Biu + Li(y − ŷ)

ŷ = Cix̂ (2-34)

for i = 1, 2, . . . , r where

• x̂ represents the estimated system states.

• y represents the output of the system.

• Li, i = 1, 2, . . . , r are the observer gains.

The observer in equation (2-34) can be represented as:

˙̂x =
r∑

i=1

hi(ẑ)(Aix̂ + Biu + Li(y − ŷ)) (2-35)

ŷ =
r∑

i=1

hi(ẑ)Cix̂ (2-36)

Two cases have been discussed in [19] to find the conditions for stability.
Case A: When the antecedent variables are independent of the state variables. This case is
relatively simple in terms of analysis.
Case B: When the antecedent variables are dependent on the state variables (the state vari-
ables being estimated by the fuzzy observer)

In case A, the observer (2-37) is represented as

˙̂x =
r∑

i=1

hi(z)(Aix̂ + Biu + Li(y − ŷ))

ŷ =
r∑

i=1

hi(z)Cix̂ (2-37)

where z is a measured vector.

Substituting the estimated output equation (2-36) in (2-35), we get

˙̂x =
r∑

i=1

hi(z)Aix̂ +
r∑

i=1

hi(z)Biu +
r∑

i=1

r∑

j=1

hi(z)hj(z)LiCj(x(t) − x̂(t)) (2-38)
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2-7 Problem statement 17

Considering the error e(t) = x(t) − x̂(t), the error dynamics of the observer is

ė(t) =
r∑

i=1

r∑

j=1

hi(z)hj(z)(Ai − LiCj)e(t) (2-39)

The observer and the state estimation error equations for case B and their analysis is complex
and beyond the scope of this thesis. LMI conditions to guarantee stability of the observers
are presented in [20]. Further details on observers are presented in Chapter 5 which deals
specifically with adaptive observer design.

The TS fuzzy models, the TS fuzzy regulators and the observers discussed above assume that
an exact model of the nonlinear system is available. The uncertainties in the system modelling
are not considered. Uncertain TS fuzzy models, robust fuzzy state feedback controllers and
adaptive observers that estimate uncertainty are all discussed in detail in Chapters 4 and 5.
However, a brief introduction to their mathematical representation will be provided in the
next section. The next section builds on the concepts presented till now, and presents the
problem addressed in this thesis in a mathematical form.

2-7 Problem statement

We deal with design of adaptive observers and robust state feedback controllers for uncertain
TS fuzzy systems in this thesis, as mentioned in the first chapter. In particular we investigate
uncertainties in the nonlinear system that can be viewed as a constant additive component
to the state matrices of a nominal TS fuzzy model. These kind of uncertainties can possibly
be seen as constant yet unmodelled dynamics. As an example, we can consider unmodelled
friction. In this section, we start with a TS fuzzy model with a specific uncertainty distribution
structure in the local linear models and outline the mathematical details of the problem
addressed in this thesis.

Consider a nonlinear system represented by the TS fuzzy model:

Ri : If z1 is N1
i and z2 is N2

i , . . . and zp is Np
i , then

ẋ = Aix + Biu + MiAδix

y = Cx (2-40)

for i = 1, 2, . . . , r, where

• r is the number of rules.

• x is the state vector, u is the input vector, y is the output vector.

• nx is the dimension of x and nu is the dimension of u.

• x ∈ R
nx , u ∈ R

nu , and y ∈ R
ny .

• z = [z1, z2 . . . zp]T is the vector of scheduling variables.
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18 Fuzzy models for nonlinear systems

• Ai ∈ R
nx×nx , Bi ∈ R

nx×nu , i = 1, 2, . . . , r are known state and input matrices of the
individual linear models that are combined to represent the nonlinear system.

• C is the common output matrix for the local models.

• Mi, i = 1, 2, . . . , r, are the uncertainty distribution matrices.

• Aδi, i = 1, 2, . . . , r, are the blocks representing uncertainties in the models1.

• The values of the elements in the uncertainty blocks Aδi are unknown, but their norm
is bounded, i.e., there exists a known µi ∈ R so that ‖Aδi‖ ≤ µi, for all i = 1, 2, . . . , r
(‖Aδi‖ represents the 2-norm of the matrix Aδi).

Equation (2-40) can be rewritten as

ẋ =
r∑

i=1

hi(z)(Aix + Biu + MiAδix)

y = Cx (2-41)

Constant uncertainties in the state matrices of the local linear models of an uncertain TS
fuzzy model (2-41) can be estimated using the adaptive observer developed in [1], if the
uncertainties are observable. As long as the uncertainty observability condition is satisfied,
the observer can estimate both unmeasured states and uncertainties. The condition to ensure
observability of the uncertainty is detailed in Chapter 5. In this thesis, all the states of the
system are considered to be measured and we concentrate on the use of adaptive observer
concept for uncertainty estimation purposes only. Thus, we expect to get a better TS fuzzy
model of the system by using an adaptive observer. The adaptive observer used in the design
is of the form

˙̂x =
r∑

i=1

hi(z)(Aix̂ + Biu + MiÂδix̂ + Li(y − ŷ))

ŷ =
r∑

i=1

hi(z)(Cix̂)

˙̂
Aδi = fi(Âδi, h(z), x̂, y) i = 1, 2, . . . , r (2-42)

with Li, i = 1, 2, . . . , r, being the observer gain matrices and fi, i = 1, 2, . . . , r being the
update law for Âδi, i = 1, 2, . . . , r such that the estimation errors (x − x̂) and (Aδi − Âδi)
converge asymptotically to zero. In the design of the adaptive observer, the norm of the
uncertainty blocks is considered to be bounded by a known value µmax. We study the effect
of increasing the value of µmax on the rate of convergence of uncertainty estimation error
through the investigation of simulation results. The design of adaptive observer and the
results are the subject of detailed analysis in Chapter 5.

Our goal is to obtain a better model of the system and evaluate any improvement that is
achieved in the control of the uncertain TS fuzzy model by using the uncertainty estimates.

1The uncertainty in the state matrices are ∆Ai. They are represented by the product of Mi and Aδi, and

this product is referred to as uncertainty distribution structure.
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2-7 Problem statement 19

To perform this analysis, we need a robust state feedback controller design for the same un-
certainty distribution structure as in the adaptive observer. However, in existing literature
[5, 8], robust state feedback controller design for uncertainty distribution structure of a dif-
ferent kind than the one presented in equation (2-40) are considered i.e., ∆Ai = Dai∆aiEai.
Hence in this thesis, a robust state feedback controller is designed for ∆Ai = MiAδi. Based
on Lyapunov’s direct method, LMI conditions are derived to guarantee stability of the closed
loop system in the presence of uncertainty (∆Ai = MiAδi) in the state matrices of the local
linear models. The design of the robust state feedback controller considers the norm of the
uncertainty block in every local linear model to be bounded by a known value µi. The design
of the robust state feedback controller will be the subject of detailed analysis in Chapter 4.

The uncertainty estimates obtained by the adaptive observer are in the sequel used in the
robust state feedback controller design. The analysis of redesign of robust controller using an
updated model is discussed in Chapter 6.

This chapter presented an overview of fuzzy systems and TS fuzzy models were described in
detail. General stability concepts were outlined followed by stability analysis of continuous
time TS fuzzy systems. A brief overview of TS fuzzy regulators and observers was presented.
These concepts provide the necessary background to present the mathematical details of the
problem addressed in this thesis.

To illustrate the application of robust state feedback controller and the adaptive observer
concepts, three candidate examples are investigated. TS fuzzy models of each example is con-
structed using sector nonlinearity and is discussed in Appendix B. Out of the three examples,
the 2-DOF robot arm model is chosen and construction of its TS model is detailed in the
following chapter.
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Chapter 3

Fuzzy modelling of 2-DOF robot arm

In this chapter, we construct a Takagi-Sugeno (TS) fuzzy model for a 2-DOF robot arm based
on the sector nonlinearity approach. The interested reader should refer to Appendices A and
B for the sector nonlinearity concept and examples of construction of TS fuzzy models using
this approach.

The first section in this chapter presents the nonlinear model of the robot arm. Considering
linear models for the DC motors at the robot arm joints, parameters of the models are
estimated using input-output data generated through experiments on a laboratory scale 2-
DOF robot arm. This is detailed in Section 3-2. The parameters obtained for the individual
joints are then used in the nonlinear model to find the most probable values of unknown
parameters by nonlinear optimization. The simulation results are compared with the outputs
from the plant (i.e., the laboratory scale 2 - DOF robot arm) in Section 3-3. Simplification of
the nonlinear model and construction of a TS fuzzy model for the simplified nonlinear model
is presented in Sections 3-4 and 3-5. Section 3-5 ends the chapter with the validation of the
TS fuzzy model.

3-1 Nonlinear model of a 2-DOF robot arm

The nonlinear model of the 2-DOF robot arm operating in the horizontal plane is:

M(θ)θ̈ + C(θ, θ̇)θ̇ = τ (3-1)

where

M(θ) =

[
P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2

]
(3-2)

C(θ, θ̇) =

[
b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

−P3θ̇2 sin θ2 b2

]
(3-3)

The parameters in the equation above are described in Section B-3 of Appendix B.
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22 Fuzzy modelling of 2-DOF robot arm

The values of the parameters in equations (3-2) and (3-3) are estimated and model verification
is performed. The details of the parameter estimation are presented in the following two
sections.

3-2 Modelling of the robot arm joints

The laboratory setup of the 2-DOF robot arm contains two joints actuated by DC motors.
By means of SISO input-output data generating experiments and using MATLAB’s system
identification toolbox, linear models of the DC motors are obtained. One of the main as-
sumptions in the identification is that the robot arm is expected to work at low frequencies,
practically less than 5 Hz. Hence the bandwidth of the input signals is limited to 5 Hz. This
motivates the selection of a sampling rate of 10 times the system bandwidth, which is 50 Hz
(sampling time of 0.02 s). Two input voltages u1 and u2 are available to actuate the joints.
To obtain the DC motor models, the system is excited with a random binary signal (RBS) of
amplitude +/-0.1 normalized voltage to maintain the robot arm in a safe operating region.
During all experiments it is ensured that the input signals to the two joints are uncorrelated.
SISO operation of the joints is performed i.e., only one joint is actuated and angular position
of the corresponding link is noted during the experiments.

The DC motor can be physically modelled by combining the equations for the electrical part
and the mechanical part of the system i.e.,

Iθ̈ + bθ̇ = Kt i

L
di

dt
+ R i = u − Ke θ̇ (3-4)

where

• K = Kt = Ke

• Kt is the armature constant in the relation τ = Kt i. (τ is the torque and i is the motor
current.)

• Ke is the motor constant in the relation eb = Ke θ̇. (eb is the back e.m.f.)

• u is the input voltage.

• R is the resistance in the motor armature and L is the armature inductance.

• I is the inertia of the load.

• b is the damping in the mechanical system.

Considering small inductances, we have

i =
u − Kθ̇

R
(3-5)

and

θ̈ +

(
b +

K2

R

)

I
θ̇ =

K

RI
u (3-6)
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3-3 Finding the parameters of the nonlinear 2-DOF robot arm 23

Equation (3-6) gives the model of the DC motor. The transfer function of the model (3-6) is

θ(s)

U(s)
=

kI

s(s + bI)
(3-7)

where kI =
K

RI
and bI =

(
b +

K2

R

)

I
.

Based on the experiments with RBS inputs, the models for the joints 1 and 2 (represented as
J1 and J2) based on (3-6) are found to be

θ1(s)

U1(s)
=

147.97

s(s + 28.74)
(3-8)

(kI1 = 147.97 and bI1 = 28.74) and

θ2(s)

U2(s)
=

156.97

s(s + 31.99)
(3-9)

(kI2 = 156.97 and bI2 = 31.99)

Figures 3-1 and 3-2 compare the measured angle values with the simulated outputs from the
identified model for J1 and J2, respectively.
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Figure 3-1: Simulation results for identified J1 model.

3-3 Finding the parameters of the nonlinear 2-DOF robot arm

The nonlinear model of the 2-DOF robot arm is

M(θ)θ̈ + C(θ, θ̇)θ̇ = τ (3-10)
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Figure 3-2: Simulation results for identified J2 model.

where

• θ =
[
θ1 θ2

]T
and τ =

[
τ1 τ2

]T

• τ1, τ2 are the control inputs as the two joints (torque inputs).

• θ1, θ2, θ̇1, θ̇2 are measured positions and angular velocities.

• M(θ) is the mass matrix.

• C(θ, θ̇) is the Coriolis and centrifugal force matrix.

The mass and the Coriolis matrices are

M(θ) =

[
P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2

]
(3-11)

C(θ, θ̇) =

[
b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

−P3θ̇2 sin θ2 b2

]
(3-12)

where

• P1 = m1c1
2 + m2l1

2 + I1

• P2 = m2c2
2 + I2

• P3 = m2l1c2
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3-4 Simplification of the nonlinear model 25

• l1 and l2 are the lengths of the first and the second link, respectively.

• m1 and m2 are the masses of the first and the second link, respectively.

• I1 and I2 are the inertias of the first and the second link, respectively.

• c1 and c2 are the centres of mass of the first and the second link, respectively.

• b1 and b2 are the damping in the first and the second joint, respectively.

The values of kI1, kI2, bI1 and bI2 that are obtained from the modelling of the DC motors
are used in the above model. With the values of parameters m1 = 0.45 kg, m2 = 0.125 kg,
l1 = 0.4 m, l2 = 0.1 m, we get the inertias for the links to be I1 = 0.0240 kg m2 and I2 =
0.000416 kg m2. Multiplying the values kI1, kI2, bI1 and bI2 with the values of inertias of
respective links we get estimates for km1 = 6.59, km2 = 1.51, b1 = 1.22 and b2 = 0.24 where
km1 and km2 are the equivalent of K/R in the model (3-6). The values of km1 and km2 can
be considered as motor gains and result in representing the input to the system as input
u1 multiplied by gain km1 and u2 multiplied by km2 respectively. MIMO experiments are
performed with inputs being simultaneously applied to both the joints and input-output data
is collected. Nonlinear optimization (using ‘lsqnonlin‘ function of MATLAB) is performed to
estimate the values of the parameters P1, P2 and P3. These values are found to be P1 = 0.0191,
P2 = 0.00039 and P3 = 0.00000967. With the parameter values obtained in this section, a
TS fuzzy model is created for the 2-DOF robot arm. This is detailed in the next section.

With the parameters of the nonlinear model as determined by nonlinear optimization and
linear parameter estimation of the individual joints, Figures 3-3 and 3-4 compare the measured
and the simulation result of the nonlinear model. A multisine signal with frequency upto 3 Hz
is used for validation purposes. The difference in the outputs can be attributed to unmodelled
dynamics (for e.g. unmodelled friction or the inexact value of damping co-efficient).

A TS fuzzy model for the nonlinear model of the 2-DOF robot arm would require 64 rules
due to the presence of 6 nonlinearities (see Appendix B). A simplified nonlinear model can be
obtained by neglecting the Coriolis and centrifugal forces. A 4 rule fuzzy model is constructed
for the 2-DOF robot arm in the following section. For the development of the fuzzy state
feedback controller for the robot arm, the measurements of the 2 angular positions and 2
angular velocities are required and hence all the states are considered to be measured. To test
the results obtained in this thesis on the laboratory setup, linear observers may be designed
for each individual joint to obtain estimates of the angular velocities. These estimates may
be used instead of measured values of velocities.

3-4 Simplification of the nonlinear model

A simplification of the 2-DOF robot arm nonlinear model is considered to obtain a fuzzy
model with a smaller number of rules. The simplification is presented in this section.

Neglecting Coriolis and centrifugal forces and considering movement in the horizontal plane,
the model of the 2-DOF robot arm can be represented as

M(θ)θ̈ + C(θ, θ̇)θ̇ = τ (3-13)
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Figure 3-3: Comparison of measured and simulated output from the nonlinear model - θ1.

where C(θ, θ̇) =

[
b1 0
0 b2

]
.

Equation (3-13) can be represented in the form of state and input matrices as follows.

ẋ =

[
−M−1C 0

I 0

]
x +

[
M−1

0

]
τ (3-14)

where
x = [θ̇1 θ̇2 θ1 θ2]T

For the ease of notation, the dependency of M on θ is not explicitly noted in the above
equation. The Coriolis matrix C is not dependent on θ or θ̇ since Coriolis and centrifugal
forces are neglected and hence C is independent of θ and θ̇.

Substituting the values of M , C, and representing the torques as a product of motor gain and
input voltage in the above equation, we obtain the state-space model

ẋ = A(θ2)x + B(θ2)u (3-15)

where
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Figure 3-4: Comparison of measured and simulated output from the nonlinear model - θ2.

A(θ2) =




P2b1

P 2
3 cos θ2

2 − P1P2
−

b2(P2 + P3 cos(θ2)

P 2
3 cos θ2

2 − P1P2
0 0

−
b1(P2 + P3 cos(θ2)

P 2
3 cos θ2

2 − P1P2

b2(P1 + P2 + 2P3 cos(θ2)

P 2
3 cos θ2

2 − P1P2
0 0

1 0 0 0

0 1 0 0




(3-16)

and

B(θ2) =




−P2km1

P 2
3 cos θ2

2 − P1P2

km2(P2 + P3 cos(θ2)

P 2
3 cos θ2

2 − P1P2

km1(P2 + P3 cos(θ2)

P 2
3 cos θ2

2 − P1P2
−

km2(P1 + P2 + 2P3 cos(θ2)

P 2
3 cos θ2

2 − P1P2

0 0

0 0




(3-17)

Given the above simplified nonlinear model for the 2-DOF robot arm, the next section presents
the construction of the corresponding TS fuzzy model.
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3-5 TS fuzzy model for the simplified 2-DOF robot arm

Considering the scheduling variables

z1 =
1

P 2
3 cos(θ2)2 − P1P2

(3-18)

and

z2 =
cos(θ2)

P3
2cos(θ2)2 − P1P2

(3-19)

we have the matrices A and B given by (3-16) and (3-17) in terms of the nonlinearities as
follows (refer Appendix B for details).

A(z1, z2) =




P2b1z1 −P2b2z1 − P3b2z2 0 0

−P2b1z1 − P3b1z2 b2z1(P1 + P2) + 2P3b2z2 0 0

1 0 0 0

0 1 0 0




(3-20)

and

B(z1, z2) =




−P2km1z1 km2(P2z1 + P3z2)

km1(P2z1 + P3z2) −km2(2P3z2 + z1(P1 + P2))

0 0

0 0




(3-21)

With the two nonlinearities z1 and z2, we can construct 4 rules to represent the system.
R1 : If z1 is N1

1 and z2 is N2
1 then

ẋ = A1x + B1u

y = C1x (3-22)

R2 : If z1 is N1
2 and z2 is N2

2 then

ẋ = A2x + B2u

y = C2x (3-23)

R3 : If z1 is N1
3 and z2 is N2

3 then

ẋ = A3x + B3u

y = C3x (3-24)
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3-5 TS fuzzy model for the simplified 2-DOF robot arm 29

R4 : If z1 is N1
4 and z2 is N2

4 then

ẋ = A4x + B4u

y = C4x (3-25)

where

A1 =




P2b1z1min −P2b2z1min − P3b2z2min 0 0

−P2b1z1min − P3b1z2min b2z1min(P1 + P2) + 2P3b2z2min 0 0

1 0 0 0

0 1 0 0




(3-26)

and

B1 =




−P2km1z1min km2(P2z1min + P3z2min)

km1(P2z1min + P3z2min) −km2(2P3z2min + z1min(P1 + P2))

0 0

0 0




(3-27)

A2 =




P2b1z1min −P2b2z1min − P3b2z2max 0 0

−P2b1z1min − P3b1z2max b2z1min(P1 + P2) + 2P3b2z2max 0 0

1 0 0 0

0 1 0 0




(3-28)

and

B2 =




−P2km1z1min km2(P2z1min + P3z2max)

km1(P2z1min + P3z2max) −km2(2P3z2max + z1(P1 + P2))

0 0

0 0




(3-29)
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A3 =




P2b1z1max −P2b2z1max − P3b2z2min 0 0

−P2b1z1max − P3b1z2min b2z1max(P1 + P2) + 2P3b2z2min 0 0

1 0 0 0

0 1 0 0




(3-30)

and

B3 =




−P2km1z1max km2(P2z1max + P3z2min)

km1(P2z1max + P3z2min) −km2(2P3z2min + z1max(P1 + P2))

0 0

0 0




(3-31)

A4 =




P2b1z1max −P2b2z1max − P3b2z2max 0 0

−P2b1z1max − P3b1z2max b2z1max(P1 + P2) + 2P3b2z2max 0 0

1 0 0 0

0 1 0 0




(3-32)

and

B4 =




−P2km1z1max km2(P2z1max + P3z2max)

km1(P2z1max + P3z2max) −km2(2P3z2max + z1max(P1 + P2))

0 0

0 0




(3-33)

C1 = C2 = C3 = C4 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




As seen from the model in Section 3-5, the two nonlinear terms in the state and the input
matrices depend on the angle θ2 only. From laboratory experiments, it has been found that
the maximum and minimum values that θ2 can reach are θ2max = 1.64 rad and θ2min = −1.7
rad (+/- representing opposite directions of movement of the robot arms). The minimum and
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maximum values of the nonlinearities z1 and z2 over the range of θ2 is calculated. With these
minimum and maximum values of the nonlinearities, we have the membership functions

w11(z1) =
z1max − z1

z1max − z1min

w12(z1) =
z1 − z1min

z1max − z1min

w21(z1) =
z2max − z2

z2max − z2min

w22(z1) =
z2 − z2min

z2max − z2min
(3-34)

Associating membership functions w11, w12, w21, and w22 with fuzzy sets N1
1 , N1

2 , N2
1 , and

N2
2 respectively, we have the following 4 rules representing the fuzzy model. Note that this

model is equivalent to the simplified model (3-13).
R1 : If z1 is N1

1 and z2 is N2
1 then

ẋ =




−63.7743 12.8930 0 0
65.3550 −629.2416 0 0

1 0 0 0
0 1 0 0


x +




344.9372 −81.1678
−353.4866 3961.4

0 0
0 0


u (3-35)

R2 : If z1 is N1
1 and z2 is N2

2 then

ẋ =




−63.7743 12.5410 0 0
63.5707 −628.5376 0 0

1 0 0 0
0 1 0 0


x +




344.9372 −78.9518
−343.8357 3956.9

0 0
0 0


u (3-36)

R3 : If z1 is N1
2 and z2 is N2

1 then

ẋ =




−63.7735 12.8929 0 0
65.3542 −629.2337 0 0

1 0 0 0
0 1 0 0


x +




344.9329 −81.1669
−353.4823 3961.3

0 0
0 0


u (3-37)

R4 : If z1 is N1
2 and z2 is N2

2 then

ẋ =




−63.7735 12.5409 0 0
63.5699 −628.5297 0 0

1 0 0 0
0 1 0 0


x +




344.9329 −78.9508
−343.8314 3956.9

0 0
0 0


u (3-38)

where N1
3 = N1

1 , N2
3 = N2

2 , N1
4 = N1

2 , and N2
4 = N2

2 . The output matrix for all the 4
rules is the identity matrix i.e., all states are available as outputs.
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32 Fuzzy modelling of 2-DOF robot arm

With the fuzzy model above, the simulation results are shown in Figure 3-5 and Figure 3-6,
respectively, for both the links in the robot arm. These figures compare the measured output,
the simulation results from the complete nonlinear system and the fuzzy model (and hence the
simplified nonlinear model). It is clear from the figures that the fuzzy model almost exactly
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Figure 3-5: Comparison of results - measured output and simulated outputs from complete

nonlinear model and TS fuzzy model - link 1.

represents the complete nonlinear model identified in the previous section, thus indicating
that the better the identification of the nonlinear model, the better will be the approximation
of the nonlinear system by the fuzzy model.

In this chapter, modelling of a 2-DOF robot arm has been presented. First, we estimated the
parameters of the linear models of the DC motors in the robot arm joints and then nonlinear
optimization has been performed to find the parameters in the nonlinear model. Until this
level of modelling, no simplification has been considered. However, to construct a TS fuzzy
model with a smaller number of rules, we simplify the nonlinear model by neglecting Coriolis
and centrifugal forces. For the simplified nonlinear model of the 2-DOF robot arm, a TS
fuzzy model that exactly represents the corresponding nonlinear model has been constructed.
It has been observed that the fuzzy model almost exactly represents the complete nonlinear
model. The fuzzy model constructed in this chapter will be used in the rest of the chapters.
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Figure 3-6: Comparison of results - measured output and simulated outputs from complete

nonlinear model and TS fuzzy model - link 2.
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Chapter 4

Robust fuzzy state feedback controller

design

In this chapter, we consider robust state feedback stabilizing controller design for the 2-DOF
robot arm. First, the theoretical aspects of the controller design are presented. We consider
uncertainty distribution structure of the form ∆Ai = MiAδi in the local linear models of the
Takagi-Sugeno (TS) system. In the existing literature [5], uncertainty distribution structure
of the form ∆Ai = Dai∆aiEai have been considered. Similar to [5], the design method in this
chapter enables the selection of a robust controller that maximizes the norms of the uncer-
tainty blocks Aδi. Uncertainties in the knowledge of parameters of the system/unmodelled
dynamics can be accommodated by the uncertainty blocks in the robust controller design.
Stability is guaranteed in the presence of uncertainties by the designed set of robust controllers
as long as the norms of the uncertainty blocks are within predefined bounds. Performance
specifications in the form of decay rate and limitation of the control input are also discussed
for the robust controller design. As a preamble to the design developed for uncertain TS
fuzzy systems, the first section in this chapter will present the necessary background in fuzzy
state feedback stabilizing controller design. Section 4-5 presents the implementation results
of the robust controller for the robot arm. The chapter ends with a section on conclusions.

4-1 Fuzzy state feedback controller

A brief introduction to fuzzy regulators has been given in Chapter 2. Conditions to guarantee
stabilization of TS fuzzy systems by these regulators are available in the form of linear matrix
inequalities (LMIs) [7, 19]. These results are presented in the following.

Consider a system represented by the fuzzy model

ẋ =
r∑

i=1

hi(z)(Aix + Biu)

y =
r∑

i=1

hi(z)(Cix) (4-1)
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36 Robust fuzzy state feedback controller design

A Parallel Distributed Compensator (PDC) for this system generates a control input

u = −
r∑

i=1

hi(z)Fix (4-2)

which results in the closed loop dynamics

ẋ =
r∑

i=1

r∑

j=1

hi(z)hj(z)(Ai − BiFj)x (4-3)

The closed-loop TS fuzzy model with the input (4-2) can be written as

ẋ =
r∑

i=1

hi(z)Giix + 2
r∑

i<j

hi(z)hj(z)

(
Gij + Gji

2

)
x (4-4)

where
Gij = Ai − BiFj , i, j = 1, 2, . . . , r

A theorem that presents conditions to guarantee stabilization of the closed-loop system given
by (4-4) is available in [7] and given as follows.

Theorem 3. [7] The presence of a common positive definite matrix P satisfying the conditions

GT
iiP + PGii < 0

(Gij + Gji)
T

2
P + P

(Gij + Gji)

2
≤ 0 for i < j

(4-5)

for i, j = 1, 2, . . . , r except the pairs (i, j) such that hi(z)hj(z) = 0, ∀t confirms the stability
of the fuzzy control system given by (4-4).

When the number of rules in a system becomes very large, it becomes difficult to find a
common positive definite matrix P . Hence, relaxed stability conditions have been proposed
in [7] and [19].

Theorem 4. [7, 19] The number of rules s that fire at a given time t, is less than or equal
to r (that is 1 < s ≤ r). The system (4-4) is asymptotically stable in the large if there exist
a common positive definite matrix P and a common positive semidefinite matrix Q such that

GT
iiP + PGii + (s − 1)Q < 0

(Gij + Gji)
T

2
P + P

(Gij + Gji)

2
− Q ≤ 0 for i < j

(4-6)

for i, j = 1, 2, . . . , r except the pairs (i, j) such that hi(z)hj(z) = 0, ∀t.

This theorem is relaxed in the sense that the conditions that are derived accommodate the
possibility that all rules in a TS fuzzy model need not be active simultaneously. In case of
TS fuzzy models derived by the sector nonlinearity approach, all the rules will be active at
any instant in time. However, even in this case (when all rules are active), it is shown in [5]
that the conditions in Theorem 4 increase the space of state and input matrices over which
valid P and Q matrices can be found.

Sangeetha Bindiganavile Nagesh Master of Science Thesis



4-2 Uncertain TS fuzzy model 37

Control performances have also been considered in [7, 19]. A theorem to accommodate decay
rate has been given in [7]. The convergence rate of a system is at least α if V̇ (x(t)) ≤
−2αV (x(t)) [21], where α is the decay rate. Results for stabilization with decay rate α is
given below.

Theorem 5. [7] The condition that V̇ (x(t)) ≤ −2αV (x(t)) for the Lyapunov function
V (x(t)) = xT Px for all trajectories of the system is equivalent to

GT
iiP + PGii + (s − 1)Q + 2αP < 0

(Gij + Gji)
T

2
P + P

(Gij + Gji)

2
− Q + 2αP ≤ 0 for i < j

(4-7)

for i, j = 1, 2, . . . , r except the pairs (i, j) such that hi(z)hj(z) = 0, ∀t and s > 1 and α > 0.

A generalized eigenvalue minimization problem formulation to obtain the largest lower bound
on the decay rate α is suggested in [19].

Further performance constraints like control input constraint and output constraints are con-
sidered in [19]. Given that the initial conditions x(0) are known such that || x(0) || ≤ φ, LMI
conditions for || u(t) || ≤ ζ to be true for all t ≥ 0 are given in [19]. Here, ζ is the control
input norm bound and φ is the initial condition norm bound and are discussed further in
Section 4-4.

In the following section, we consider an uncertain TS fuzzy model and design a robust con-
troller for it. Literature contains robust controller design for uncertainty in the state matrices
represented as ∆Ai = Dai∆aiEai [5]. In this thesis we use the adaptive observer concept
available in literature [1] to obtain estimates of uncertainty in the system and to reuse the
uncertainty estimates from the adaptive observer to design a controller. This will require both
the adaptive observer and the controller to use the same uncertainty distribution structure to
represent the uncertainty in the state matrices. Since the uncertainty distribution structure in
the adaptive observer is of the form ∆Ai = MiAδi

2 a robust controller design for uncertainty
distribution structure ∆Ai = MiAδi is presented in the following.

4-2 Uncertain TS fuzzy model

The TS fuzzy model considered is as follows.

Ri : If z1 is N1
i and z2 is N2

i , . . . and zp is Np
i , then

ẋ = Aix + Biu + MiAδix

y = Cix (4-8)

for i = 1, 2, . . . , r.
The different variables in the above equation are the same as in Chapter 2. The MiAδi is

2∆Ai is the uncertainty in the matrices Ai, Mi are the uncertainty distribution matrices, Aδi are the

uncertainty blocks, and MiAδi and Dai∆aiEai are two different uncertainty distribution structures for the

uncertainty ∆Ai
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38 Robust fuzzy state feedback controller design

referred to as the uncertainty distribution structure since it distributes the uncertainty in Aδi

by using Mi into the positions of ∆Ai where uncertainty is expected to exist.

The model (4-8) can be rewritten as

ẋ =
r∑

i=1

hi(z)(Aix + Biu + MiAδix)

y = Cix (4-9)

where hi are the normalized membership functions.

The uncertainty in the above fuzzy model exists in the consequents of the rules, i.e., in the
state matrices of the local linear models. The following section discusses the robust controller
design for the model as represented in equation (4-9) with the uncertainty blocks bounded by
a known norm i.e., ‖Aδi‖ ≤ µi, i = 1, 2, . . . , r.

4-3 Robust stability conditions with norm-bounded uncertainty

This section presents the conditions that guarantee closed-loop stability when a PDC con-
troller is used to stabilize (4-9). The control input generated by a PDC is

u = −
r∑

j=1

hj(z)Fjx (4-10)

This results in the following closed-loop system dynamics

ẋ =
r∑

i=1

r∑

j=1

hi(z)hj(z)(Ai − BiFj + MiAδi)x

=
r∑

i=1

hi
2(z)(Ai − BiFi + MiAδi)x

+
r∑

i=1

∑

i<j

hi(z)hj(z)(Ai − BiFj + Aj − BjFi + MiAδi + MjAδj)x (4-11)

Considering a common quadratic Lyapunov function

V = xT Px (4-12)

we can state the conditions to be satisfied to guarantee stability of the uncertain TS system
(4-9) in the form of the following theorem.

Theorem 6. The uncertain fuzzy system (4-9) with ‖Aδi‖ ≤ µi, i = 1, 2, . . . , r where µi are
known constants, is stabilized by the PDC (4-10) if there exist a common positive definite
matrix P (X = P −1) and matrices Ni, i = 1, 2, . . . , r that satisfy

X > 0,

Sii < 0,

Tij < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0
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4-3 Robust stability conditions with norm-bounded uncertainty 39

where Sii and Tij are given by the equations

Sii =







AiX + XAT
i

−BiNi − NT
i BT

i


 Mi X

MT
i −I 0

X 0 − 1
µ2

i

I




Tij =







AiX + XAT
i + AjX + XAT

j

−BiNj − NT
j BT

i − BjNi − NT
i BT

j


 Mi Mj X X

MT
i −I 0 0 0

MT
j 0 −I 0 0

X 0 0 − 1
µ2

i

I 0

X 0 0 0 − 1
µ2

j

I




Proof. With the Lyapunov function

V = xT Px

we have

V̇ = xT P ẋ + ẋT Px

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi + MiAδi) + (Ai − BiFi + MiAδi)

T P ]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj + MiAδi) + (Ai − BiFj + MiAδi)
T P

+P (Aj − BjFi + MjAδj) + (Aj − BjFi + MjAδj)T P ]x

(4-13)
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40 Robust fuzzy state feedback controller design

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + P (MiAδi) + (MiAδi)
T P ]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (MiAδi) + (MiAδi)
T P

+P (Aj − BjFi) + (Aj − BjFi)
T P + P (MjAδj) + (MjAδj)T P ]x

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + P (MiAδi) + (MiAδi)
T P

+ PMiM
T
i P − PMiM

T
i P + AT

δiAδi − AT
δiAδi]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (MiAδi) + (MiAδi)
T P

+P (Aj − BjFi) + (Aj − BjFi)
T P + P (MjAδj) + (MjAδj)T P + PMiM

T
i P

−PMiM
T
i P + AT

δiAδi − AT
δiAδi + PMjMT

j P − PMjMT
j P + AT

δjAδj − AT
δjAδj ]x

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + PMiM
T
i P + AT

δiAδi

−PMi(M
T
i P − Aδi) + AT

δi(M
T
i P − Aδi)]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (Aj − BjFi)

+(Aj − BjFi)
T P + PMiM

T
i P + PMjMT

j P + AT
δiAδi + AT

δjAδj − PMi(M
T
i P − Aδi)

+AT
δi(M

T
i P − Aδi) − PMj(MT

j P − Aδj) + AT
δj(MT

j P − Aδj)]x

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + PMiM
T
i P + AT

δiAδi

−(MT
i P − Aδi)

T (MT
i P − Aδi)]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (Aj − BjFi)

+(Aj − BjFi)
T P + PMiM

T
i P + PMjMT

j P + AT
δiAδi + AT

δjAδj

−(MT
i P − Aδi)

T (MT
i P − Aδi) − (MT

j P − Aδj)T (MT
j P − Aδj)]x

(4-14)

If

P (Ai − BiFi) + (Ai − BiFi)
T P + PMiM

T
i P + µ2

i I < 0

P (Ai − BiFj) + (Ai − BiFj)T P + P (Aj − BjFi) + (Aj − BjFi)
T P

+PMiM
T
i P + PMjMT

j P + µi
2I + µj

2I < 0 (4-15)

hold for i, j = 1, 2, . . . , r and i < j, then we have V̇ < 0.
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Left and right multiplying the inequalities in (4-15) by P −1 and introducing a new variable
X = P −1, we can write

(Ai − BiFi)X + X(Ai − BiFi)
T + MiM

T
i + Xµ2

i X < 0 ,

(Ai − BiFj)X + X(Ai − BiFj)T + (Aj − BjFi)X + X(Aj − BjFi)
T

+MiM
T
i + MjMT

j + Xµi
2X + Xµj

2X < 0 (4-16)

i, j = 1, 2, . . . , r and i < j.
With the change of variables Ni = FiX and hence, Fi = NiP , we can write the inequalities
in (4-16) as

AiX − BiNi + XAT
i − Ni

T Bi + MiM
T
i + Xµ2

i X < 0 ,

AiX − BiNj + XAT
i − Nj

T Bi)
T + AjX − BjNi + XAT

j − NT
i Bj

+MiM
T
i + MjMT

j + Xµi
2X + Xµj

2X < 0 (4-17)

i, j = 1, 2, . . . , r and i < j.

Converting the conditions in (4-17) to linear matrix inequalities using Schur complements,
we have

Sii =







AiX + XAT
i

−BiNi − NT
i BT

i


 Mi X

MT
i −I 0

X 0 − 1
µ2

i

I




(4-18)

Tij =







AiX + XAT
i + AjX + XAT

j

−BiNj − NT
j BT

i − BjNi − NT
i BT

j


 Mi Mj X X

MT
i −I 0 0 0

MT
j 0 −I 0 0

X 0 0 − 1
µ2

i

I 0

X 0 0 0 − 1
µ2

j

I




(4-19)

and

Sii < 0 i, j = 1, 2, . . . , r and i < j

Tij < 0 i, j = 1, 2, . . . , r and i < j (4-20)
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The above LMIs guarantee that V̇ < 0 since we have

Aδi
T Aδi < µi

2I

−(MT
i P − Aδi)

T (MT
i P − Aδi) < 0

−(MT
i P − Aδi)

T (MT
i P − Aδi) − (MT

j P − Aδj)T (MT
j P − Aδj) < 0 (4-21)

In the theorem above, it is considered that an upper bound on the uncertainty block norms
are known. Given the system state matrices, the norms of the uncertainty blocks for which a
controller can be found can be maximized as part of designing the robust controller [5]. This
is done by maximizing the linear combination of the squares of the norms of the uncertainty
blocks along with satisfying the linear matrix inequality (LMI)s in Theorem 6.

Theorem 7. The uncertain fuzzy system (4-9) is stabilized by the PDC (4-10) if there exist
a common positive definite matrix P (X = P −1) and matrices Ni, i = 1, 2, . . . , r that satisfy

maximize
µi

2,X,N1,N2...Nr

r∑

i=1

βiµi
2

subject to

X > 0,

Sii < 0,

Tij < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0

where βi are design parameters and Sii and Tij are given by equations (4-18) and (4-19).

Proof. This theorem follows from Theorem 6 by maximizing the norms of the uncertainty
blocks.

Based on relaxed stability conditions [5], the above theorems can be extended to accommodate
the possibility that all rules in a TS fuzzy model need not be active simultaneously. Thus,
we have the following two theorems.

Theorem 8. The uncertain fuzzy system (4-9) with ‖Aδi‖ ≤ µi, i = 1, 2, . . . , r where µi are
known constants, is stabilized by the PDC (4-10) if there exist a common positive definite
matrix P (X = P −1), a positive semidefinite matrix Q0 and matrices Ni, i = 1, 2, . . . , r that
satisfy

X > 0,

Sii + (s − 1)Y1 < 0,

Tij − 2Y2 < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0

where
Y1 = bkdiag3

(
Y0 0 0

)
,

Y2 = bkdiag
(
Y0 0 0 0 0

)
,

Y0 = XQ0X,
s is the number of rules active for all time t (1 < s ≤ r) and Sii and Tij are given by equations
(4-18) and (4-19).

3bkdiag stands for block diagonal.
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Proof. See Appendix C.

Theorem 9. The uncertain fuzzy system (4-9) is stabilized by the PDC (4-10) if there exist a
common positive definite matrix P (X = P −1), a positive semidefinite matrix Q0 and matrices
Ni, i = 1, 2, . . . , r that satisfy

maximize
µi

2,X,N1,N2...Nr

r∑

i=1

βiµi
2

subject to

X > 0,

Sii + (s − 1)Y1 < 0,

Tij − 2Y2 < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0

where
Y1 = bkdiag

(
Y0 0 0

)
,

Y2 = bkdiag
(
Y0 0 0 0 0

)
,

Y0 = XQ0X,
s is the number of rules active for all time t (1 < s ≤ r), βi are the design parameters and
Sii and Tij are given by equations (4-18) and (4-19).

Proof. This theorem follows from Theorem 8 by maximizing the norms of the uncertainty
blocks.

Given a TS system with state matrices Ai, uncertainties ∆Ai = MiAδi, and ‖Aδi‖ ≤ µi, The-
orems 8 and 9 provide conditions for stabilization by a PDC with relaxed stability conditions.
For the complete derivation of Theorem 8 see Appendix C. Theorems 6 and 8 in this section
present robust controller design without and with relaxed stability conditions. Theorems 7
and 9 maximize the norms of the uncertainty blocks as part of the robust controller design.
In the following section, we discuss the addition of performance specifications to the robust
controller design, namely decay rate and control input constraint given an upper bound on
the initial state norm.

4-4 Performance specifications for the controller

Along with stabilizing a system, the speed of the system response is very important. A
decay rate specification can be added to the controller design for this purpose. In practice,
since actuators will be able to provide signals that are limited in their value, a specification
that can limit the control input generated by the controller is useful. We discuss both these
performance specifications for the robust stabilizing controller in the following.

4-4-1 Decay rate specification

The response of the stabilizing controller can be made faster by introducing a decay rate (α)
specification in the stability conditions. Introducing the condition V̇ (x(t)) ≤ −2αV (x(t)) in
the LMIs of Theorems 6, 7, 8, and 9 we have the following.
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Theorem 10. The uncertain fuzzy system (4-9) with ‖Aδi‖ ≤ µi, i = 1, 2, . . . , r where µi are
known constants, is stabilized by the PDC (4-10) and the closed-loop system has a decay rate
of at least α if there exist a common positive definite matrix P (X = P −1) and matrices Ni,
i = 1, 2, . . . , r that satisfy

X > 0,

Ŝii < 0,

T̂ij < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0

where

Ŝii =







AiX + XAT
i

−BiNi − NT
i BT

i + 2αX


 Mi X

MT
i −I 0

X 0 − 1
µ2

i

I




(4-22)

T̂ij =







AiX + XAT
i + AjX + XAT

j

−BiNj − NT
j BT

i − BjNi − NT
i BT

j + 4αX


 Mi Mj X X

MT
i −I 0 0 0

MT
j 0 −I 0 0

X 0 0 − 1
µ2

i

I 0

X 0 0 0 − 1
µ2

j

I




(4-23)

Proof. See Appendix C.

In the above theorem, the bounds on the uncertainty block norms are assumed to be known.
The following theorem is an extension of Theorem 10 to obtain the maximum bounds on the
norms of the uncertainty blocks for a desired specification of α.

Theorem 11. The uncertain fuzzy system (4-9) is stabilized by the PDC (4-10) and the
closed-loop system has a decay rate of at least α if there exist a common positive definite
matrix P (X = P −1) and Ni, i = 1, 2, . . . , r that satisfy

maximize
µi

2,X,N1,N2...Nr

r∑

i=1

βiµi
2

subject to

X > 0,

Ŝii < 0,

T̂ij < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0
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where α is the specified decay rate, βi, i = 1, 2, . . . , r are the design parameters and Ŝii and
T̂ij , i, j = 1, 2, . . . , r and i < j are given by equations (4-22) and (4-23)

Proof. The proof follows from Theorem 10 by maximizing the norms of the uncertainty blocks.

The above two theorems provided conditions that guarantee stability of the closed-loop sys-
tem with a decay rate of atleast α. Theorem 10 provided conditions when bounds on the
uncertainty block norms are known and Theorem 11 provided conditions such that the max-
imum bounds on the uncertainty block norms can be found as part of the controller design
process. These two theorems can be extended to include the relaxed stability conditions
leading to the following two theorems.

Theorem 12. The uncertain fuzzy system (4-9) is stabilized by the PDC (4-10) and the
closed-loop system has decay rate of at least α if there exist a common positive definite matrix
P (X = P −1), a positive semidefinite matrix Q0, and matrices Ni, i = 1, 2, . . . , r that satisfy

X > 0,

Ŝii + (s − 1)Y1 < 0,

T̂ij − 2Y2 < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0

where
Y1 = bkdiag

(
Y0 0 0

)
,

Y2 = bkdiag
(
Y0 0 0 0 0

)
,

Y0 = XQ0X,
s is the number of rules active for all time t (1 < s ≤ r), α is the specified decay rate and Ŝii

and T̂ij , i = 1, 2, . . . , r, i < j are given by equations (4-22) and (4-23).

Proof. The proof follows from Theorems 8 and 10.

In the above theorem, maximizing the norms of the uncertainty blocks will provide the con-
ditions that guarantee stability of the closed-loop system with a decay rate of at least α and
the maximum uncertainty norm bounds for which stability is guaranteed are obtained as part
of the design process. The result of this exercise is presented in the following theorem.

Theorem 13. The uncertain fuzzy system (4-9) is stabilized by the PDC (4-10) and the
closed-loop system has decay rate of at least α if there exist a common positive definite matrix
P (X = P −1), a positive semidefinite matrix Q0, and matrices Ni, i = 1, 2, . . . , r that satisfy

maximize
µi

2,X,N1,N2...Nr

r∑

i=1

βiµi
2

subject to

X > 0,

Ŝii + (s − 1)Y1 < 0,

T̂ij − 2Y2 < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0
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where
Y1 = bkdiag

(
Y0 0 0

)
,

Y2 = bkdiag
(
Y0 0 0 0 0

)
,

Y0 = XQ0X,
s is the number of rules active for all time t (1 < s ≤ r), α is the specified decay rate,
βi, i = 1, 2, . . . , r are the design parameters and Ŝii and T̂ij , i = 1, 2, . . . , r, i < j are given by
equations (4-22) and (4-23).

Proof. The proof follows from Theorem 12 by maximizing the norms of the uncertainty blocks.

The above four theorems presented the conditions to be satisfied for the PDC given by
equation (4-10) to stabilize the uncertain fuzzy system (4-9) with a decay rate of at least α.
In the following, additional conditions to be satisfied along with the conditions in any of the
above eight theorems to stabilize (4-9) with a constraint on the input is presented.

4-4-2 Constraint on control input

LMIs corresponding to a constraint on the control input given an upper bound on the initial
state norm, can be added to the robust controller design as in [5]. For the purpose of conti-
nuity, the LMIs corresponding to the control input constraint are reproduced in the form of
a theorem. The conditions in this theorem can be added to the conditions from the above
theorems to guarantee stabilization along with constraint on the control input.

Theorem 14. [5] For the system (4-9) stabilized by (4-10) and given an upper bound φ on
the initial state (i.e., ‖x(0)‖ ≤ φ), the constraint on the control input ‖u(t)‖ ≤ ζ is satisfied
for all t > 0, if the following LMIs are satisfied

[
X Ni

T

Ni ζ2I

]
≥ 0 for i = 1, 2, . . . , r,

X ≥ φ2I

Both decay rate and control input constraint can be specified for a robust controller. Hence,
it is possible to combine the conditions in Theorem 14 with the conditions in Theorems 6-13.

In the following section, the design of the stabilizing controller is demonstrated on the sim-
plified 2-DOF robot arm and simulation results are presented.

4-5 Controller design for 2-DOF robot arm

The 2-DOF robot arm fuzzy model has been constructed in Chapter 3. The TS fuzzy model
presented in Section 3-5 of Chapter 3 consists of 4 rules. Uncertainty is assumed to be
in the state matrices. An uncertainty in any of the parameters P1, P2, P3, b1 or b2 can
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essentially result in uncertainty in the positions (1, 1), (1, 2), (2, 1) or (2, 2) of the state matrices
(3-35)-(3-38) based on the presence of the above mentioned parameters in those positions.
A constant uncertainty is assumed to exist in the position (1, 2) of the state matrices which
can be attributed to an uncertainty in the parameter b2. As a simplification, the constant
uncertainty value is considered to be the same in all the rules. The simulations can as well
be performed with uncertainty in any position of the state matrices.

The controller in this section is designed using Theorem 11 and Theorem 144. In the design
of the robust controller, the following assumptions are considered.

• Since the TS fuzzy model has been constructed using the sector nonlinearity approach,
the number of active rules at all time t > 0 is 4 (i.e. s = r = 4).

• A constant uncertainty is considered in position (1, 2) of the state matrices in all the
rules i.e.,

∆Ai =




0 c12 0 0
0 0 0 0
0 0 0 0
0 0 0 0




where c12 is the non-zero value.

• Sensor information is assumed to be exactly the same as the state information. In prac-
tice, appropriate filtering is needed if sensor noise is present.

The specifications considered are as follows.

• The decay rate is α = 1.

• The limit on the control input is ‖u(t)‖ ≤ 1.

In the following, the evolution of states and control input is presented for two different initial
conditions.

Case 1

For this case, assume that ‖x(0)‖ ≤ 1. The initial state is taken as

x(0)deg =
[
28.6479 40.1070 −9.7403 14.8969

]T
i.e., x(0)rad =

[
0.5 −0.7 −0.17 0.26

]T

and hence ‖x(0)‖ = 0.91465. With the aforementioned assumptions for the system and the

4The system of LMIs is solved using ‘mincx‘ function of MATLAB’s LMI toolbox.
5The norm calculations for the initial state considers the states to be measured in radians and radians/s.

For convenience, the state values are presented in degrees and degrees/s as well.

Master of Science Thesis Sangeetha Bindiganavile Nagesh



48 Robust fuzzy state feedback controller design

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−10

−5

0

5

10

15

Time in seconds

A
n
g
u
la

r
p
o
si
ti
o
n
s

in
d
eg

re
es

 

 
θ1

θ2

Figure 4-1: Evolution of positions with controller designed for ‖x(0)‖ ≤ 1 and initial condition

x(0)deg = [28.6479 40.1070 − 9.7403 14.8969]T .
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Figure 4-2: Evolution of velocities with controller designed for ‖x(0)‖ ≤ 1 and initial condition

x(0)deg = [28.6479 40.1070 − 9.7403 14.8969]T .

specifications for the controller, the values of the controller gains obtained are as follows.
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Figure 4-3: Control input with controller designed for ‖x(0)‖ ≤ 1 and initial condition

x(0)deg = [28.6479 40.1070 − 9.7403 14.8969]T .

F1 =

[
0.0432 0.0009 0.5434 0.0016
0.0077 0.0042 0.0184 0.3967

]

F2 =

[
0.0432 0.0009 0.5433 0.0016
0.0075 0.0042 0.0178 0.3967

]

F3 =

[
0.0432 0.0009 0.5434 0.0016
0.0077 0.0042 0.0184 0.3967

]

F4 =

[
0.0432 0.0009 0.5433 0.0016
0.0075 0.0042 0.0178 0.3967

]

and the maximum bounds on the uncertainty norms are: µ1 = 0.637796, µ2 = 0.637796,
µ3 = 0.637796 and µ4 = 0.637796.

With a constant uncertainty of 0.6 (since norm of the uncertainty will be thus smaller than
µi given by the controller design) at location (1, 2) in the state matrices, the evolution of the
states and the control inputs is given in Figure 4-1, Figure 4-2 and Figure 4-3.

Case 2

For this case, the controller is designed with initial conditions ‖x(0)‖ ≤ 2. To simulate a tra-

jectory, the initial state is taken to be x(0)deg =
[
28.6479 −40.1070 −9.7403 44.6907

]T

i.e., x(0)rad =
[
0.5 −0.7 −0.17 0.78

]T
and hence ‖x(0)‖ = 1.1736

With ‖x(0)‖ ≤ 2, the controller gains obtained are as follows.
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Figure 4-4: Evolution of positions with controller designed for ‖x(0)‖ ≤ 2 and initial condition

x(0)deg = [28.6479 − 40.1070 − 9.7403 44.6907]T .
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Figure 4-5: Evolution of velocities with controller designed for ‖x(0)‖ ≤ 2 and initial condition

x(0)deg = [28.6479 − 40.1070 − 9.7403 44.6907]T .

F1 =

[
0.0102 0.0002 0.4619 −0.0014
0.0034 0.0011 0.0078 0.3867

]
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Figure 4-6: Control input with controller designed for ‖x(0)‖ ≤ 2 and initial condition

x(0)deg = [28.6479 − 40.1070 − 9.7403 44.6907]T .

F2 =

[
0.0102 0.0002 0.4618 −0.0014
0.0032 0.0011 0.0075 0.3867

]

F3 =

[
0.0102 0.0002 0.4619 −0.0014
0.0034 0.0011 0.0078 0.3867

]

F4 =

[
0.0102 0.0002 0.4618 −0.0014
0.0032 0.0011 0.0075 0.3867

]

and the maximum bounds on the uncertainty norms are: µ1 = 0.318436, µ2 = 0.318436,
µ3 = 0.318436 and µ4 = 0.318436.

With a constant uncertainty of 0.3 (since the norm of the uncertainty will be thus smaller
than µi given by the controller design) at location (1, 2) in the state matrices, the evolution
of the states and the control input is given in Figure 4-4, Figure 4-5 and Figure 4-6.

4-6 Conclusions

This chapter discussed robust controller design. The uncertainty distribution structure in the
local linear models of the TS fuzzy model is of the form ∆Ai = MiAδi. The uncertainties
are bounded by known norm values. The maximum norm of the uncertainty blocks that the
controller can stabilize can be obtained as part of the design process. Other specifications
such as decay rate and control input constraint can be added to the controller design. The
decay rate is specified by the user. As an extension of the work done in this chapter, further
work can be done to simultaneously maximize the decay rate and the norms of the uncertainty
blocks.
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The type of uncertainty that can be stabilized by the controller designed in this chapter is
not limited to constant uncertainties in the state matrices. The controller will also be able to
stabilize uncertainties of the form ∆Ai = MiAδi that are unmodelled nonlinearities or time
varying as long as their norm is smaller than the maximum uncertainty bound obtained from
robust controller design.

The uncertainty distribution structure considered in this thesis differs from that considered
in [5] in the sense that ∆Ai = MiAδi is a simpler uncertainty pattern compared to ∆Ai =
Dai∆aiEai. Moreover, ∆Ai = MiAδi lacks the flexibility to concentrate uncertainty in a
desired subsection of the state matrix.

In the following chapter, we discuss the applicability of an adaptive observer to the robot
arm.
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Chapter 5

Adaptive observer

The previous chapter presented the robust controller design for the uncertainty distribution
structure ∆Ai = MiAδi. In this chapter, we present the design of an adaptive observer to
estimate constant uncertainties in the state matrices of the Takagi-Sugeno (TS) fuzzy model
of the robot arm. The adaptive observer design guarantees asymptotic stability given an
upper bound µmax on the uncertainty block norm ‖Aδi‖. The value of µmax is thus a very
important design consideration. The theory of adaptive observer is presented in the first
section of this chapter. This is followed by the results of applying the adaptive observer to
the robot arm fuzzy model. The effect of varying the value of µmax is analyzed and presented
in Section 5-2 of this chapter. Section 5-3 presents the analysis of uncertainty structure of
the TS model in designing uncertainty estimation experiments.

5-1 Introduction

Observers are generally designed to estimate the states of a system with known information
about the current output and input of the system. However, it becomes difficult to estimate
the states of the system when there are uncertainties in the system. The estimation becomes
further complicated in the absence of complete information about the input to the system
[21]. Adaptive observers have been researched in the case of linear systems and nonlinear
systems. A discussion regarding adaptive observers for TS fuzzy models is available in [21].
Based on the availability of an existing model of the plant, approaches for observer design to
estimate unknown inputs and unmodelled dynamics are provided. Consider the model

ẋ =
r∑

i=1

hi(z)(Aix + Biu + ai + Mid)

y =
r∑

i=1

hi(z)(Cix) (5-1)

where
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• Ai, Bi, Ci, Mi, ai are known matrices and biases

• d is an unknown input representing either unmodelled dynamics or disturbances

• Mi are disturbance distribution matrices

The observer considered is of the form:

˙̂x =
r∑

i=1

hi(ẑ)(Aix̂ + Biu + ai + Mid̂ + Li(y − ŷ))

ŷ =
r∑

i=1

hi(ẑ)(Cix̂)

˙̂
d = f(d̂, h(ẑ), x̂, y) (5-2)

with Li, i = 1, 2, . . . , r being the gain matrices for every rule of the observer and f being the
update law for d.

Observer design has been considered for two cases. One is to estimate unknown polyno-
mial inputs and the other is to estimate unmodelled dynamics. In estimating the unknown
polynomial inputs, two sets of stability conditions have been derived based on whether the
scheduling variables are dependent on the state variables or not. The conditions have been
derived for d being a (p − 1)th degree polynomial in time and also another case where the pth

derivative of d is bounded by a known constant.

In estimating the unmodelled dynamics, a fuzzy system of the following form is considered.

ẋ =
r∑

i=1

hi(z)(Aix + Biu + Mi(Aδix + Bδiu + θi)) (5-3)

where the matrices Aδi, Bδi and vectors θi are unknown and Aδi is bounded by µmax(|| Aδi ||≤
µmax). [21] provides sufficient conditions to determine stability and to design an asymptoti-
cally stable observer to estimate the states x and constant matrices Aδi, Bδi and parameter
vectors θi.

In case of uncertainty only in the state matrices and a common output matrix for all rules,
the fuzzy model and the corresponding adaptive observer are as follows.

For the uncertain TS fuzzy system

ẋ =
r∑

i=1

hi(z)(Aix + Biu + Mi(Aδix))

y = Cx (5-4)

assuming that the scheduling variables do not depend on the states to be estimated, the
observer is

˙̂x =
r∑

i=1

hi(z)(Aix + Biu + Li(y − ŷ) + Mi(Âδix̂))

ŷ = Cx̂ (5-5)
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with the update law

˙̂
Aδi = f i(Âδi, h(z), x̂, y) i = 1, 2, . . . , r (5-6)

where Li, i = 1, 2, . . . , r are the observer gain matrices for each rule and the update laws
f i, i = 1, 2, . . . , r are determined so that the estimation errors (x − x̂) and (Aδi − Âδi)
asymptotically converge to zero. The error dynamics are given as

ė =
r∑

i=1

hi(z)[(Ai − LiC + MiAδi)e + Mi(Āδi)x̂)] (5-7)

with Āδi = Aδi − Âδi. We also assume that the matrices Mi, i = 1, 2, . . . , r have full col-
umn rank, and rank(CMi) = rank(Mi), i = 1, 2, . . . , r. This assumption ensures that the
uncertainty is observable from the available measurements.

The following theorem, rewritten for constant uncertainties only in the state matrices of
the fuzzy model, provides the conditions to guarantee asymptotic stability of the adaptive
observer for the uncertainty block norm ‖Aδi‖ ≤ µmax.

Theorem 15. [1] The error dynamics (5-7) are asymptotically stable, if the membership func-
tions hi, i = 1, 2, . . . , r are smooth, all rules are sufficiently excited and there exist matrices
P = P T > 0, Q = QT > 0 and Li, i = 1, 2, . . . , r such that

H(P (Ai − LiC)) < −Q

‖Mi‖µmax ≤
λmin(Q)

λmax(P )
(5-8)

for i = 1, 2, . . . , r and with the uncertainty matrix update law

˙̂
Aδi = hi(z)MT

i PC†eyx̂T (5-9)

where C† is the Moore-Penrose pseudoinverse of C.

Proof. See [1].

The measure of the uncertainty estimation error in the adaptive observer is defined as the
sum of squares of element-wise uncertainty error in all local linear models i.e.,

Aδe =
r∑

i=1

tr(ĀT
δiĀδi) =

r∑

i=1

nr∑

j=1

nc∑

k=1

Ā2
δi(j, k) (5-10)

where nc is the number of columns and nr is the number of rows of of Aδi. This error is
asymptotically stable [1]. The adaptive observer design as presented above can estimate both
the states and the uncertainty, given that the uncertainty is observable from the available
measurements. In the case when all the states are measured, the adaptive observer concept
can be used to estimate uncertainty alone. In the following section, the adaptive observer is
used in estimating uncertainty in the state matrices of the 2-DOF robot arm fuzzy model,
given all its states are measured.
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5-2 Adaptive observer design for the simplified 2-DOF robot arm

The adaptive observer is designed for the 2-DOF robot arm for which TS fuzzy model is given
in Section 3-5. Uncertainty is assumed to be in the state matrices of the fuzzy model. An
uncertainty in any of the parameters P1, P2, P3, b1 or b2 can essentially result in uncertainty
in the positions (1, 1), (1, 2), (2, 1) or (2, 2) of the state matrices (3-35)-(3-38) based on the
presence of the above mentioned parameters in those positions. For the purpose of adaptive
observer design, a constant uncertainty is assumed to exist in the position (1, 2) of the state
matrices which can be attributed to an uncertainty in the parameter b2. As a simplification,
the constant uncertainty value is assumed to be the same in all the rules. The simulations
can as well be performed with constant uncertainty in any position of the state matrices with
appropriate Mi matrices. To test the adaptive observer, simulations are performed. The
results are presented in this section.

For the purpose of simulations, the constant uncertainty is assumed to be in position (1,2)
of the state matrices (i.e., in the position of A matrix which multiplies the state θ̇2 in the
equation for the dynamics of θ1). For example, the uncertainty matrix for the four state robot
arm model can be

∆Ai =




0 c12 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 (5-11)

where c12 represents the constant uncertainty in the position (1, 2) of the state matrix. To
estimate the uncertainty in the first row of the state matrix, the disturbance distribution

matrix Mi =
[
1 0 0 0

]T
and Aδi is chosen to be a row matrix such that the product

MiÂδi gives the uncertainty estimate for the state matrices i.e., ∆Ai. In the following, the
simulation results are presented for constant uncertainty of c12 = 0.6 and µmax = 2.

The uncertainty in the state matrices is c12 = 0.6 in all the rules. The simulation is run for
50 s and the uncertainty estimates are stored. Continuous execution of the adaptive observer
for 50 s is referred to as one run of the adaptive observer. The input used to excite the
system is a multisine signal limited to 3 Hz. The angles are limited to −1.6 ≤ θ1 ≤ 1.6
(radians) and −1.7 ≤ θ2 ≤ 1.64 (radians). The initial states of the TS fuzzy model is

x(0)deg =
[
28.6479 −40.1070 −9.7403 14.8969

]T
. The initial conditions for the state of

the adaptive observer is x(0)deg =
[
0 0 0 0

]T
. The uncertainty in all the rules Aδi =

[
0 0.6 0 0

]
and the initial estimate of the uncertainty Âδi =

[
0 0 0 0

]
.
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Case 1

In this case, the adaptive observer is designed6 for µmax = 2. The values of the matrices P
and the observer gains Li, i = 1, 2, . . . , r are obtained by solving the LMIs7

H(P (Ai − LiC)) < −Q[
Q − µ2

maxI P
P −I

]
(5-12)

The value of the P matrix is obtained as

P =




0.873 0 0 0
0 0.8730 0 0
0 0 0.8730 0
0 0 0 0.8730




and the observer gains Li, i = 1, 2, . . . , r are

L1 =




−53.5256 39.5860 0.5143 −0.0347
38.6621 −618.9929 −0.0268 0.5034
0.4857 0.0268 10.2487 0.0001
0.0347 0.4966 −0.0001 10.2487




L2 =




−53.5256 39.0387 0.4925 0.0793
37.0730 −618.2889 0.0454 0.4952
0.5075 −0.0454 10.2487 0.0000

−0.0793 0.5048 0.0000 10.2487




L3 =




−53.5248 38.9245 0.5364 0.0464
39.3225 −618.9850 −0.0931 0.4705
0.4636 0.0931 10.2487 −0.0001

−0.0464 0.5295 0.0001 10.2487




L4 =




−53.5248 38.0612 0.5265 0.0021
38.0495 −618.2810 0.0000 0.4999
0.4735 0.0000 10.2487 0.0000

−0.0021 0.5001 0.0000 10.2487




After executing the adaptive observer for 50 s, the uncertainty estimates obtained are:

Âδ1 =
[
0.0077 0.5863 −0.0002 −0.0097

]

Âδ2 =
[
0.0028 0.0670 −0.0008 −0.0042

]

Âδ3 =
[
0.0070 0.1832 −0.0028 −0.0138

]

Âδ4 =
[
0.0002 0.0559 −0.0020 −0.0084

]

It can be seen from the values of the uncertainty estimates, that the adaptive observer intro-
duces non-zero estimated values for all the elements in Âδi (not only the element in position

6I thank dr. ir. Zsófia Lendek for providing a reference Simulink model for adaptive observer.
7The system of LMIs is solved using ‘feasp‘ function of MATLAB’s LMI toolbox.
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(1, 2)). However, the value at position (1, 2) in the uncertainty estimates of all the rules are
considerably higher than the other elements.

Figure 5-1 presents the input signal used to excite the TS fuzzy model. Figure 5-2 gives the
activation of the rules with this input when ‖Aδi‖ = 0.6. The input in Figure 5-1 ensures
that all rules are activated. The activation of rule R1 is close to 1 for most of the simulation.
The activation of rule R2 is very small. From this, it can be expected that the uncertainty
estimation error goes to 0 faster in case of the local model R1 compared to the other local
models. Figure 5-3 presents the value of trace(ĀT

δiĀδi) for each of the local linear models,
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Figure 5-1: Input used to estimate uncertainty.

where Āδi = Aδi − Âδi. The uncertainty estimation error is defined as
r∑

i=1

trace(ĀT
δiĀδi) [1].

The trace corresponding to the individual rules are presented in Figure 5-3, the sum of which
gives the total uncertainty estimation error. It can be seen that the uncertainty estimation
error reaches smaller values for the rule which has a high value of activation (for e.g. R1).
The difference between the real uncertainty and the estimated uncertainty is referred to as
residual uncertainty and its norm for each local model is shown in Figure 5-5.

Figure 5-4 presents the state estimation error when ‖Aδi‖ = 0.6 and µmax = 2. Though this
is not much of consequence in the case where all the states are measured, analyzing this plot
indicates speed of state and uncertainty estimation with respect to changing input.
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Figure 5-2: Activation of the rules with the input used.
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(Ā

T δ
3
Ā
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(Ā

T δ
4
Ā
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Figure 5-3: Uncertainty estimation error with ‖Aδi‖ = 0.6 and µmax = 2.

Case 2

In this case, the adaptive observer is designed for µmax = 20. The value of the matrix P is
obtained as

P =




14.6736 0 0 0
0 14.6736 0 0
0 0 14.6736 0
0 0 0 14.6736
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Figure 5-4: State estimation error with ‖Aδi‖ = 0.6 and µmax = 2.
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Figure 5-5: Norm of the residual uncertainty ‖Aδi‖ = 0.6 and µmax = 2.

and the observer gains Li, i = 1, 2, . . . , r are

L1 =




9.0613 39.1250 0.4999 0.0000
39.1230 −556.4060 0.0000 0.5000
0.5001 0.0000 72.8356 0.0000
0.0000 0.5000 0.0000 72.8356
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L2 =




9.0613 38.0570 0.4999 0.0000
38.0547 −555.7020 0.0000 0.5000
0.5001 0.0000 72.8356 0.0000
0.0000 0.5000 0.0000 72.8356




L3 =




9.0621 39.1230 0.5000 0.0000
39.1241 −556.3981 −0.0001 0.5000
0.5000 0.0001 72.8356 0.0000
0.0000 0.5000 0.0000 72.8356




L4 =




9.0621 38.0553 0.5000 0.0000
38.0554 −555.6941 0.0000 0.5000
0.5000 0.0000 72.8356 0.0000
0.0000 0.5000 0.0000 72.8356




After executing the adaptive observer for 50 s, the uncertainty estimates obtained are:

Âδ1 =
[
−0.0077 0.6351 0.0010 0.0149

]

Âδ2 =
[
0.0168 0.2033 −0.0010 0.0024

]

Âδ3 =
[
0.0478 0.5868 −0.0028 0.0084

]

Âδ4 =
[
0.0168 0.2285 −0.0012 0.0059

]

The input used in this case is same as in Figure 5-1. Rule activations remain the same
(Figure 5-2). Hence, even in this case it is expected for the uncertainty estimation error to
go to 0 faster in case of the local model of the rule R1 than in case of the other local models.
Figure 5-6 shows that the uncertainty estimation error reduces at a faster rate than with
µmax = 2. Similarly, Figure 5-7 shows that the state estimation error reduces faster than
with µmax = 2. Figure 5-8 presents the norm of the residual uncertainty.

Case 3

In this case, the adaptive observer is designed for µmax = 200.

The value of the P matrix is obtained as

P =




557.8511 0.0179 0.0004 0.0000
0.0179 557.6912 0.0000 0.0000
0.0004 0.0000 557.9063 0.0000
0.0000 0.0000 0.0000 557.9063




and the observer gains Li, i = 1, 2, . . . , r are

L1 =




2681.5 39.0674 0.4986 −9.2237 · 10−5

39.0605 2116.5 −1.5034 · 10−4 0.5002
0.4986 −1.2659 · 10−4 2745.1 −2.9558 · 10−8

−7.5630 · 10−5 0.5000 −1.8731 · 10−8 2745.1
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Figure 5-6: Uncertainty estimation error with uncertainty norm = 0.6 and µmax = 20.
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Figure 5-7: State estimation error with ‖Aδi‖ = 0.6 and µmax = 20.
8

L2 =




2681.5 37.9994 0.4986 −9.227 · 10−5

37.9922 2117.2 −1.5045 · 10−4 0.5002
0.4986 −1.2594 · 10−4 2745.1 −2.9557 · 10−8

−7.5630 · 10−5 0.5000 −1.8733 · 10−8 2745.1
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Figure 5-8: Norm of the residual uncertainty ‖Aδi‖ = 0.6 and µmax = 20.

L3 =




2681.5 39.0669 0.4986 −9.223 · 10−5

39.0600 2116.5 −1.5035 · 10−4 0.5002
0.4986 −1.2658 · 10−4 2745.1 −2.9555 · 10−8

−7.5637 · 10−5 0.5000 −1.8734 · 10−8 2745.1




L4 =




2681.5 37.9989 0.4986 −9.2278 · 10−5

37.9917 2117.2 −1.5045 · 10−4 0.5002
0.4986 −1.2594 · 10−4 2745.1 −2.9557 · 10−8

−7.5622 · 10−5 0.5000 −1.8733 · 10−8 2745.1




After executing the adaptive observer for 50 s, the uncertainty estimates obtained are:

Âδ1 =
[
−0.0102 0.6279 0.0034 0.0204

]

Âδ2 =
[
0.0188 0.2157 −0.0009 0.0006

]

Âδ3 =
[
0.0515 0.6258 −0.0031 −0.0002

]

Âδ4 =
[
0.0139 0.2480 −0.0025 −0.0035

]

The input used in this case is same as in Figure 5-1. Rule activation is given in Figure 5-2.
Figure 5-9 shows that the uncertainty estimation error reduces faster than with µmax = 2 and
µmax = 20. Similarly, Figure 5-10 shows that the state estimation error reduces faster than
with µmax = 2 and µmax = 20. Figure 5-11 presents the norm of the residual uncertainty
during the estimation.

It can be concluded from the results of the above three cases that, if the constant uncertainty
is the same and the uncertainty norm µmax for which the adaptive observer is designed is
increased, the state estimation error and the uncertainty estimation error reduces at a faster
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Figure 5-9: Uncertainty estimation error with ‖Aδi‖ = 0.6 and µmax = 200.
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Figure 5-10: State estimation error with ‖Aδi‖ = 0.6 and µmax = 200.
9

rate. Hence, µmax behaves similar to a decay rate and can be considered as the rate at
which the uncertainty estimate converges to true uncertainty. It is referred to as uncertainty
convergence rate from here on. The results presented in this section are with the adaptive
observer being simulated for 50 s (referred to as one run of the adaptive observer). The
uncertainty estimates obtained after the first run of the adaptive observer can be used to
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Figure 5-11: Norm of the residual uncertainty ‖Aδi‖ = 0.6 and µmax = 200.

update the model. The adaptive observer can be used to further estimate the uncertainty in
the new model. Further study is required to analyze the utility of this iterative method in
better estimating the uncertainties.

The choice of input used in the experiments is based on the knowledge of the bandwidth
of the operation of the model, to activate all the rules and to avoid saturation of the state
variables. The time of 50 s for a run of the adaptive observer is experimentally determined to
obtain a significant reduction in the uncertainty estimation error. The choice of the input and
simulation time of the adaptive observer also influence the values of the estimates obtained.
An input that ensures that all rules are sufficiently excited results in better estimation. Esti-
mation is better in case of the rules which are active with a high degree of relevance. This is
seen from the simulation results, where the uncertainty estimation error is smaller in some of
the rules than the remaining ones. For instance, degree of relevance of R1 and R3 are higher
than that of R2 and R4 and the uncertainty estimation error is smaller in case of R1 and R3

compared to R2 and R4. Given a suitable input, if the adaptive observer is used for a longer
duration, better estimates may be obtained. The TS fuzzy model for which the uncertainty
is being estimated will largely influence the possibility to activate all rules sufficiently. For
example, in case of models constructed based on sector nonlinearity, it may not be possible
to activate some of the rules beyond a certain degree in the defined region of state space.

This section presented the adaptive observer design for 2-DOF robot arm model and described
the effect of increasing µmax. The influence of the input and the duration of experiments on
the uncertainty estimation is discussed. In the following section, exploiting the structure of
the model in the uncertainty estimation is discussed for the specific example of 2-DOF robot
arm.
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5-3 Uncertainty structure information

In the 2-DOF robot arm model, the membership functions of the TS model are dependent
on the state θ2 only. Hence providing the input u2 which causes variation in θ2 alone is
sufficient to activate the rules of the model. Also considering that the constant uncertainty is
present in the state matrices Ai in the elements which multiply the states θ̇2, only u2 needs
to be provided to estimate the uncertainty. This is illustrated on an example, with c12 = 0.6
(i.e., the uncertainty multiplies the state θ̇2 in the equation for θ̈1). The adaptive observer is
designed for µmax = 200.

The input u2 is presented in Figure 5-1 and the input u1 is zero. The activations of rules are
given in Figure 5-12.
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Figure 5-12: Activation of rules with the input u2.

Figures 5-13 and 5-14 show the uncertainty estimation error and state estimation error, re-
spectively. Figure 5-15 presents the norm of the residual uncertainty.

The uncertainty estimates after one run are obtained as

Âδ1 =
[
0.0266 0.6280 0.0024 0.0191

]

Âδ2 =
[
0.0024 0.2175 0.0000 0.0007

]

Âδ3 =
[
0.0066 0.6307 0.0001 0.0011

]

Âδ4 =
[
0.0020 0.2490 −0.0001 −0.0012

]

The norms of residual uncertainties are obtained as ‖Āδ1‖ = 0.0432, ‖Āδ2‖ = 0.3825, ‖Āδ3‖ =
0.0314 and ‖Āδ4‖ = 0.3510. These values are close to the values obtained in the case when
both inputs u1 and u2 are given to the model, which resulted in ‖Āδ1‖ = 0.0362, ‖Āδ2‖ =
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Figure 5-13: Uncertainty estimation error with ‖Aδi‖ = 0.6 and µmax = 200.
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Figure 5-14: State estimation error with ‖Aδi‖ = 0.6 and µmax = 200.

0.3847, ‖Āδ3‖ = 0.0577 and ‖Āδ4‖ = 0.3523. Hence, it can be concluded from the results that
an experiment with only input u2 can be used to estimate the uncertainties assumed to be as
described above, thus avoiding the need to design the input u1. Though considering that the
uncertainty to exist only in position (1, 2) of the robot arm model is a simplification and far
from reality, this example illustrates a possibility to use the information about the TS fuzzy
model and the uncertainty structure to identify the kind of experiments to perform in order
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Figure 5-15: Norm of the residual uncertainty ‖Aδi‖ = 0.6 and µmax = 200.

to estimate the uncertainties.

5-4 Conclusions

In this chapter, an adaptive observer has been designed for the 2-DOF robot arm. Given
that all the states are measured, the adaptive observer has been used for the 2-DOF robot
arm as an uncertainty estimator. For a constant uncertainty in the state matrices, adaptive
observer designs with different values of µmax have been presented. It has been observed from
the simulation results that the uncertainty block norm reduces after one run of the adaptive
observer. Hence updating the initial model of the system with uncertainty estimates can
result in a better model of the system. The simulation results indicate that µmax behaves as
an uncertainty convergence rate. In the last section of the chapter, a possibility to exploit
the information available about the uncertainty structure and the TS fuzzy model to create
suitable experiments for estimating the uncertainties has been presented.

The following chapter presents the use of estimates given by the adaptive observers in the
design of the robust state feedback controller.
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Chapter 6

Adaptive observer and robust

controller

Chapters 4 and 5 presented the robust controller design and the adaptive observer design for
Takagi-Sugeno (TS) fuzzy models to estimate the constant uncertainties in the state matrices.
This chapter brings together the concepts in robust controller and adaptive observer and
analyzes how the uncertainty estimates from the adaptive observer can be used in robust
controller design. It has been observed in Chapter 5 that updating the initial model of the
system with the uncertainty estimates provides a new model for the system with smaller
uncertainty than before. Hence, there is a reason to expect improvement in the performance
achievable from the controller design and this issue is analyzed in Section 6-1. Analysis is
also done to see the effect of an active controller on the uncertainty estimates obtained from
the adaptive observer. For this case, the system is controlled by the robust controller and an
adaptive observer is active to estimate uncertainties but has no influence on the controller.
This analysis is presented in Section 6-2. The chapter ends with the conclusions derived.

6-1 Uncertainty estimates in controller design

We have concluded in Chapter 5 that the adaptive observer provides uncertainty estimates
which can be used to update the TS fuzzy model and thus better represent the system.
However, even after updating the model with the uncertainty estimates, uncertainty can exist
in the new model (depending on the residual uncertainty). Hence, a controller that can
stabilize the system with uncertainty has to be designed. Since the uncertainty in the system
is reduced because of the use of adaptive observer and the subsequent updating of the model,
a controller can be designed with a new reduced uncertainty norm. In this section, for the
2-DOF robot arm model, it is evaluated if any improvement in controller performance can be
achieved due to the availability of the new updated model from the adaptive observer. The
procedure is depicted by Figure 6-1.
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Figure 6-1: Uncertainty estimates in controller design.

In the following, the adaptive observer designed in Case 3, Section 5-2 of Chapter 5 is con-
sidered for analysis and the relevant results are presented here. Recall that in this case the
uncertain TS fuzzy model is assumed to have a constant uncertainty of c12 = 0.6 in the
position (1, 2) of the state matrices in all the rules. The adaptive observer is designed for
µmax = 200 since we obtained the best uncertainty estimates for this case among the µmax

values considered. The input used is same as in Figure 5-1 in Chapter 5. The uncertainty
estimates obtained after the adaptive observer was executed for 50 s are as follows.

Âδ1 =
[
−0.0102 0.6279 0.0034 0.0204

]

Âδ2 =
[
0.0188 0.2157 −0.0009 0.0006

]

Âδ3 =
[
0.0515 0.6258 −0.0031 −0.0002

]

Âδ4 =
[
0.0139 0.2480 −0.0025 −0.0035

]
(6-1)

The norms of the residual uncertainties are: ‖Āδ1‖ = 0.0362, ‖Āδ2‖ = 0.3847, ‖Āδ3‖ = 0.0577,
and ‖Āδ4‖ = 0.3523. The uncertainty estimates in equation (6-1) are used in updating the TS
fuzzy model. A robust controller is designed with this new updated model using Theorems
11 and 14 with the specifications of α = 1, ζ = 1, and φ = 1 where α is the decay rate,
ζ is the constraint on the control input and φ is the bound on the initial state norm. The
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maximum norms on the uncertainty for which stability can be guaranteed with this controller
was obtained as µ1 = µ2 = µ3 = µ4 = 0.637543. Since the norm of the residual uncertainty
is relatively smaller than these values, the value of decay rate was increased to α = 2 and the
controller was redesigned. By maximizing the norms of uncertainties using Theorem 11, new
values of µ1 = µ2 = µ3 = µ4 = 0.47758 are obtained. The residual uncertainty norms are all
smaller than 0.47758 and hence the controller design with α = 2 can be used to guarantee
stability of the controlled system with an increased decay rate. This indicates that using the
adaptive observer uncertainty estimates in updating the model of the system and redesigning
the controller can guarantee stability for a higher decay rate.

If the uncertainty were to be c12 = 0.95 and the design specifications to be met α = 1,
ζ = 1, and φ = 1 with the initial TS fuzzy model, then the robust controller could not
have guaranteed stabilization for the uncertainty norm of ‖Aδi‖ = 0.95. By maximizing the
uncertainty norms for which the controller can guarantee stability, the values of µ1, µ2, µ3,
and µ4 are obtained to be 0.637796. By using the adaptive observer with the same inputs as
in Figure 5-1, µmax = 200 and simulation time of 50 s, uncertainty estimates are

Âδ1 =
[
−0.0173 0.9946 0.0055 0.0284

]

Âδ2 =
[
0.0309 0.3419 −0.0014 0.0011

]

Âδ3 =
[
0.0853 0.9921 −0.0049 0.0004

]

Âδ4 =
[
00.0235 0.3934 −0.0040 −0.0051

]

The norms of the residual uncertainties after 50 s of estimation by the adaptive observer are
‖Āδ1‖ = 0.0559, ‖Āδ2‖ = 0.6089, ‖Āδ3‖ = 0.0953, and ‖Āδ4‖ = 0.5571. With the obtained
values of uncertainty estimates, the TS fuzzy model is updated and a robust controller is
designed with the required specifications. We get µ1 = µ2 = µ3 = µ4 = 0.6378 which is
greater than the values of the residual uncertainties and hence this robust controller can
guarantee stabilization of the new TS fuzzy model.

In this section we discussed the improvement in controller performance that can be achieved by
using the uncertainty estimates in the robust controller design. In the scenarios considered
in this section, a controller is not active when the adaptive observer is used to estimate
uncertainties. In the following section we analyze the scenario where a stabilizing controller
is active and the adaptive observer works in parallel to estimate uncertainties. Again, the
adaptive observer is not used to estimate states.

6-2 Parallel operation of adaptive observer and robust controller

In this section, the effect of an active robust stabilizing controller on the uncertainty estimation
by adaptive observer is analyzed. The configuration used is depicted by Figure 6-2. This can
be viewed from two perspectives. The first point of view is to consider the possibility where
the system is unstable and hence the presence of a controller is required. Second, when the
expense of having to perform open loop experiments can make the system go off-line and
hence it is preferred to add an external input to perform uncertainty estimation with the
system in closed loop. Both perspectives correspond to the idea of closed loop identification
where an active controller is required during input-output data generating experiments.
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Figure 6-2: Parallel operation of adaptive observer and robust controller.

We consider the results from Case 3, Section 5-2 in Chapter 5. In addition, a robust controller
designed for α = 1, ζ = 1, and φ = 1 is used to stabilize the system. The external input in
Figure 5-1 is given to the system. Due to the presence of the controller, the actual input to
the system is given in Figure 6-3.
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Figure 6-3: Input used to estimate uncertainty in the presence of controller.

Figures 6-4, 6-5, 6-7, and 6-6 present the activation of the rules, uncertainty estimation error,
residual uncertainty norm and the state estimation error in the case of the uncertain TS
fuzzy model being stabilized by the controller while the adaptive observer is operating in
parallel. Simulation of the adaptive observer for 50 s with an active controller, resulted in the
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Figure 6-4: Activation of rules by the input used with an active controller.
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Figure 6-5: Uncertainty estimation error with uncertainty norm = 0.6, µmax = 200, and an

active controller.

uncertainty estimates:

Âδ1 =
[
−0.0111 0.6448 −0.0112 0.0122

]

Âδ2 =
[
0.0053 0.0696 −0.0007 0.0002

]
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Âδ3 =
[
0.0130 0.1703 −0.0017 0.0005

]

Âδ4 =
[
0.0018 0.0201 −0.0002 −0.0001

]

Comparing the results obtained in the Figure 6-5 with those obtained in Figure 5-9 Section
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Figure 6-6: State estimation error with ‖Aδi‖ = 0.6, µmax = 200, and an active controller.
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Figure 6-7: Norm of the residual uncertainty ‖Aδi‖ = 0.6, µmax = 200 and an active controller.

5-2, Case 3, it is observed that the uncertainty estimation error after 50 s in case of estimation
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with active controller is higher than in case of stand-alone estimation by the adaptive observer.
It can be seen from Figure 6-5 that the estimation is faster in case of rule R1. This is due to
the fact that the stabilizing action by the controller takes the states of the system towards
zero. The value of θ2 closer to zero corresponds to higher activation of R1. Thus it can be
concluded that the stabilizing action reduces the uncertainty convergence rate in case of local
models corresponding to R2, R3 and R4.

6-3 Conclusions

In this chapter, the concepts of robust controller and adaptive observer discussed in Chapters
4 and 5 are brought together. The influence of using the uncertainty estimates from the
adaptive observer in design of robust controller is analyzed. With an updated model of the
system, it is found that the controller can guarantee stabilization with a higher decay rate.

The possibility to use the adaptive observer to estimate the uncertainty when a robust con-
troller is stabilizing the system has been analyzed in analogy to closed loop identification.
From the results,we found that the uncertainty convergence rate is reduced in the presence
of the stabilizing controller for all the rules except the one that is activated more due to the
stabilizing action.

The next chapter presents the conclusions derived from this thesis and proposals for future
work.
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Chapter 7

Conclusions and proposals for future

work

This thesis dealt with uncertainty estimation and control of nonlinear systems represented by
Takagi-Sugeno (TS) fuzzy models. The TS models were assumed to have uncertainties in the
state matrices of the local linear models. Adaptive observers introduced in the recent past were
used to obtain estimates of uncertainties and update the model of the system. Stabilization
and controller performance on using the updated model of the system was analyzed. To
demonstrate the adaptive observer and the controller design, a 2-DOF robot arm model
was used. The parameters of the robot arm were estimated for a laboratory-scale setup
(Chapter 3). The nonlinear model of the robot arm, originally containing six nonlinearities
was simplified to contain only two nonlinearities. Then a four-rule TS fuzzy model was
constructed using the sector nonlinearity approach. The simplified nonlinear model and
hence the fuzzy model almost exactly represent the complete nonlinear model. The mismatch
in the plant and the nonlinear model was attributed to unmodelled dynamics in the state
matrices. Assuming constant uncertainties in specific locations of the state matrices, an
adaptive observer [1] was used to estimate them. The simulation results were presented in
Chapter 5. The possibility to use the information about the structure of the uncertainties in
the TS fuzzy model in designing the uncertainty estimation experiment was analyzed. The
uncertainty estimates provided by the adaptive observer were used to update the fuzzy model
of the nonlinear system. The new model was used in the design of robust state feedback
stabilizing controller in Chapter 6. Since the estimates obtained from the adaptive observer
were used in controller design, the uncertainty distribution structure used in the design of both
adaptive observer and the robust controller needed to be same. Hence, a robust controller
design was developed (Chapter 4) that uses the same uncertainty distribution structure as
the adaptive observer. From the experimental results, it can be concluded that stability can
be guaranteed with a higher decay rate when using the updated model in robust controller
design (Chapter 6). The following paragraphs describe the work done and the conclusions
derived in detail.
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7-1 Conclusions

• Trade-off between initial condition norm bound and maximum uncertainty norm bounds
obtained by the robust controller design process

The robust controller design was demonstrated on the 2-DOF robot arm and results were
presented in Chapter 4, Section 4-5. Two sets of results were presented with same perfor-
mance specification (decay rate and control input constraint) but two different values of initial
conditions of the system x(0)1 and x(0)2. It can be seen that with ‖x(0)1‖ < ‖x(0)2‖, the
maximum uncertainty bounds obtained by the controller design process are relatively smaller
for the case with initial condition ‖x(0)2‖. Hence, it can be concluded that a trade-off ex-
ists between the initial condition norm bound and the maximum uncertainty norm bounds
obtained by the robust controller design process.

• Robust controller with an alternate uncertainty distribution structure

A robust controller was designed in Section 4-3, Chapter 4 considering uncertainty distribution
structure ∆Ai = MiAδi. Similar to the design procedure in [5], the uncertainties are bounded
by a known norm and the maximum norm of the uncertainties for which the controller can
guarantee stabilization can be obtained as part of the design process. Design specifications,
namely decay rate and constraint on the control input are also included. Since the stability of
the robust state feedback controller and adaptive observer with the uncertainty distribution
structure ∆Ai = MiAδi are individually now proven, the stability analysis of a plant controlled
by the robust controller with states estimated by the adaptive observer (along with uncertainty
estimation) can follow.

• Robust controller design for unmodelled nonlinearities and time varying uncertainties

The simulation results in Section 4-5, Chapter 4 consider examples with constant uncertainties
in the system matrices. However, the designed controller guarantees stability of the system
as long as the uncertainty norm is smaller than the maximum uncertainty norm obtained
as part of the controller design process. Hence, the controller design can as well be used in
controlling other applications with unmodelled nonlinearities or time varying uncertainties.

• Uncertainty distribution structures

Compared to the uncertainty distribution structure ∆Ai = Dai∆aiEai, the uncertainty dis-
tribution structure ∆Ai = MiAδi lacks the flexibility to concentrate uncertainty in a desired
subsection of the state matrix.

• Higher uncertainty convergence rate with higher uncertainty norm bound in adaptive
observer design
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The adaptive observer design was presented in Section 5-2, Chapter 5 for constant uncertain-
ties in the state matrices of 2-DOF robot arm TS model. One of the inputs to the design
is the value µmax which is the maximum uncertainty norm for which the adaptive observer
should be designed (See [1]). The simulation results show that designing the adaptive ob-
server for a much higher uncertainty norm bound than what is required by the system, a
higher uncertainty convergence rate is achieved.

• Exploiting the structure of the TS model in designing uncertainty estimation experi-
ments

In Section 5-3 of Chapter 5, the information that the nonlinearity/scheduling variable in the
model depends only on the state variable θ2 was used in designing the estimation experiment.
We also exploited the fact that the uncertainty is in a position that multiplies θ̇2 and u2 is
sufficient to excite the system. In such a case, uncertainty estimation does not necessitate
the design of input u1 which is of practical advantage. This indicates that the structure of
the nonlinearity and the uncertainty in the TS fuzzy model may simplify the uncertainty
estimation experiment design.

• Guaranteed stability with higher decay rate for smaller uncertainty in the updated
model

The uncertainty estimates obtained from the adaptive observer are used to update the model
of the system and to design the robust controller in Section 6-1, Chapter 6. It can be
concluded from the simulation results for the 2-DOF robot arm that with an updated model
of the system, the controller can guarantee stabilization for a higher decay rate due to smaller
uncertainties.

• Reduced uncertainty convergence rate in the presence of the stabilizing controller

Along the lines of closed loop identification, Section 6-2 of Chapter 6 presented the possibility
to use an adaptive observer for the purpose of estimating uncertainties when a robust con-
troller is actively stabilizing the system. The results show the reduction in the uncertainty
convergence rate when the controller is active on the plant. However, it was observed that
the uncertainty in case of the rule which corresponds to the states of the system being close
to zero, the convergence rate is high.

• Conservativeness of the robust controller and adaptive observer

Design of both the robust controller and adaptive observer are based on common quadratic
Lyapunov function. A common quadratic Lyapunov function requires all local models to be
stable (for control purposes) and observable (for estimation purposes). A local model not
being stable need not necessarily mean that the TS model in unstable throughout the state-
space. It is possible that the global model is stable even when the local model is not (unless
there is a possibility that the unstable local model can be the only once active). Hence the
robust controller design and the adaptive observer design are conservative due to the use of
common quadratic Lyapunov function.
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• Effect of equal and constant uncertainty assumption on TS fuzzy model

Assuming equal constant uncertainties attributed only to the variable b2 is an important
simplification considered in the thesis (see Section 5-2). An uncertainty in b2 essentially
causes uncertainties to appear in position (2, 2) of the state matrices (see Section 3-5) but is
not considered in the thesis. However, the results obtained is expected to be similar in case
of uncertainty in any position of the state matrices. The parameters P1, P2 and P3 of the
robot arm are found by nonlinear optimization (Section 3-3) using the values of b1, b2, km1

and km2 obtained by linear identification (Section 3-2). Hence, if we assume an uncertainty
in the parameter b2, since we have used b2 in estimating P1, P2 and P3, their estimates
have high possibility of being uncertain. This essentially means the values of minimum and
maximum values of the nonlinearities which are dependent on these parameters P1, P2 and
P3 are inexact as well (see equations (3-18), (3-19), and (3-34)). Due to time constraints, the
effect of this inexactness on the fuzzy model is not considered in this thesis.

Directions for future work are presented in the following section.

7-2 Future research proposals

• A different approach to modelling of the robot arm

The simplified model and hence a TS model constructed from it have been shown to represent
the complete nonlinear model almost exactly (see Figures 3-5 and 3-6). Hence for practical
purposes, the simplified nonlinear model in equation (3-13) can be used to describe the robot
arm. To estimate the parameters of the robot arm, an alternate approach can be taken.
The exact values of the masses and lengths of the individual links can be measured before
combining them to form the arm or obtained from the manufacturer of the arm. Subsequently
the centre of masses and inertias of the individual links can be evaluated. From this exercise,
parameters P1, P2 and P3 present in the mass matrix of (3-13) can be found almost exactly.
Modelling of the DC motor at the individual links can then be performed to obtain initial
estimates of damping and motor gain of the nonlinear model. The uncertainty in the values
of b1, b2, km1, and km2 in (3-15) can then be represented by constant uncertainties in the
state matrices and input matrices. The adaptive observer for uncertainties both in the state
matrices and input matrices [1] can be designed to estimate the uncertainties in the model.

• Maximizing the decay rate and uncertainty norms bounds

In the design of the robust controller in Chapter 4, the decay rate is provided by the user and
the maximum bounds on the uncertainties are obtained as part of the design process. As an
extension, further work can be done to analyze the possibility of maximizing both the decay
rate and the bound on the uncertainties and obtaining them as part of the design process.

• Adaptive observer with uncertainty block ∆Ai = Dai∆aiEai
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The adaptive observer used in estimating uncertainty in Chapter 5 considers uncertainty dis-
tribution structure of the form ∆Ai = MiAδi. The uncertainty distribution structure of the
form ∆Ai = Dai∆aiEai as used in robust controller design in [5] is able to concentrate the un-
certainty to desired subsection of the state matrix. With this advantage in consideration, the
possibility to develop an adaptive observer design with uncertainty block ∆Ai = Dai∆aiEai

can be investigated.

• Adaptive observers for other applications

The simulation results from Chapter 5 indicate the behaviour of the maximum uncertainty
norm for which the adaptive observer is designed i.e., µmax to be an uncertainty conver-
gence rate. These results are obtained specifically in case of the 2-DOF robot arm example.
Designing the adaptive observer for various applications and testing with different values of
uncertainty norm bounds is required to confirm these results from a general perspective. A
rigorous mathematical analysis in this direction can be performed as well.

For the purpose of simulations, it is considered that the uncertainties in the state matrices
are constant and that they have the same value in a specific position in the state matrices of
all the local linear models. However, these constant uncertainties may have different values
in different local linear models and may be present in different/multiple positions. Further
work can be done to test the performance of the adaptive observer in case of constant but
different/multiple uncertainties.

• State and uncertainty estimation

In the example in this thesis, the states are all considered to be measured. However, in
practice this may not be true. Hence examples in which the control law depends on the
states estimated by the adaptive observer (along with estimating uncertainties) need to be
analyzed. A mathematical proof of stabilization of the plant while being controlled by a
robust controller that uses states estimated by an adaptive observer will be necessary.

• Experiment design

The input considered in Chapter 5 is based on the knowledge of the bandwidth of the system.
The adaptive observer requires sufficient activation of all the rules of the TS fuzzy model to
enable efficient uncertainty estimation. Creating inputs to the system which ensure sufficient
activation of all the rules, though seems application dependent, should be investigated. The
duration for which the uncertainty estimation is required to be done to achieve sufficient
improvement in the model is also a research area of practical implication.

• Saturation-like nonlinearities

In practical applications, the state variables have maximum limits due to actuator limitations
or their physical structure. These limits can be incorporated into the fuzzy models as part
of the definition of compact state space. However, the effect of these nonlinearities on the
performance of adaptive observers is an area that needs to be investigated.
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• Discrete time analysis

The design of robust controller and adaptive observer for the 2-DOF robot arm have been
done using continuous time TS systems. Discrete time analysis and implementation can be
considered in the future.

• Effect of noise

The robust controller and adaptive observer simulations have been done without considering
the effect of noise. Implementations with noise should also be analyzed.
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Appendix A

Sector nonlinearity approach

This appendix presents the sector nonlinearity approach that is used in constructing the
Takagi-Sugeno (TS) fuzzy models for the application examples in Appendix B. The concepts
in this appendix are adapted from [22], [5] and [1].

The sector nonlinearity approach provides an exact representation of a nonlinear system in
a compact set of the state space [5]. For a simple nonlinear system with a single variable
ẋ(t) = f(x(t)) given f(0) = 0, the sector nonlinearity aims at finding a sector such that
ẋ(t) = f(x(t)) ∈ [a1, a2] x(t). It exactly represents the nonlinear system f(x(t)) with the
sector bounded by the straight lines a1x(t) and a2x(t). The idea is illustrated by Figure
A-1 taken from [22]. From the slopes a1, a2 of the straight lines and the function f(x(t)),

Figure A-1: Local sector ∈ [−d, d]
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membership functions are created as follows.

h1(x) =
f(x(t)) − a2 x(t)

(a1 − a2) x(t)
(A-1)

h2(x) =
a1 x(t) − f(x(t))

(a1 − a2) x(t)
(A-2)

where h1(x) + h2(x) = 1 and h1(x), h2(x) ≥ 0.
From the membership functions, the nonlinear function can be reconstructed by

f(x(t)) = h1(x) a1 x(t) + h2(x) a2 x(t)

=
2∑

i=1

hi(x) ai x(t) (A-3)

Associating the membership functions h1(x) and h2(x) with the fuzzy sets N1
1 and N1

2 and
the scheduling variable z1(t) = f(x(t)), we have the following two rules representing this
nonlinearity.

R1 : If z1 is N1
1 then

f(x(t)) = a1 x(t)

R2 : If z1 is N1
2 then

f(x(t)) = a2 x(t)

Figure A-1 represents the concept of sector nonlinearity, where the nonlinearity is covered in
a defined range of x(t).

In the following, sector nonlinearity is illustrated on two numerical examples. The first
example is from [5] and the second example is similar to those in [1].

Example 1. For a nonlinear system

f(x(t)) = sin(x(t)) (A-4)

with x(t) ∈ [−π
2 , π

2 ], a sector bounded by two lines a1 x(t) and a2 x(t) (a1 and a2 are slopes)
can be found. Considering a new variable z1(t) = sin(x(t)) and the slopes a1 = 1 and a2 = 2

π

(represented in the Figure A-2) , we can represent the nonlinearity in equation (A-4) as

z1 = sin(x(t)) = h1(z1) a1 x(t) + h2(z1) a2 x(t) (A-5)

where

h1(z1) =





sin(x(t)) − a2x(t)

(a1 − a2)x(t)
, x(t) 6= 0,

1, otherwise

h2(z1) =





a1x(t) − sin(x(t))

(a1 − a2)x(t)
, x(t) 6= 0,

0, otherwise
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i.e.,

h1(z1) =





z1 − a2x(t)

(a1 − a2)x(t)
, x(t) 6= 0,

1, otherwise

h2(z1) =





a1x(t) − z1

(a1 − a2)x(t)
, x(t) 6= 0,

0, otherwise

The TS fuzzy model representing nonlinear system (A-4) will be

R1 : If z1 is N1
1 then

f(x(t)) =
2

π
x(t)

R2 : If z1 is N1
2 then

f(x(t)) = x(t)

which can be written as

f(x(t)) = h1(z1) a1 x(t) + h2(z1) a2 x(t) (A-6)

Thus the nonlinearity/nonlinear system f(x(t)) = sin(x(t)) is represented by a TS fuzzy model
using sector nonlinearity.

Figure A-2: Sector for sin(x(t)) ∈

[
−π

2
,

π

2

]

Example 2. Consider a nonlinear system,

ẋ1 = x1x2 + u

ẋ2 = x1 + x2
2

y = x1 + x2 (A-7)

The above nonlinear system can be represented as

ẋ = Ax + Bu

y = Cx (A-8)
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where

A =

[
x2 0
1 x2

]

B =

[
1
0

]

C =
[
1 1

]
(A-9)

Given x1 ∈ [−1, 1] and x2 ∈ [−1, 1] and considering the scheduling variable z1 = x2 (it is a
non-constant term in the state matrix and is a part of the nonlinear terms x1x2 and x2

2), we
can represent z1 as

z1 = x2 = h1(z1) a1 + h2(z1) a2 (A-10)

where

h1(z1) =
z1 + 1

1 + 1

h2(z1) =
1 − z1

1 + 1
(A-11)

and a1, a2 are the maximum and minimum values of the nonlinearity z1, which thus allows
x1x2 ∈ [a1, a2]x1 and x2

2 ∈ [a1, a2]x2.

Associating membership functions h1(z1) and h2(z1) with fuzzy sets N1
1 and N1

2 , the nonlinear
system (A-7) can be written as a TS fuzzy system as follows.

R1 : If z1 is N1
1 then

ẋ =

[
1 0
1 1

]
x +

[
1
0

]
u

y =
[
1 1

]
x (A-12)

R2 : If z1 is N1
2 then

ẋ =

[
−1 0
1 −1

]
x +

[
1
0

]
u

y =
[
1 1

]
x (A-13)

In case of nonlinear system with several nonlinearities, the procedure as explained above can
be applied to every nonlinearity. Since every nonlinearity results in two membership functions,
a fuzzy model represented by these nonlinearities will have the number of rules equal to 2p

where p is the number of nonlinearities.
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Application examples

This appendix presents the construction of Takagi-Sugeno (TS) fuzzy models for three non-
linear systems using sector nonlinearity approach [5]. The three systems considered are:

• a 2-DOF helicopter model considering movement about the pitch axis

• the Delft robot arm

• a 2-DOF robot arm working in the horizontal plane

B-1 2-DOF helicopter model

The 2-DOF helicopter model is shown in Figure B-1. Based on first principles modelling, the

Figure B-1: 2-DOF laboratory scale helicopter

mathematical description of the pitch of the 2-DOF helicopter is

τ ω̇ + ω = K1u

α̈ + bα̇ + K2 sin α = f(ω) (B-1)

where
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• α is the pitch angle.

• ω is the speed of the propeller.

• f(ω) is the force exerted by the propeller considered as a function of the propeller speed.

• K1, K2, b are constants (K1 is the gain from the control signal to the propeller’s velocity,
b is the damping of the helicopter beam and K2 is a constant related to influence of
gravity).

• τ is the time constant of the propeller motor.

• u is the input voltage applied to the propeller.

The relation between the speed of the propeller ω and the force applied by the propeller f(ω)
is nonlinear. By approximating the relation between the force and the propeller speed as

f(ω) = K3ω (B-2)

the model of the system can be represented as

ω̇ +
ω

τ
=

K1

τ
u

α̈ + bα̇ + K2 sin α = K3ω (B-3)

Considering the states of the system as x = [ω α̇ α]′, the nonlinear system can be repre-
sented in a state space form.




ω̇
α̈
α̇


 =




−1
τ

0 0
K3 −b 0
0 1 0







ω
α̇
α


+




K1

τ

0
0


u +




0
−K2 sin α

0


 (B-4)

Considering a scheduling variable z1 = sin α and α ∈ [−π
6 , π

6 ], a sector [b1, b2]α can be found

such that sin α ∈ [b1, b2]α. If α ∈ [−π
6 , π

6 ], then [b1, b2] = [
sin π

6
π
6

, 2
π

], see [5] and Appendix A.

By using the sector nonlinearity approach for the nonlinearity z1 as explained in Appendix
A,

z1 = sin α = h1(z1) b1 α + h2(z1) b2 α (B-5)

where
h1(z1) + h2(z1) = 1 and h1(z1), h2(z1) ≥ 0 (B-6)

and h1(z1), h2(z1) are the membership functions. h1(z1) and h2(z1) are

h1(z1) =





sin α−b2α
(b1−b2)α , when α 6= 0

1, when α = 0

(B-7)

h2(z1) =





b1α−sinα
(b1−b2)α , when α 6= 0

0, when α = 0

(B-8)

Sangeetha Bindiganavile Nagesh Master of Science Thesis



B-2 Delft robot arm 89

i.e.,

h1(z1) =





z1−b2α
(b1−b2)α , when α 6= 0

1, when α = 0

(B-9)

h2(z1) =





b1α−z1

(b1−b2)α , when α 6= 0

0, when α = 0

(B-10)

Associating the membership functions h1(z1) and h2(z1) with fuzzy sets N1
1 and N1

2 , we have
the fuzzy model of the system represented by (B-1) with 2 rules as follows.

Ri : If z1 is Ni then

ẋ = Aix + Biu (B-11)

y = Cix

for i = 1, 2, where

x =
[
ω α̇ α

]T

A1 =




−1
τ

0 0
K3 −b −K2b1

0 1 0


 A2 =




−1
τ

0 0
K3 −b −K2b2

0 1 0




B1 = B2 =




K1

τ

0
0


 C1 = C2 =

[
1 0 0
0 0 1

]
.

This completes the construction of the TS fuzzy model for the pitch of the 2-DOF helicopter
model. If there exists uncertainty in the damping of the beam b, then the model can be
considered as an uncertain TS fuzzy model with uncertainty in the state matrix.

B-2 Delft robot arm

The Delft robot arm is presented in Figure B-2.

The model of this nonlinear system is

mL2φ̈ + (Kur − mgL) sin φ = τ

ku − Kr cos φ = F (B-12)

where

• φ is the angle of the robot arm.

• φ̇ is the angular velocity of the robot arm.
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Figure B-2: Delft robot arm

• g is the acceleration due to gravity.

• K is the spring constant.

• L is the length of the link.

• r is the length of the spring arm.

• τ is the driving torque and u is the input to the system given in terms of distance.

Considering that the arm is operated by using only the input u (the torque input τ = 0), the
state space model of the system is

ẋ1 = x2

ẋ2 = sin(x1)
g

L
− sin(x1)

Kr

L2m
u

y = x1 (B-13)

where x1 = φ is the angular position of the robot arm and is measured.

Considering x =
[
x1 x2

]T
, we have

ẋ =

[
0 1
0 0

]
x +

[
0

− sin(x1) Kr
L2m

]
u +

[
0

sin(x1) g
L

]
(B-14)

Applying sector nonlinearity to the two nonlinear terms z1 = sin(x1) in the input matrix and
z2 = sin(x1) in the affine matrix, we can convert the above model to a TS fuzzy model. The
nonlinearity in the affine term z1 = sin(x1) is bounded by [p1, p2]x1, given that x1 changes

between [π/12, π/2], p1x ≤ sin(x1) ≤ p2x. The value of p1 and p2 are found to be p1 =
sin π

12
π
12

and p2 = 2
π

. The other nonlinear term z2 = sin(x1) in the input matrix is bounded by [z2min,
z2max] where z2min = sin(π/12) = 0.2588 and z2max = sin(π/2) = 1. Hence we have,

z1 = w11 p1 x1 + w12 p2x1

z2 = w21 z2min + w22 z2max (B-15)
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where w11 + w12 = 1 and w21 + w22 = 1

w11 =





sin(x(t)) − p2x(t)

(p1 − p2)x(t)
, x(t) 6= 0,

1, otherwise

w12 =





p1x(t) − sin(x(t))

(p1 − p2)x(t)
, x(t) 6= 0,

0, otherwise

w21 =
z2max − z2

z2max − z2min

w22 =
z2 − z2min

z2max − z2min
(B-16)

Since we have two nonlinearities and each nonlinearity is associated with 2 rules, the entire
nonlinear system can be represented by 4 rules. Associating membership functions w11, w12,
w21, and w22 with fuzzy sets N1

1 , N1
2 , N2

1 , and N2
2 respectively, we have

R1 : If z1 is N1
1 and z2 is N2

1 then

ẋ =

[
0 1

p1g
L

0

]
x +

[
0

z2minKr
L2m

]
u (B-17)

y =
[
1 0

]
x

R2 : If z1 is N1
2 and z2 is N2

2 then

ẋ =

[
0 1

p2g
L

0

]
x +

[
0

z2minKr
L2m

]
u (B-18)

y =
[
1 0

]
x

R3 : If z1 is N1
3 and z2 is N2

3 then

ẋ =

[
0 1

p1g
L

0

]
x +

[
0

z2maxKr
L2m

]
u (B-19)

y =
[
1 0

]
x

R4 : If z1 is N1
4 and z2 is N2

4 then

ẋ =

[
0 1

p2g
L

0

]
x +

[
0

z2maxKr
L2m

]
u (B-20)

y =
[
1 0

]
x

where N1
3 = N1

1 , N2
3 = N2

2 , N1
4 = N1

2 , and N2
4 = N2

2 . This completes the construction of the
TS fuzzy model for the Delft robot arm. If the exact value of mass m held by the arm is not
known, then this system can be considered an uncertain TS fuzzy model with uncertainty in
the input matrix.

Master of Science Thesis Sangeetha Bindiganavile Nagesh



92 Application examples

B-3 2-DOF robot arm

The 2-DOF robot arm is presented in Figure B-3. The arm operates only in the horizontal
plane. The arm consists of two joints each with a DC motor [23].

Figure B-3: Two link robot arm

The model of this nonlinear system is

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ (B-21)

where

• θ =
[
θ1 θ2

]T
and τ =

[
τ1 τ2

]T

• τ1, τ2 are the control inputs as the two joints (torque inputs).

• θ1, θ2, θ̇1, θ̇2 are measured positions and angular velocities.

• M(θ) is the mass matrix.

• C(θ, θ̇) is the Coriolis and centrifugal force matrix.

• G(θ) is the gravity matrix.

The mass, Coriolis and the gravity matrices are

M(θ) =

[
P1 + P2 + 2P3 cos θ2 P2 + P3 cos θ2

P2 + P3 cos θ2 P2

]
(B-22)

C(θ, θ̇) =

[
b1 − P3θ̇2 sin θ2 −P3(θ̇1 + θ̇2) sin θ2

−P3θ̇2 sin θ2 b2

]
(B-23)

G(θ) =

[
−g1 sin θ1 − g2 sin(θ1 + θ2)

−g2 sin(θ1 + θ2)

]
(B-24)

where
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• P1 = m1c1
2 + m2l1

2 + I1

• P2 = m2c2
2 + I2

• P3 = m2l1c2

• g1 = (m1c1 + m2l1)g

• g2 = m2c2g

• g is the acceleration due to gravity.

• l1 and l2 are the lengths of the first and the second link, respectively.

• m1 and m2 are the masses of the first and the second link, respectively.

• I1 and I2 are the inertias of the first and the second link, respectively.

• c1 and c2 are the centers of mass of the first and the second link, respectively.

• b1 and b2 are the damping in the first and the second joint, respectively.

Considering operation in the horizontal plane (G(θ) = 0), we can represent the 2-DOF robot
arm by a state space model in the following form.

ẋ = A(θ, θ̇)x + B(θ)τ (B-25)

where
x = [θ̇1 θ̇2 θ1 θ2]T

A =

[
−M−1C 0

I 0

]
i.e,

A =




A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44




A11 =
P2(b1 − P3θ̇2 sin(θ2)

P 2
3 cos2(θ2) − P1P2

−
P3θ̇2 sin(θ2)(P2 + P3 cos(θ2))

P 2
3 cos2(θ2) − P1P2

A12 = −
b2(P2 + P3 cos(θ2))

P 2
3 cos2(θ2) − P1P2

−
P2P3 sin(θ2)(θ̇1 + θ̇2)

P 2
3 cos2(θ2) − P1P2

A21 =
P3θ̇2 sin(θ2)(P1 + P2 + 2P3 cos(θ2))

P 2
3 cos2(θ2) − P1P2

−
(P2 + P3 cos(θ2))(b1 − P3θ̇2 sin(θ2))

P 2
3 cos2(θ2) − P1P2

A22 =
b2(P1 + P2 + 2P3 cos(θ2))

P 2
3 cos2(θ2) − P1P2

+
P3 sin(θ2)(P2 + P3 cos(θ2))(θ̇1 + θ̇2)

P 2
3 cos2(θ2) − P1P2

A13 = A14 = A23 = A24 = A32 = A33 = A34 = A41 = A43 = A44 = 0
A31 = A42 = 1
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B =

[
M−1

0

]
i.e.,

B =




−
P2

P 2
3 cos2(θ2) − P1P2

P2 + P3 cos(θ2)

P 2
3 cos2(θ2) − P1P2

P2 + P3 cos(θ2)

P 2
3 cos2(θ2) − P1P2

−
P1 + P2 + 2P3 cos(θ2)

P 2
3 cos2(θ2) − P1P2




Examining the above nonlinear model indicates the presence of 6 nonlinear terms as follows.

z1 =
1

P3
2 cos(θ2)2 − P1 P2

(B-26)

z2 =
cos(θ2)

P3
2 cos(θ2)2 − P1 P2

(B-27)

z3 =
θ̇2 sin(θ2)

P3
2 cos(θ2)2 − P1 P2

(B-28)

z4 =
θ̇2 cos(θ2) sin(θ2)

P3
2 cos(θ2)2 − P1 P2

(B-29)

z5 =
θ̇1 sin(θ2)

P3
2 cos(θ2)2 − P1 P2

(B-30)

z6 =
θ̇1 cos(θ2) sin(θ2)

P3
2 cos(θ2)2 − P1 P2

(B-31)

The term A11 for instance can be written in terms of the above nonlinearities as

A11 = P2b1z1 − 2P3P2z3 − P 2
3 z4

Similarly all other elements in the A matrix can be written in terms of the above 6 nonlin-
earities.

The above 6 nonlinear terms result in 26 rules. The rules will be of the form
Ri : If z1 is N1

i and z2 is N2
i and z3 is N3

i and z4 is N4
i and z5 is N5

i and z6 is N6
i then

ẋ = Aix + Biu

y = Cix (B-32)

where i = 1, 2, . . . , r. The number of rules in this fuzzy model is 64. Neglecting Coriolis
and centrifugal forces, the fuzzy model can be made simpler and the number of rules can be
reduced to 4. This case is described in Chapter 3. For presenting the results in this thesis,
we used the simplified 2-DOF robot arm presented in Chapter 3.
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Robust controller design with relaxed

stability conditions

This appendix presents the proof of Theorem 8 and Theorem 10. The content of these proofs
form the basis of theorems 9, 11, 12 and 13.

The proof of the Theorem 8 is as follows. For the system given by

ẋ =
r∑

i=1

hi(z)(Aix + Biu + MiAδix)

y = Cx (C-1)

the control input generated by the PDC

u = −
r∑

j=1

hj(z)Fjx (C-2)

results in the following closed loop system dynamics

ẋ =
r∑

i=1

r∑

j=1

hi(z)hj(z)(Ai − BiFj + MiAδi)x

=
r∑

i=1

hi
2(z)(Ai − BiFi + MiAδi)x

+
r∑

i=1

∑

i<j

hi(z)hj(z)(Ai − BiFj + Aj − BjFi + MiAδi + MjAδj)x (C-3)

Considering a common quadratic Lyapunov function

V = xT Px (C-4)
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V̇ = xT P ẋ + ẋT Px

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi + MiAδi) + (Ai − BiFi + MiAδi)

T P ]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj + MiAδi) + (Ai − BiFj + MiAδi)
T P

+P (Aj − BjFi + MjAδj) + (Aj − BjFi + MjAδj)T P ]x

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + P (MiAδi) + (MiAδi)
T P ]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (MiAδi) + (MiAδi)
T P

+P (Aj − BjFi) + (Aj − BjFi)
T P + P (MjAδj) + (MjAδj)T P ]x

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + P (MiAδi) + (MiAδi)
T P

+ PMiM
T
i P − PMiM

T
i P + AT

δiAδi − AT
δiAδi]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (MiAδi) + (MiAδi)
T P

+P (Aj − BjFi) + (Aj − BjFi)
T P + P (MjAδj) + (MjAδj)T P + PMiM

T
i P

−PMiM
T
i P + AT

δiAδi − AT
δiAδi + PMjMT

j P − PMjMT
j P + AT

δjAδj − AT
δjAδj ]x

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + PMiM
T
i P + AT

δiAδi

−PMi(M
T
i P − Aδi) + AT

δi(M
T
i P − Aδi)]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (Aj − BjFi)

+(Aj − BjFi)
T P + PMiM

T
i P + PMjMT

j P + AT
δiAδi + AT

δjAδj − PMi(M
T
i P − Aδi)

+AT
δi(M

T
i P − Aδi) − PMj(MT

j P − Aδj) + AT
δj(MT

j P − Aδj)]x

=
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + PMiM
T
i P + AT

δiAδi

−(MT
i P − Aδi)

T (MT
i P − Aδi)]x

+
r∑

i=1

∑

i<j

hi(z)hj(z)xT [P (Ai − BiFj) + (Ai − BiFj)T P + P (Aj − BjFi)

+(Aj − BjFi)
T P + PMiM

T
i P + PMjMT

j P + AT
δiAδi + AT

δjAδj

−(MT
i P − Aδi)

T (MT
i P − Aδi) − (MT

j P − Aδj)T (MT
j P − Aδj)]x
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If

P (Ai − BiFj) + (Ai − BiFj)T P + P (Aj − BjFi) + (Aj − BjFi)
T P

+PMiM
T
i P + PMjMT

j P + µi
2I + µj

2I − 2Q0 < 0 (C-5)

for i, j = 1, 2, . . . , r and i < j hold, then

V̇ (x) <
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + PMiM
T
i P + AT

δiAδi

−(MT
i P − Aδi)

T (MT
i P − Aδi)]x

+2
r∑

i=1

∑

i<j

hi(z)hj(z)xT Q0x

By Corollary 4 in [5], we have

V̇ (x) <
r∑

i=1

hi
2(z)xT [P (Ai − BiFi) + (Ai − BiFi)

T P + PMiM
T
i P + AT

δiAδi

−(MT
i P − Aδi)

T (MT
i P − Aδi)]x + (s − 1)

r∑

i=1

hi
2(z)xT Q0x

If

P (Ai − BiFi) + (Ai − BiFi)
T P + PMiM

T
i P + µ2

i I + (s − 1)Q0 < 0 (C-6)

for i, j = 1, 2, . . . , r then V̇ (x) < 0.

Left and right multiplying the inequalities in (C-5) and (C-6) by P −1 and introducing a new
variable X = P −1, we can write

(Ai − BiFi)X + X(Ai − BiFi)
T + MiM

T
i + Xµ2

i X + (s − 1)XQ0X < 0

(Ai − BiFj)X + X(Ai − BiFj)T + (Aj − BjFi)X + X(Aj − BjFi)
T

+MiM
T
i + MjMT

j + Xµi
2X + Xµj

2X + 2XQ0X < 0 (C-7)

i, j = 1, 2, . . . , r and i < j.

With the change of variables Ni = FiX and hence Fi = NiP , the inequalities in (4-16) become

AiX − BiNi + XAT
i − Ni

T Bi + MiM
T
i + Xµ2

i X + (s − 1)XQ0X < 0 ,

AiX − BiNj + XAT
i − Nj

T Bi)
T + AjX − BjNi + XAT

j − NT
i Bj

+MiM
T
i + MjMT

j + Xµi
2X + Xµj

2X + 2XQ0X < 0 (C-8)

i, j = 1, 2, . . . , r and i < j.
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Converting the conditions in (C-8) to linear matrix inequalities using Schur complements, we
have

Sii =







AiX + XAT
i

−BiNi − NT
i BT

i


 Mi X

MT
i −I 0

X 0 − 1
µ2

i

I




(C-9)

Tij =







AiX + XAT
i + AjX + XAT

j

−BiNj − NT
j BT

i − BjNi − NT
i BT

j


 Mi Mj X X

MT
i −I 0 0 0

MT
j 0 −I 0 0

X 0 0 − 1
µ2

i

I 0

X 0 0 0 − 1
µ2

j

I




(C-10)

and

Sii + (s − 1)Y0 < 0

Tij + 2Y1 < 0 (C-11)

where
Y1 = bkdiag

(
Y0 0 0

)
,

Y2 = bkdiag
(
Y0 0 0 0 0

)
,

Y0 = XQ0X
Theorem 8 follows directly. This proof forms the basis of theorems 9, 12 and 13 in Chapter
4.

The following provides the basis for the proof of Theorem 10 which considers decay rate
specification in the design of robust controller. For the uncertain Takagi-Sugeno (TS) system

ẋ =
r∑

i=1

hi(z)(Aix + Biu + MiAδix)

y = Cix (C-12)

adapting Theorem 5 with Gij = (Ai − BiFj + MiAδi) and Q = 0 and from Theorem 6, we
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have equation (4-15) for the case with decay rate α as

P (Ai − BiFi) + (Ai − BiFi)
T P + PMiM

T
i P + µ2

i I + 2αP < 0 ,

P (Ai − BiFj) + (Ai − BiFj)T P + P (Aj − BjFi) + (Aj − BjFi)
T P

+PMiM
T
i P + PMjMT

j P + µi
2I + µj

2I + 4αP < 0 (C-13)

hold for i = 1, 2, . . . , r and i < j, then we have V̇ < −2αV .

With X = P −1 and a change of variable Ni = FiX we have the conditions

AiX − BiNi + XAT
i − Ni

T Bi + MiM
T
i + Xµ2

i X + 2αX < 0 ,

AiX − BiNj + XAT
i − Nj

T Bi)
T + AjX − BjNi + XAT

j − NT
i Bj

+MiM
T
i + MjMT

j + Xµi
2X + Xµj

2X + 4αX < 0 (C-14)

i = 1, 2, . . . , r and i < j.

Theorem 10 is obtained by converting the above conditions to linear matrix inequality (LMI)s
using Schur complements.
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Appendix D

Computational complexity

In this appendix, the computational complexity of the design in terms of the number of LMIs
to be solved in designing the robust controller and the adaptive observer for the 2-DOF robot
arm is studied.

D-1 Number of LMIs in robust controller design

We consider the number of LMIs that need to be solved when designing a robust controller
using Theorem 11 along with the Theorem 14 from Chapter 4.

• The conditions X > 0 from Theorem 11 and X > φ2I from Theorem 14 can be com-
bined into a single LMI. X is of dimension 4 × 4.

• The number of LMIs introduced by conditions

Ŝii < 0, (D-1)

T̂ij < 0, i, j = 1, 2, . . . , r and i < j s.t hi hj 6= 0 (D-2)

from Theorem 11 is
∑r

i=1 vmi
1.

where vmi is a variable that takes values i = 1, 2, . . . , r.

Ŝii is of dimension 9 × 9 for the robot arm. In general, the dimension of Ŝii is
(2 nx + nd) × (2 nx + nd).
T̂ij is of dimension 14 × 14 for the robot arm. In general, the dimension of T̂ij is
(3 nx + 2 nd) × (3 nx + 2 nd).

1 mi in the subscript stands for matrix inequalities
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• The LMI [
X Ni

T

Ni ζ2I

]
≥ 0 (D-3)

from Theorem 14 adds further r LMIs where r is the number of rules in the Takagi-
Sugeno (TS) model. Each of these LMIs is of dimension 6 × 6 for the robot arm. In
general, the dimension of each of such LMI is (nx + nu) × (nx + nu).

Hence the total number of LMIs nmi is be given by

nmi = 1 + r +
r∑

i=1

vmi (D-4)

Using equation D-4, the number of LMIs to be solved for the robot arm in 4 rule case is
obtained as 15 and that in 64 rule case is 2145. Thus the simplification from 64 rule to 4 rule
model considerably reduces the number of LMIs to be solved and thus enables the solver to
handle the system.

D-2 Number of LMIs in adaptive observer design

We consider the number of LMIs to be solved when designing the adaptive observer using
Theorem 15 from Chapter 5.

• The conditions P > 0 and Q > 0 are 2 LMIs. The matrices P and Q are both of
dimension 4 × 4.

• The LMI

H(P (Ai − LiC)) < −Q i = 1, 2, . . . , r

results in r additional LMIs each of dimension 4 × 4.

• The condition

‖Mi‖µmax ≤
λmin(Q)

λmax(P )

which is represented as the LMI

[
Q − µ2

maxI P
P −I

]

of dimension 8 × 8 adds one to the LMI count.

Hence, for designing an adaptive observer for the 2-DOF robot arm using Theorem 15, the
system of LMIs to be solved has the number of LMIs to be

nmi = r + 3 (D-5)

Using equation D-5, the number of LMIs to be solved in 4 rule case is obtained as 7 and that
in 64 rule case is 67. Hence, as the number of rules increase, the number of LMIs to be solved
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increases by the same number. For the design of robust controller and adaptive observer in
this thesis, we have solved a total of 22 LMIs.

Multiple LMIs can be expressed as a single LMI [24]. In this case, the dimension of the
resulting single matrix in the inequality is of importance. Combining multiple LMIs into a

single one in case of robust controller gives a dimension of (nx +r (2 nx +nd)+
r (r − 1)

2
(3 nx +

2 nd)+r( nx+nu). Combining multiple LMIs into a single one in case adaptive observer results
in a dimension of (4 nx + r nx). Hence, combining multiple LMIs into a single LMI in case of
robust controller and adaptive observer, the dimensions of the single LMI are:

• robust controller: 148 × 148

• adaptive observer: 34 × 34
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Appendix E

Glossary

List of Acronyms

TS Takagi-Sugeno

LTI linear time invariant

PDC Parallel Distributed Compensator

LMI linear matrix inequality

List of symbols and notations

Ai state matrices
Bi input matrices
Ci output matrices of the local linear models = C if all the output matrices are common
Mi uncertainty distribution matrices
∆Ai uncertainty matrices
Aδi uncertainty blocks in the state matrices

Âδi estimates of uncertainty blocks in the state matrices
C Coriolis and centrifugal forces matrix of 2-DOF robot arm

(different from the common output matrix)
M Mass matrix of 2-DOF robot arm
x state vector
y measurement vector/ output vector
u input vector
r number of rules
hi normalized degree of relevance of a rule i
µmax bound on the norm of the uncertainty blocks Aδi
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µA(x) membership value of a variable x in the fuzzy set A
Ri ith rule
xe equilibrium state
x0 initial state
x(0) initial state
φ bound on the initial state norm
ζ constraint on the control input
V (x) Lyapunov function
z scheduling vector
p number of scheduling variables
x̂ estimated state vector
ẑ estimated scheduling vector
e state estimation error vector
J cost function
Li observer gain of the ith local model
Fi controller gain of the ith local model
Ni matrices returned by controller design process = FiX
X inverse of P matrix in controller design
P positive definite matrix in Lyapunov function

N j
i fuzzy set corresponding to the ith rule and jth scheduling variable

d unknown input/dynamics
nx dimension of the state vector x

ny dimension of the output vector y

nu dimension of the input u

Bδi uncertain blocks in input matrices
θi unknown parameter vector
i, j, k, l indices
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