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Processing multichannel signals using digital signal process-
ing techniques has received increased attention lately due to its
importance in applications such as multimedia technologies and
telecommunications. The objective of this paper is twofold: 1) to
introduce adaptive filtering techniques to the reader who is just
beginning in this area and 2) to provide a review for the reader
who may be well versed in signal processing. The perspective of
the topic offered here is one that comes primarily from work done
in the field of multichannel (color) image processing. Hence, many
of the techniques and works cited here relate to image processing
with the emphasis placed primarily on filtering algorithms based
on fuzzy concepts, multidimensional scaling, and order statistics-
based designs. It should be noted, however, that multichannel
signal processing is a very broad field and thus contains many
other approaches that have been developed from different perspec-
tives, such as transform domain filtering, classical least-square
approaches, neural networks, and stochastic methods, just to name

a few.
In this paper, we present a general formulation based on fuzzy

concepts, which allows the use of adaptive weights in the filter-
ing structure, and we discuss different filter designs. The strong
potential of fuzzy adaptive filters for multichannel signal applica-
tions, such as color image processing, is illustrated with several
examples.

Keywords—Fuzzy systems, image processing, multichannel sig-
nal processing, neural networks.

I. INTRODUCTION

The availability of a wide set of multichannel infor-

mation sources in application areas, such as color image

processing, multispectral remote sensing imagery, biomed-

icine, robotics, and industrial inspection, has stimulated a

renewed interest in developing efficient and cost-effective
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processing techniques for multichannel signals. In recent

years, significant advances have been made in the de-

velopment of multichannel signal processing techniques.

Such techniques are used in a variety of tasks, such as

color image filtering and processing video sequences, en-

hancement of multispectral remote sensing data, seismic

deconvolution for oil exploration, and boundary detection

in vector fields.

The most common signal processing task is noise filter-

ing. Filtering is the process of estimating a signal degraded,

in most cases, by additive random noise. This task is an

essential part of any signal processing system, especially

when the final product is used for human interpretation,

such as visual inspection or for automatic analysis [1],

[2]. Several filtering techniques have been proposed over

the years. Among them are linear processing techniques,

whose mathematical simplicity and the existence of a

unifying theory make their design and implementation

easy [3]. Their simplicity, in addition to their satisfactory

performance in a variety of practical applications, has made

them methods of choice for many years. However, most of

these techniques operate assuming a Gaussian model for the

statistical characteristics of the underlying process, and thus

they try to optimize the parameters of a system suitable for

such a model.

Many signal processing problems cannot be efficiently

solved by using linear techniques. For example, an area

where linear processing techniques fail is in image pro-

cessing, where conventional linear techniques cannot cope

with the nonlinearities of the image formation model and

do not take into account the nonlinear nature of the human

visual system. Image signals are composed of flat regional

parts and abruptly changing areas, such as edges, which

carry important information for visual perception. Filters

having good edge and image detail preservation properties

are highly suitable for image filtering and enhancement.

Unfortunately, most of the linear signal processing tech-
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niques tend to blur edges and to degrade lines, edges, and

other fine image details.

Recently, fuzzy techniques have been investigated to

provide a bridge between linear and nonlinear techniques.

This paper summarizes efforts devoted to the development

of fuzzy systems suitable for filtering multichannel signals.

The approach discussed here is an adaptive one. It integrates

well-known theories in the areas of nonlinear filtering,

multidimensional scaling, robust statistics, and fuzzy sets

so as to form a new composite model. At the heart of

the approach is a filter whose weights (parameters) are

adaptively determined on the basis of local signal context.

The filtering procedure is seen as the estimation of the

prototype for a given set of input signals in a processing

window. Thus, filtering is the process of replacing a noisy

signal by a prototypical value, such that some metric which

is a function of the filter output and its neighbors is

minimized.

The organization of the paper is as follows. In Section II,

we provide an overview of the literature and research in

the area. In Section III, we present the problem under

consideration and introduce the general framework for an

adaptive fuzzy solution. We also discuss properties and

design characteristics of the proposed fuzzy system. In

Section IV, we discuss distance and similarity measures,

which can be used to define dissimilarity or similarity

between multichannel, vector-like signals. In Section V,

we review membership functions based on the distance

and similarity measures surveyed in the paper. Proper-

ties, characteristics, and implementation issues are also

discussed in detail. A number of filtering systems that

are supported by the general framework discussed in this

work are also presented in this section. Section VI deals

with the problem of color image processing, an important

area of multichannel signal processing, where we present

experimental results and comparisons with other standard

methods. Finally, Section VII summarizes the conclusions

and describes future research.

II. LITERATURE REVIEW

In applications where the noise characteristics are un-

known or vary with time, the use of conventional linear

filters to smooth out the noise does not provide satis-

factory solutions. In such cases adaptive filters become

very important. Most adaptive filters have the structure of

finite impulse response filters with time-varying coefficients

[4]. Due to their flexibility and self-adjusting nature, they

have found uses in many practical applications ranging

from telephone echo canceling to radar signal processing

to biomedical signal enhancement [5].

However, the need to treat increasingly complex non-

linear systems coupled with the availability of increasing

computing power has led to a reevaluation of conventional

filtering methodologies. New algorithms and techniques,

which can take advantage of the increase in computing

power and can handle more realistic assumptions, are

needed. To this end, nonlinear signal processing techniques

are introduced. Nonlinear techniques, theoretically, are able

to suppress non-Gaussian and signal-dependent noise, to

preserve important signal elements, such as edges and fine

details, and eliminate degradations occurring during sig-

nal formation or transmission through nonlinear channels.

Despite impressive growth in the past two decades, new

theoretical results, new tools, and emerging applications,

nonlinear filtering techniques still lack a unifying theory

that encompasses existing nonlinear processing techniques.

Instead, each class of nonlinear operators possesses its own

mathematical tools which can provide a reasonably good

analysis of its performance. Consequently, a multitude of

nonlinear signal processing techniques have appeared in the

literature.

At present the following classes of nonlinear processing

techniques can be identified:

1) polynomial-based techniques [6], [7];

2) homomorphic techniques [1], [8];

3) order statistic-based techniques [1], [9], [10];

4) techniques based on mathematical morphology

[11]–[14];

5) neural network-based techniques [15]–[18].

Polynomial filters, especially second-order Volterra filters

(quadratic filters), represent the most natural extension of

linear filters. Volterra filters can be seen as linear filters with

higher order polynomial extensions. They have been used

for nonlinear channel modeling in telecommunications as

well as in multichannel geophysical signal processing and

color image processing.

Homomorphic filters and their extensions represent one

of the first classes of nonlinear filters and have been used

extensively in digital signal and image processing. This

filter class has found various practical applications, such

as multiplicative and signal-dependent noise removal, mul-

tichannel satellite image processing, and identification of

fingerprints. Homomorphic filters use nonlinearities (mainly

the logarithm) to transform nonlinearly related signals into

additive signals and then process them using linear filters.

The output of the linear filter is then transformed by the

inverse nonlinearity.

One of the most popular families of nonlinear filters for

noise removal are order-statistics filters. The theoretical

basis of these filters is that of robust statistics [1]. These

filters utilize algebraic ordering of a windowed set to

compute the output signal. There exist several filters which

are members of this class, such as the vector median filter

(VMF) [9]. Order-statistics multichannel filters have found

extensive applications in multichannel signal processing

and color image filtering.

Morphological filters utilize geometric, rather than an-

alytical, features of signals. These filters have found ap-

plications in image processing and analysis. Specifically,

areas of application include biomedical signal processing,

nonlinear filtering, edge detection, and image enhancement.

Neural network-based techniques have been extensively

used over the past ten years for multichannel signal pro-
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cessing. They have been successfully applied in image

processing and analysis, brain research, signal classifica-

tion, speech recognition, and of course noise reduction.

Their attractive generalization properties, their ability to

perform complex mappings from a set of noise signals

to the noise-free signal, and their parallel implementation

make them the method of choice in many digital signal

processing applications.

Adaptive nonlinear schemes have been considered as

successful alternatives to adaptive linear techniques, es-

pecially in the case of nonstationary signals corrupted by

non-Gaussian noise [2], [19], [20]. Adaptive versions of

order-statistics filters, Volterra filters, and neural network

structures have been used in a variety of signal processing

applications ranging from image restoration to biomedical

signal enhancement. As for linear adaptive filters, their per-

formance is based on the reliable estimation of signal and

noise characteristics. Local statistics estimation is employed

by decision-directed nonlinear filters, a class of adaptive

filters, which has been extensively used in image processing

applications [21].

Recently, a number of adaptive techniques based on fuzzy

logic principles have also been proposed. Such techniques

have been used mainly for high-level analysis of signals

and images, computer vision applications, systems control,

pattern recognition, and decision modeling. Different ap-

proaches ranging from fuzzy clustering to fuzzy entropy and

decision making under fuzzy constraints have been used for

scene detection, object recognition, and decision-directed

image analysis. More recently, fuzzy techniques have been

used for low-level signal and image processing tasks, such

as non-Gaussian noise elimination, nonlinear/non-Gaussian

stochastic estimation, image enhancement, video coding,

signal sharpening, and edge detection [22]–[37].

A number of fuzzy techniques adopt a window-based,

rule-driven approach leading to data-dependent fuzzy fil-

ters, which are constructed by fuzzy rules in order to

remove additive noise while preserving important signal

characteristics, such as edges. Using a bank of IF-THEN-

ELSE fuzzy rules, the fuzzy filter directly yields the fil-

tered output taking into account selected patterns in the

neighborhood of the element to be processed. Since the

antecedents of fuzzy rules can be composed of several local

characteristics, it is possible for the fuzzy filter to adapt

to local data. Local correlation in the data is utilized by

applying the fuzzy rules directly on the signal elements

which lie within the operational window. Thus the output

of the fuzzy filter depends on the fuzzy rule and the

defuzzification process, which combines the effects of the

different rules into an output value.

Through the utilization of linguistic terms, a fuzzy rule-

based approach to signal processing allows for the incor-

poration of human knowledge and intuition into the design,

which cannot be achieved via traditional mathematical

modeling techniques. However, there is no optimal way to

determine the number and type of fuzzy rules required for

the fuzzy image operation. Usually, a large number of rules

are necessary and the designer has to compromise between

quality and number of rules, since even for a moderate

processing window a large number of rules are required

[24], [25], [28].

Data-dependent filters adopting fuzzy reasoning have

been proposed to overcome these difficulties. These designs

combine fuzzy concepts, such as membership functions,

fuzzy rules, and fuzzy aggregators with nonlinear filters,

such as the -trimmed mean filter and the weighted average

mean filter, in order to remove Gaussian and non-Gaussian

noise while preserving useful signal characteristics, such as

edges in image signals.

Some methods utilize fuzzy rule-based systems to extend

the classical structure of a weighted linear filter. The fuzzy

weights are evaluated by fuzzy rules whose inputs are local

features that extract information from the vicinity of the

signal value to be processed. Hybrid fuzzy operators that

combine nonlinear filters devoted to the suppression of

impulsive spikes with linear filters have also been proposed

[37]. Other approaches utilize fuzzy rules to combine the

outputs of different filters. For example, in [27] the fuzzy

system combines the outputs of five classical nonlinear

filters depending on values of local features. A similar

approach is also discussed in [38]. In addition, based on the

adoption of a fuzzy positive Boolean function, a new class

of operators named fuzzy stack filters have been proposed

[39]. These operators extend the smoothing capabilities

of the classical stack filters and can provide efficient and

cost-effective solutions provided that an adequate set of

training signals is available. Recently, neurofuzzy filters and

evolutionary optimization techniques have been combined

in the hopes of deriving a nonlinear filter which can cancel

noise and preserve signal details at the same time [29].

As is the case of nonlinear techniques in general, the

fuzzy signal processing techniques available today lack

a unifying theory. Cross fertilization among the different

fuzzy techniques, as well as with other nonlinear tech-

niques, has appeared promising. For example, mathematical

morphology and fuzzy concepts have been blended together

in the case of fuzzy stack operators. Also, fuzzy designs and

order-statistic filters have been efficiently integrated into

one class even though they come from completely different

origins [34], [35].

The plethora of available fuzzy techniques poses some

application difficulties. Since most of them are designed to

perform well in a specific application, their performance de-

teriorates rapidly under different operation scenarios. Thus,

an adaptive fuzzy system, which performs equally well in

a wide variety of applications, is of great importance.

III. THE GENERAL FRAMEWORK

A. The Problem Under Consideration

Consider the following commonly used model for a

multichannel signal corrupted by additive noise:

(1)
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where denotes the channel uncorrupted signal vector,

is the corresponding noisy vector to be filtered, and

an additive noise vector.

The signal processing literature has been dominated by

the assumption of the Gaussian model for the statistical

characteristics of the noise. Optimal filtering solutions for

the problem at hand can be devised based on this assump-

tion. However, the type and degree of noise corruption

depends on many factors, such as the measurement appara-

tus, the signal levels, and the experimental procedure under

consideration. The appearance of the noise and its effect

on the signal are related to its frequency characteristics.

In many cases, the noise characteristics vary within the

same application. Such cases include channel noise in

image transmission as well as atmospheric noise corrupting

multichannel satellite images.

Although the Gaussian model is often justified in practice

by the central limit theorem, we often encounter noise

processes that exhibit impulsive behavior and are more

accurately modeled by heavy-tailed, non-Gaussian distribu-

tions [40]–[42]. Impulsive behavior can be characterized in

terms of short duration, high-energy spikes attaining large

amplitudes with probability higher than that predicted by

a Gaussian density model [43]. Even if the level of non-

Gaussian noise contamination is small, the performance of a

filtering system optimized under the Gaussian assumption

can suffer from drastic degradation. In such a case, the

performance of classical adaptive filtering schemes, such as

recursive least squares (RLS) or simple weighted average

filters, is seriously degraded [44]. Thus, there is a need

for a flexible and efficient filter class for non-Gaussian

environments that can appear in practice [45].

B. The Adaptive Fuzzy System

Let us define as the multichannel sample to be

processed at time index and let be a set of

neighboring samples which belong to the window

centered on

(2)

Since the most commonly used method to decrease the

level of random noise present in the signal is smoothing, an

averaging operation is required in order to replace the noisy

vector at the window center with a suitable representative

vector (prototypical value). The general form of the system

presented here is given as a fuzzy weighted average of the

input vectors inside the window Thus, the uncorrupted

multichannel signal is estimated by determining the centroid

as follows [34], [46]–[50]:

(3)

where is a function adaptively determined on

the basis of local context with the membership function

of input and a parameter such that

In this adaptive design the weights provide the degree

to which an input vector contributes to the output of the

filter. The relationship between the signal at the window

center (vector under consideration) and each signal within

the window should be reflected in the decision for the

weights of the filter. Through the normalization procedure,

two constraints necessary to ensure that the output is an

unbiased estimator are satisfied, namely:

1) each weight is a positive number, ;

2) the summation of all the weights is equal to unity

The weights of the filter are determined adaptively us-

ing functions of a distance criterion between the input

vectors. These weighting coefficients are based on the

distance between the center of the window (the vector

under consideration) and all other vector samples inside

the filter window. The weights can be considered to be a

membership function with respect to the specific window

component. The adaptive algorithm evaluates a membership

function based on a given vector signal and then uses the

membership values to calculate the final filtered output.

To explain the concepts behind the filter only the defini-

tion of the fuzzy set is required. Other definitions, such as

fuzzy rule bases and fuzzy control, are not essential to this

work and thus are omitted. Assume that is a universe of

discourse with elements Then, a fuzzy set in is a set

of ordered pairs where is

the membership function or grade of membership of in

which maps into a membership space The range of

the membership function is a subset of the nonnegative real

numbers whose supremum is finite. In practical applications

is normalized to the interval [0, 1].

The design summarized here qualifies as an adaptive

fuzzy system since it utilizes sample input data and infer-

ence procedures (here in the form of transformed distance

metrics) to define a fuzzy system at each time instant.

Through the adaptation mechanism utilized, the system

structure changes over time, resulting in a time-varying

mapping between input values and filtered output. This

temporal mapping defines an adaptive fuzzy system. As

was argued in [51], adaptation, or learning, is essentially

parameter changing. Thus, by changing the weights in (3),

we have developed an adaptive fuzzy system capable of

learning new associations between input patterns and new

functional dependencies. In the framework described here,

this can be accomplished without the use of linguistic

fuzzy rules or local statistics estimation. Features extracted

from local data, such as distances among neighboring input

vectors, are used to define the fuzzy weights.

The noise smoothing problem is seen as a problem

of prototype estimation given a set of signal inputs. In

this sense, filtering is the process of replacing the noise-

corrupted multichannel signal at the window center by a

prototype signal, such that the differences between this

prototype and all its neighbors inside the window are

minimized in some sense. This operation is, essentially,
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a defuzzification procedure. It determines the most ap-

propriate signal value (a vector signal in the case of

multichannel inputs), to represent a collection of elements

whose membership functions have been constructed over a

universe of discourse.

Although a number of different defuzzification strategies

exist, the centroid defuzzification approach, known as the

center of gravity (CoG), is often utilized in practice. The

CoG method generates a defuzzified value which is at the

center of the values of a fuzzy set. Its defuzzified output

actually corresponds to the membership-graded weighted

mean of the square (Euclidean) distance.

To clarify this, let us consider a fuzzy set that is

defuzzified as:

(4)

where is the membership function associated with the

input value If a quadratic cost function is considered

(5)

the CoG defuzzified value is obtained when is

minimized by differentiation

(6)

Simple inspection of the CoG defuzzified value obtained

reveals the similarity with the adaptive filtered output of (3).

We can therefore claim that the output of our adaptive filter

can be considered as the output of the CoG defuzzification

strategy with the noisy multichannel signals as members of

a fuzzy set and the membership functions

defined over them.

In such a design, the overall performance of the process-

ing system is determined by the defuzzification procedure

selected. The quadratic cost function discussed above can

be generalized to include any arbitrary function of Under

such a scenario, we assume that the cost function associated

with the selection of the defuzzified value to represent the

fuzzy set is

(7)

where is a function of the associated membership

function. By minimizing the above quadratic form, a de-

fuzzified (crisp) value can be obtained as

(8)

which is identical to the form used to generate the filtered

output in the adaptive design of (3).

If the power function with is

used, the defuzzified value can be obtained through the

following equation:

(9)

It can easily be seen that, in the generalized defuzzifi-

cation rule of (9), if the widely used CoG strategy

can be obtained.

The defuzzified vector-valued signal obtained through

the CoG strategy is a vector-valued signal, which was not

part of the original set of input vectors. However, there

are signal processing applications, such as image filtering,

where it is desirable for the filter output to be one of the

samples in the input window. As an example, the VMF [9]

is always constrained, by definition, to be one of the input

samples. Thus, if the output of the adaptive fuzzy system is

required to be a member of the original input set, a different

defuzzification strategy should be used. By defining

to be the largest membership value, the adaptive weights in

(3) can be rewritten as follows [90]–[92]:

(10)

Given that as then

if

if
(11)

Equation (11) represents the maximum defuzzifier strat-

egy. If the maximum value occurs at a single point only,

the maximum defuzzifier strategy coincides with the mean

of maxima (MOM) defuzzification process. Through the

maximum defuzzifier, the output of an adaptive fuzzy

system is defined as

(12)

In this case, the fuzzy adaptive filter behaves as a

mode-like selection filter [45], since by construction its

output is always one of the samples inside the processing

window. This selection property is shared by well-known

nonlinear filters, such as the VMF and the myriad filter

[40]. However, unlike these filters, which are optimized for

specific noise models (the Laplacian and Cauchy model,

respectively), the fuzzy filter can be optimized for any noise

model by tuning its membership function. Thus existing

selection filters can be generalized.
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C. Determining the Parameters

The most crucial step in the design of the adaptive

fuzzy system lies in determining the membership function

to be used in the construction of its weights. The diffi-

culties associated with the meaning and measurement of

the membership function hinder the applicability of fuzzy

techniques to many practical applications. It is important

to clarify where the membership function arises, how is

it used and measured, and how it can be manipulated

in order to provide meaningful results. Since there are

different interpretations of fuzziness, the meaning of the

membership function changes depending on the application

or methodology adopted. In general, apart from the formal

definition, a membership function can be seen as a “graded

membership” in a set. Depending on the interpretation of

fuzziness, various solutions to the problem of membership

definition and graded membership can be obtained. Our

analysis considers the membership function as a function of

similarity. Viewing membership values as similarity indica-

tors is often used in prototype theory where membership is

a notion of being similar to a representative of a category

[52]. Thus a membership function value can be used to

quantify the degree of similarity of an element to the set in

question. The assumption behind this approach is that there

exists a perfect (ideal) example of the set which belongs

to the set to the full degree. The valuation of membership

for the rest of the elements in the set can be regarded as

the comparison of a given input with the ideal input

which results in a distance

If we wish to adopt a view of similarity, we must scale

the membership function accordingly. If the input under

consideration has all the features of the ideal prototype

then the distance should be zero, and this object should

belong to the set to the full degree. On the other hand,

if no similarity between the ideal prototype and the input

exists, the distance should be infinite and this notion should

be reflected in the membership value.

Assuming that a certain degree of membership is assigned

to each element in the set, this membership function can be

defined as

(13)

Based on the definition above, as

and when Equation (13) is only a

transformation rule from one numerical representation into

another. To complete the process, the exact form of the

distance function has to be specified. Depending on the

specific distance measure that is applied to the input data,

a different fuzzy membership function can be devised.

However, the definition of a distance (or similarity)

measure requires an appropriate metric space on which

the different distance (similarity) measures will be defined

and evaluated. Although the notion of distance is very

natural in the case of scalar signals [one-dimensional (1-

D) signals], it cannot be extended in a straightforward way

for the case of vector signals. In a vector space, different

measures can be used to quantify similarity or dissimilarity

among multichannel inputs. Therefore, before we discuss

the exact form of the membership function and how it will

be integrated in our adaptive framework, we need to define

and quantify distance, or similarity, among multichannel

signals.

IV. MEASURING SIMILARITY

Let us assume that two -D signals and are

available. The most commonly used measure to quantify

distance between these two vectors is the generalized

weighted Minkowski metric, which is defined as follows

[53]:

(14)

where is the dimension of the vector and is the

th element of The nonnegative scaling parameter is a

measure of the overall discrimination power. The exponent

defines the nature of the distance metric. The most popular

cases occur when (city-block distance) and when

(Euclidean distance) [54], [55]. The chess-board

distance corresponds to In this case, the distance

between the two -D vectors is considered equal to the

maximum distance among their components. The parameter

measures the proportion of attention allocated to the

dimensional component and thus

Vectors having a range of values greater than a desirable

threshold can be scaled down by the use of the weighting

function

An alternative method of implementation for vector sig-

nals taking nonnegative values, such as color vectors in

the RGB space, is to build the weighting into the distance

measure. Such an example is the Canberra metric [56], [57]

(15)

where is the dimension of the vector and is the

th element of The summand is defined to be zero if

both and are zero.

Of course, there are many other measures by which a

distance function can be constructed. Depending on the

nature of the problem and the constraints imposed by the

design, one method may be more appropriate than the other

[58]. Furthermore, measures other than distance can be used

to measure similarity between vector signals, as the next

section will attest. Any nonparametric function

can be used to compare the two multichannel signals

and This can be done by utilizing a symmetric function

whose value is large when and are similar. An

example of such a function is the normalized inner product

defined as

(16)

which corresponds to the cosine of the angle between the

two vectors and The cosine of the angle (or the mag-

nitude of the angle) discussed here is used to quantify their
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similarity in orientation. Therefore, in applications where

the orientation difference between two vector signals is of

importance, the normalized inner product or equivalently

the angular distance

(17)

can be used instead of the metric functions to quantify

the dissimilarity between the two vectors [59], [60]. As an

example, we consider color images where the color signals

appear as three-dimensional (3-D) vectors in the RGB

color space. It was argued in [59] that similar colors have

almost parallel orientations. On the other hand, significantly

different colors point in different overall directions in the 3-

D color space. Thus the angular distance which quantifies

the orientation difference between two color signals is a

meaningful measure of their similarity.

It is obvious that a generalized similarity measure model

which can effectively quantify differences among multi-

channel signals should take into consideration both the

magnitude and the orientation of each vector signal. The

distance or similarity measures discussed thus far utilize

only part of the information carried by the vector signal.

It is anticipated that a generalized measure based on both

the magnitude and the orientation of the vectors will

provide a robust solution to the problem of similarity

between two vectors. To this end, a new similarity measure

was introduced [46]. The proposed measure defines the

similarity between two vectors and as follows:

(18)

As can be seen, this similarity measure takes into con-

sideration both the direction and the magnitude of the

vector inputs. The first part of the measure is equivalent

to the angular distance defined previously and the second

part is related to the normalized difference in magnitude.

Thus if the two vectors under consideration have the same

length, the second part of (18) becomes unity and only the

directional information is used. On the other hand, if the

vectors under consideration have the same direction in the

vector space (collinear vectors) the first part (orientation)

is unity and the similarity measure of (18) is based only on

the magnitude difference. In addition, the weights and

can be adjusted to stress either component more or less,

depending on the design constraints.

This measure can be considered as a member of the

generalized “content model” family of measures, which can

be used to define the similarity between multidimensional

signals.

The main idea behind the content model family is that

similarity between two vectors is regarded as the degree of

common content in relation to the total content of the two

vectors [61]–[65]. Therefore, given the common quantity,

commonality and the total quantity, totality the

similarity between and is defined as

(19)

Based on the general framework of (19), different sim-

ilarity measures can be obtained by utilizing different

commonality and totality concepts.

Assume that given the two input signals and the

angle between them is and their magnitudes are and

respectively. As before, the magnitudes of the vectors

represent the intensity and the angle between the vectors

quantifies the orientation difference between them.

Based on these elements, commonality can be defined

as the sum of the projections of one vector over the other

(e.g., ) and totality as the sum of their

magnitudes [61]. Therefore, their similarity model can be

written as

(20)

Although the content model in [61] is equivalent to the

normalized inner product (cosine of the angle) similarity

model of (16), different similarity measures can be de-

vised if we define commonality and/or totality between the

two vectors differently. Experimental studies have revealed

that there is a systematic deviation between empirically

measured similarity values and those obtained through the

utilization of the model in [61], especially in applications

where the magnitudes of the vectors are of importance.

To compensate for the discrepancy, the totality was

redefined as the vector sum of the two vectors under

consideration. In such a case, similarity was defined as

(21)

In the special case of vectors with equal magnitudes,

the similarity measure is solely based on the orientation

differences between the two vectors, and it can be written

as

These are not the only similarity measures which can be

devised based on the content-model approach. For example,

it is also possible to define commonality between two

vectors as a vector algebraic sum of their projections,

instead of a simple sum. That gives a mathematically lower

value of commonality than the one used in the models

reported earlier. Using the two totality measures we can

comprise two new similarity measures as

(22)

or

(23)
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If only the orientation similarity between the two vectors is

of interest, assuming that the above similarity

measure can be rewritten as

If, on the other hand, we define the totality as the al-

gebraic sum of the original vectors and define commonality

as the algebraic sum of the corresponding projections,

the resulting similarity measure can be expressed as

(24)

with which

is the same expression obtained through the utilization of

the inner product in (16).

Other members of the content-based family of similarity

measures can be obtained by modifying either the com-

monality, the totality, or both. Equation (19) can be seen as

a guideline for the construction of specific models where

the common part and the total part are specified. As a

general observation, we can claim that when the totality and

commonality were derived according to the same principle,

e.g., sum of vectors, the cosine of the angle between the

two vectors can be used to quantify similarity. On the

other hand, when commonality and totality were derived

according to different principles, similarity was defined as

a function of both the angle between the vectors and their

corresponding magnitudes.

Content-based measures can also be used to define dis-

similarity among vector signals. This is the approach taken

in [65], where the emphasis is on what is uncommon to the

two vectors instead of on what is common. The difference

between the two vectors divided by the total part was

assumed to be the measure of their dissimilarity. It was

suggested in [65] that the part not in common is specified

as the distance between the two vector termini with the

totality defined as the vector sum of the two vectors under

consideration. Furthermore, assuming that similarity and

distance are complimentary, [65] proposed the following

similarity measure:

(25)

where the numerator of the ratio represents the distance

between the two vector termini, e.g., vector difference,

and the denominator is an indication of the totality. The

different nonmetric similarity measures described here, or

similarity measures such as those discussed in [66] can be

used instead of the Minkowski-type distance measures to

quantify distance among a vector under consideration and

the ideal prototype in our membership function mechanism,

as discussed earlier.

V. THE MEMBERSHIP FUNCTION

Having discussed the different measures to quantify dis-

tance (or similarity) between two vector inputs, we turn

attention to the problem of membership function specifica-

tion. The generic form of our function was given in [67]

as

(26)

where is a function of the distance between the

vector signal and the ideal prototype Membership

functions are either monotonically increasing functions

from zero to one, monotonically decreasing from one to

zero, or can be divided into monotonically increasing or

decreasing parts. Each increasing or decreasing part is

specified by a crossover or dispersion point. The particular

function used in (26) will determine the actual shape

of the membership function [67]–[71]. The approach of

[67] suggests that since the relationship between distances

measured in physical units and perception is generally

exponential, an exponential type of function should be used

in the generic membership function [67]. The resulting type

of a sigmoidal function deduced from this proposition can

be defined as

(27)

with and for a monotoni-

cally increasing function, where is any similarity

function defined in (18)–(25) and

(28)

with and for a monotoni-

cally decreasing function, where is any member

of the generalized Minkowski family of metrics.

The resulting membership function has the shape

(sigmoidal) required by Zadeh’s design [72]. Due to the

lack of break points, sigmoidal functions are best suited

to represent natural, continuous behavior. The crossover

point (the point assigned a membership value of 0.5),

is also the inflection point between the convex and the

concave part in the sigmoidal function defined in (27)–(28).

By construction, the function never reaches absolute truth

(or falsehood) values due to the asymptotic behavior to

both values. If this constitutes a problem for a particular

application domain it can be resolved by introducing the

appropriate break points at and

In addition, the membership function needs a parameter

which controls its dispersion characteristics. Dispersion

is defined as the range between the crossover points and

the nearest entry which receives the maximum value of

one. The dispersion value regulates the fuzzification process

and is a design parameter which can be tuned to modify

the fuzziness of the membership function. The parame-

ters for crossover points and dispersion are the minimum

requirements for determining a fuzzy membership function.

In cases where a distance measure is used to quantify

dissimilarity between the vector under consideration and

the ideal prototype, the decreasing form of the function is
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utilized. If a similarity measure is used instead, we consider

the monotonically increasing version of the membership

function.

Although not supported by the general form of the mem-

bership function introduced in [67], the exponential (Gauss-

ian) kernel was used by the authors as an approximation

to the membership function, especially when Minkowski

metrics are used to quantify distance between

multichannel signals (color vectors in particular).

In this case the proposed membership function can be

defined as

(29)

where is a positive constant and is a distance threshold.

The membership model proposed, although defined empir-

ically, complies with certain psychometrical experiments

[73]. According to [73], quantification of similarity of an

unknown stimulus to a known prototype can be expressed

as a simple exponential decay or Gaussian function of

a normalized distance in a psychological space. The two

parameters are design parameters. That is, their actual

values vary with the application. The above parameters

correspond to the denominational and exponential fuzzy

generators controlling the amount of fuzziness. A gradient

method can be applied to optimize the parameters of the

membership function. However, since the training signal

should be expressed as a nonlinear form of the parameters

to be controlled, the convergence speed can be very slow

or a local minimum may exist in some cases. In addi-

tion, the training signal should be selected to match the

characteristics of the input signal to be processed by the

fuzzy adaptive system. Alternative methodologies to adjust

the parameters of the membership function include neural

network techniques and evolutionary computation, to name

a few [23].

A. The Generalized Membership Function

The model of (27)–(28) satisfies the requirement im-

posed by the adaptive fuzzy framework. However, the

membership function in its present form is computationally

expensive since it involves the evaluation of the exponential

function, and more importantly its parameters cannot be

evaluated easily in practical applications. Therefore, other

functions which can retain the same characteristics and are

easier to implement are needed. Such a membership form

was proposed in [74]. This function is continuously increas-

ing (decreasing), satisfies the same boundaries conditions,

complies with the generic membership form of (13), and

retains the properties of the -shaped membership function.

However, unlike the function in (27)–(28), it can be written

as a rational function of two polynomials.

In the new formulation, for any input value the

membership function, by construction, can be completely

characterized by only four parameters: 1) and 2) the interval

of the input parameter ; 3) the sharpness of the

membership function; and 4) the inflection point of the -

shaped function. Based on these parameters a membership

function can be defined as

(30)

for a monotonically increasing function, and

(31)

for a monotonically decreasing function, with the inflection

point defined via and or

for the case of monotonically increasing

or decreasing functions, respectively.

The sharpness of the function (an indicator of increas-

ing/decreasing membership) can be defined respectively

as

(32)

This membership function, which is universally applica-

ble, can be utilized by considering the distance or similarity

value as the input to the membership function. Assume

that and are appropriate

distance or similarity measures between the vector under

consideration and the ideal prototype, similar to those

discussed in the previous section, we may rewrite the

membership function needed in the fuzzy system of (3)

as follows:

(33)

with

Alternatively, a monotonically increasing function can be

defined based on a similarity measure as

follows:

(34)

with

For the case of the linear form of the membership

function is obtained

(35)

for a monotonically increasing function, and

(36)

for a monotonically decreasing function, which corresponds

to the nearest-neighbor rule used in [46], [49], and [50] to

define membership functions.

The membership function is critically dependent on the

similarity measure and the reference point selected. The

ideal reference signal is the actual value of the multidimen-

sional signal in the specific location under consideration.

This signal, however, is not available. In addition, the

noisy vector at the same location is not the appropriate

choice since any input vector inside the window can be

an outlier. Therefore, to make the procedure more robust

and to ensure that the fuzzy system will provide accurate
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results, we eliminate the need for a reference point by

evaluating the membership function used to weight each

input vector in (3) on the aggregate distance between

the vector under consideration and all the other vectors

inside the processing window. Thus, the vector with the

smallest overall distance (or maximum similarity) is now

assigned the maximum membership value. Needless to say

the membership function selected is now evaluated on the

aggregated distances and not on the distance between the

vector and the ideal prototype.

It is obvious that such a design does not depend on

a reference point and thus is more robust to occasional

outliers. However, the computational complexity of the

algorithm increases as a result of the need to evaluate a

number of distances (similarities) in the processing window.

Any distance metric or similarity function discussed in the

previous section can be used in the formulation of the

aggregate distance. For example, assume that the noisy

vector inside the processing window is considered.

Its aggregated distance from all other vectors inside the

window is given as

(37)

(38)

if the Euclidean metric has been selected to measure

dissimilarity between two vector signals. This aggregate

distance value is used as an input to the membership

functions of (29) or (33) that will be used to determine

the fuzzy weights in the multichannel filter.

Similarly, the vector angle criterion defines the scalar

measure

(39)

as the distance associated with the noisy vector inside

the processing window of length when the angle between

two vectors

(40)

is used to measure dissimilarity. The approach suggested

here eliminates the need for a reference point and gener-

alizes the concept of membership function as a similarity

indicator. In the suggested formulation, the valuation of

membership is regarded not as a comparison with an ideal

point but as a comparison to the rest of the elements to be

included in the fuzzy set.

An alternative, although suboptimal, procedure has been

proposed by the authors. In this approach, a robust estimate

of the location, usually evaluated in a smaller subset of the

input vector set, is utilized as the reference vector. The

selection of this robust reference vector depends on the

signal characteristics. Usually the median is the preferable

choice since it smooths out impulsive noise and preserve

edges and details. Moreover, unlike scalars, the centermost

vector in a set of vectors can be defined in more than

one way. Thus, the VMF, the basic vector directional filter

(BVDF), or the marginal median filter (MAMF) operating

in a processing window centered around the current vector

input can be used to provide the requested reliable reference

point [47].

The proposed adaptive fuzzy filter can be viewed as

a double-window two-stage estimator in which we can

distinguish between two operations. First, the original signal

is filtered by a multichannel median filter in a small

processing window in order to reject possible outliers, then

an adaptive fuzzy filter with data dependent weights is

applied to provide the final estimates. Thus, the overall filter

can be viewed as a combined multichannel operator which

incorporates simple nonlinear statistical estimators such as

the VMF into adaptive designs based on fuzzy membership

functions.

To summarize, we have outlined a possible interpretation

of the membership function and discussed how membership

functions can be built based on similarity concepts. A

generalized model for building membership functions was

utilized here. The different similarity or distance mea-

sures discussed here can be used as input values to this

membership function model. The possibility of tuning the

design parameters, namely distance (similarity) metrics and

membership functions provides the adaptive fuzzy system

of (3) with a rich variety of modes of operation that range

from simple selection type filters, such as the VMF to

hybrid filters, such as the -trimmed filter.

Now that we have completed the presentation of the

fuzzy, adaptive framework we can proceed with the pre-

sentation of the different multichannel filters which can be

devised within this framework.

B. Adaptive Fuzzy Filters

The filter structure reviewed in this paper can support

different filter families often used in multichannel signal

processing. To illustrate the point we will discuss next the

derivation of commonly used filters through the adaptive

fuzzy structure.

In particular, we shall start with mode-like filters such

as the VMF, which is the most widely used windowed

nonlinear, multichannel filter. The vector median of the

input set is defined as the minimal vector according to the

aggregate, reduced ordering technique (R-ordering) of [35],

[48], [59], and [75]–[77].

Let us assume that given a set of noisy input signals

inside a processing window the scalar

quantity is the aggregated distance

associated with the noisy color vector , where

is the city-block metric.

Assume further that an ordering of the ’s

implies the same ordering to the corresponding

’s where refers to the th

ordered sample. The VMF defines the vector as the

filter output. This selection arises because vectors which
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diverge greatly from the data population usually appear in

higher indexed locations in the ordered sequence [9].

VMF is a selection filter in which the output is always

constrained by definition to one of the samples inside the

processing window. It can easily be seen that the VMF can

be derived as a special case of the fuzzy adaptive system of

(3). Indeed, by adopting the maximum defuzzifier of (12) in

conjunction with aggregated city-block metrics to drive the

membership function of (36) the same filtered output can

be obtained. Simple inspection of (36) reveals that since

by construction, the membership function for

the corresponding input is

and thus is selected through (12) as the

filtered output.

The VMF is not the only multichannel filter which can

be used for processing vector signals. A new type of vector

processing filter, the vector directional filter (VDF) was

proposed recently for multichannel, color signals [78]. The

VDF operates on the direction of the color image signals,

aiming at eliminating vectors with atypical directions in the

vector space. To achieve its objective, the VDF utilizes the

angular distance of (39) to order the input vectors inside

a processing window. As a result, a set of input vectors

with approximately the same direction in the vector space

is produced as the output set. Since the vectors in this set are

approximately collinear, a magnitude processing operation

can be applied in a second step to produce the requested

filtered output.

The BVDF is a selection, nonlinear filter which paral-

lelizes the VMF operation. However, it employs the angle

between the two color vectors as the distance criterion.

The output of the BDVF is the vector from the input set

which minimizes the sum of the angles with the other

vectors. In other words, the BVDF chooses the vector most

centrally located without considering the magnitudes of

the input vectors. It may perform well when the vector

magnitudes are of no importance and the direction of the

vectors is the dominant factor. However, this is usually

not the case. In signal processing applications, including

color image processing, the magnitudes of the vectors

should also be considered. To improve the performance

of the BVDF, a generalized filter structure was proposed

[59]–[78]. The new filter, appropriately called the gen-

eralized vector directional filter (GVDF), generalizes the

BVDF in the sense that its output is a superset of the single

BVDF output. Instead of a single output, the GVDF outputs

the set of vectors whose angle from all other vectors is

small as opposed to the BVDF, which outputs the vector

whose angle from all the other vectors is minimum. Thus,

the GVDF’s produced output initially consists of a set

of input vectors with approximately the

same direction in the color space. Then, in the magnitude

processing module, a final single vector output is produced

by considering only magnitude information. As before, the

BVDF can be derived through the generalized filtering

structure of (3). Simply the vector angle criterion should

be used in conjunction with the maximum defuzzifier and

the membership function of (36).

It is not necessary for the designer to use all the inputs

inside the filtering window to produce the final output in the

fuzzy filter. If necessary, only a part of the input set can be

used. The input vectors can be ordered according to their

respective fuzzy membership strengths. In the sequence,

only a subset of them are used to form the filtered output.

Thus the fuzzy filter can be rewritten as

(41)

where represents the th ordered fuzzy membership

function, and with

being the fuzzy coefficient with the largest membership

strength. The present form of the filter is a special case

of the general filter introduced by (3). The used here

is the ordering of the fuzzy weights. The above form of

the algorithm constitutes a fuzzy generalization of the -

trimmed filters [2]. Through the fuzzy transformation, the

weights to be sorted are scalar values. In this way the non-

linear ordering process does not introduce any significant

computational burden. Depending on the distance criterion

and the associated fuzzy form that the designer chooses,

a number of different -trimmed filters can be obtained.

If the vector angle criterion is selected, the GVDF can be

derived through (41). The question which arises is how to

select the appropriate number of input vectors that will be

included in the final output. There is no standard procedure

to determine the number of inputs that are trimmed and not

included in the averaging process. There are two different

ways to determine the number of vectors that have to be

included in the final set that produces the fuzzy output. The

first option is through the selection of a fixed number of

inputs vectors. The filter designer selects input vectors

that correspond to the fuzzy weights with the largest

values. On the other hand, the number of vectors can be

determined in an adaptive fashion. A simple approach is to

include all the vectors associated with a fuzzy weight larger

than a given threshold. To this end, we select a threshold

value of where are the vectors inside the

operational window.

The last example considered here is another selection

filter known as the directional-distance filter (DDF) which

was proposed in [78]. The DDF retains the structure of

the BVDF but utilizes a new distance criterion to order

the vectors inside the processing window. Based on the

observation that the BVDF and the VMF differ only in the

quantity that is minimized, a new distance criterion was

utilized by the designers of the DDF in the hopes of deriving

a filter which combines the properties of both these filters.

Specifically, in the case of the DDF, the distance inside

is defined as

(42)
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where is the directional (angular) distance defined

in (9) with the second term in (11) to account for the

differences in magnitude in terms of the metric. As

for any other mode-type, multichannel, nonlinear filter, it

is assumed that an ordering of the distance

implies the same ordering to the corresponding

input vectors ’s: Thus,

the DDF defines the minimum-order vector as its output:

By incorporating the proposed distance

function in the linear membership function of (36), the same

result is returned by the adaptive fuzzy filter as when the

maximum defuzzifier is employed.

Although a number of different adaptive designs were

discussed here, all of them have some common design

characteristics and exhibit similar behavior. We summarize

a number of them in a series of comments.

1) All the adaptive vector processing filters perform

smoothing of all the vectors which are from the

same region as the vector at the window center. It is

reasonable to make their fuzzy weights proportional

to the difference (similarity), in terms of a distance

measure, between a given vector and its neighbors

inside the operational window. At edges, or in areas

with high details, the filter only smooths inputs on

the same side of the edge as the centermost vector,

since vectors with relatively large distance values will

be assigned smaller weights and will contribute less

to the final filter output. Thus through the utilization

of the fuzzy adaptive designs we are able to not

only preserve the signal characteristics but also to re-

duce the computational effort by avoiding prefiltering

operations, such as edge or line detection opera-

tions. The proposed adaptive framework combines

elements from almost all known classes of non-

linear filters. Namely, it combines Minkowski-type

distances (used in order-statistics-based estimators) or

nonmetric content-based similarity measures (used in

ranked-type estimators), averaging outputs (used in

linear filtering), with data-dependent coefficients used

in adaptive designs and membership functions used

in fuzzy systems.

2) In the framework described above, there is no re-

quirement for fuzzy rules or local statistics estimates.

Features extracted from local data, here in the form

of distances or similarities, are used as inputs to the

membership function. The fuzzy filters discussed in

this section do not utilize the distance measures to

order the noisy input signals. Instead, they are used to

provide selected features in a reduced space: features

used as inputs for the adaptive weights.

3) The filtering algorithms differ in their computational

complexity. It should be noted at this point that

the computational complexity of a given filter is a

realistic measure of its practicality and usefulness,

since it determines the required computing power and

the associated processing time required for its im-

plementation. The computational complexity analysis

of the adaptive designs requires knowledge of the

Table 1
Noise Models

membership function used to calculate the adaptive

weights and the exact form of the selected distance

(similarity) measure used. The computationally inten-

sive part of the adaptive scheme rests in calculating

the distance. This part, however, is common to all

vector processing designs. Thus from a practical

standpoint, the remarkably flexible structure of (16)

yields realizations of different filters that can meet a

number of design constraints including hardware and

computational complexity.

VI. COLOR IMAGE PROCESSING

The adaptive fuzzy filters discussed here can be used to

process multichannel signals in a variety of practical appli-

cations, such as color image processing, medical imaging,

remote sensing applications, geophysical signal processing,

and military communications. Due to numerous practical

applications, color images comprise an important class of

multichannel signals, and thus they can serve as an excellent

illustrative application.

The international standard CIE 1931 defines color curves

based on tristimulus values of human capabilities and

conditions of view [79]–[82]. The basis of the trichromatic

theory of color vision is that it is possible to match an

arbitrary color by superimposing appropriate amounts of

three primary colors. Thus, in the different color spaces,

each pixel of an image is represented by three values which

can be considered as a vector, transforming the color image

to a vector field in which each vector’s direction and length

is related to the pixel’s chromatic properties. Being a two-

dimensional, three-channel signal, a color image requires

increased computation and storage during processing, as

compared to a greyscale image.

We have conducted a set of experiments in order to

evaluate the fuzzy adaptive designs and compare their

performance against the performance of other filters, such

as the arithmetic mean filter (AMF), a simple weighted

average filter, the VMF, the DDF, and the hybrid filters of

[83].

The noise attenuation properties of the different filters

are examined by utilizing the color images “Lenna” and

“Peppers.” The test images have been contaminated us-

ing various noise source models in order to assess the

performance of the filters under different scenarios (see

Table 1). Image transmission noise exists in many practical

applications. There are various sources that can generate

this type of noise including many man made phenomena,
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Table 2
Filters Compared

such as car ignition systems, industrial machines in the

vicinity of the receiver, switching transients in power

lines, and various unprotected switches. In addition, natural

causes, such as lightning in the atmosphere and ice cracking

in the Antarctic region, can also affect the transmission

process. This transmission noise, also known as salt-and-

pepper noise in greyscale imaging, is modeled after an

impulsive distribution. However, a problem in the study

of the effect of the noise in the image processing process is

the lack of a multivariate impulsive noise model. A number

of simplified models have been introduced recently to assist

in the performance evaluation of the different color image

filters.

The impulsive noise model considered here is as follows:

with probability

with probability

with probability

with probability

with probability

(43)

where is the noisy signal, is the

noise free color vector, is the impulse value, and

(44)

with the degree of impulsive noise contamina-

tion. Impulse can have either positive or negative values.

We further assume that and that the

delta functions are situated at ( 255, 255). Thus, when

an impulse is added or subtracted, forcing the pixel value

outside the [0, 255] range, clipping is applied to force the

corrupted noise value into the integer range specified by

the 8-bit arithmetic.

In many practical situations an image is often corrupted

by both additive Gaussian noise due to faulty sensors and

transmission noise introduced by environmental interfer-

ence or faulty communication. An image can therefore be

thought of as being corrupted by mixed noise according to

the following model:

with probability

otherwise
(45)

where is the noise free three-variate color signal

with the additive noise modeled as zero mean white

Gaussian noise and transmission noise modeled

as multivariate impulsive noise with the degree of

impulsive noise contamination [84], [85].

The original images as well as their noisy versions are

represented in the RGB color space. This color coordinate

system is considered to be objective since it is based on the

physical measurements of the color attributes. The filters

operate on the images in the RGB color space.

Since it is impossible to discuss all the fuzzy adaptive

filters resulting from the theory introduced here, we instead

construct five different filters based on our designs. These

filters are compared in terms of performance with other

widely used multichannel filters (see Table 2). In particular,

we introduce a simple rank-order filter based on the distance

measure of [50] [hereafter referred to as content-based rank

filter (CBRF)], which can be seen as an adaptive fuzzy

system with the defuzzification rule of (12). We also include

the fuzzy vector directional filter (FVDF) which is based on
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Fig. 1. “Peppers” corrupted by 4% impulsive noise.

Fig. 2. VMF of Fig. 1 using 3 � 3 window.

the defuzzification strategy of (6), the membership formula

of (29), and the aggregated distance of (39) evaluated over

the filtering window The adaptive nearest-neighbor filter

(ANNF) based on the defuzzification strategy of (6), the

membership function formula of (36), and the distance

measure of (38) are also included in the set. Further, we

utilized the same defuzzification formula and the same

membership function, along with the aggregated distance

of (38) to derive the double window nearest neighbor filter

ANNMF. By using the Canberra distance and the distance

measure of (25) instead of the angular distance, four new

filters have been devised, namely the CANNF, CANNMF,

CBANNF, and the CBANNMF (see Table 2).

A number of different objective measures can be utilized

to assess the performance of the different filters. All of

them provide some measure of closeness between two

Fig. 3. BVDF of Fig. 1 using 3 � 3 window.

Fig. 4. HF of Fig. 1 using 3 � 3 window.

digital images by exploiting the differences in the statistical

distributions of the pixel values [48]. The most widely

used measure is the normalized mean square error (NMSE)

defined as

NMSE (46)

where and are the image dimensions, and

and denote the original image vector and the esti-

mation at pixel respectively.

In many application areas, such as multimedia, telecom-

munications [e.g., high-definiton television (HDTV)],

production of motion pictures, the printing industry, and
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Fig. 5. AHF of Fig. 1 using 3 � 3 window.

Fig. 6. FVDF of Fig. 1 using 3 � 3 window.

graphic arts, greater emphasis is given to perceptual

image quality. Consequently, the perceptual closeness

(alternatively perceptual difference or error) of the filtered

image to the uncorrupted original image is ultimately the

best measure of the efficiency of any color image filtering

method. There are basically two major approaches used for

assessing the perceptual error between two color images.

In order to make a complete and thorough assessment of

the performance of the various filters, both approaches are

used in this paper.

The first approach is to make an objective measure

of the perceptual error between two color images. This

leads us to the question of how to estimate the perceptual

error between two color vectors. Precise quantification of

the perceptual error between two color vectors is one of

the most important and open research problems. RGB

Fig. 7. ANNMF of Fig. 1 using 3 � 3 window.

Fig. 8. CANNMF of Fig. 1 using 3 � 3 window.

is the most popular color space used conventionally to

store, process, display, and analyze color images. However,

the human perception of color cannot be described using

the RGB model. Therefore, measures such as the NMSE

defined in the RGB color space are not appropriate to

quantify the perceptual error between images. Thus it is

important to use color spaces which are closely related

to the human perceptual characteristics and suitable for

defining appropriate measures of perceptual error between

color vectors. A number of such color spaces are used lately

in areas such as computer graphics, motion pictures, graphic

arts, and the printing industry. Among these, perceptually

uniform color spaces are the most appropriate to define

simple yet precise measures of perceptual error. The Com-

mission Internationale de l’Eclairage (CIE) standardized

two color spaces, and , as perceptually
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Fig. 9. “Lenna” corrupted by Gaussian noise � = 15 mixed with
2% impulsive noise.

Fig. 10. VMF of Fig. 9 using 3 � 3 window.

uniform. The color space is chosen for our analysis

because it is simpler in computation than the color

space, without sacrificing perceptual uniformity.

The conversion from nonlinear RGB color space (the

nonlinear RGB values are the ones stored in the computer

and applied to the CRT of the monitor to generate the

image) to the color space is explained in detail

in [80]. Nonlinear RGB values of both the uncorrupted

original image and the filtered image are converted to

corresponding values for each of the filtering

methods under consideration. In the space, the

component defines the lightness and the and

components together define the chromaticity. In a uniform

color space, such as the perceptual color error

between two color vectors is defined as the Euclidean

Fig. 11. BVDF of Fig. 9 using 3 � 3 window.

Fig. 12. HF of Fig. 9 using 3 � 3 window.

distance between them given by

(47)

where is the color error and and

are the difference in the and components,

respectively, between the two color vectors under consider-

ation. Once the for each pixel of the images under

consideration is computed, the normalized color difference

(NCD) is estimated according to the following formula:

NCD (48)
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Fig. 13. AHF of Fig. 9 using 3 � 3 window.

Fig. 14. FVDF of Fig. 9 using 3 � 3 window.

where is the norm or

magnitude of the uncorrupted original image pixel vector

in the space.

Although quantitative measures such as and NCD

are close approximations to the perceptual error they can-

not exactly characterize the quite complex attributes of

the human perception. Therefore an alternative subjective

approach was used to estimate the perceptual error [86].

The second approach, the easiest and simplest, is the

subjective evaluation of the resulting images when they are

viewed, simultaneously, under identical viewing conditions

by a set of observers. To this end, we compare the perfor-

mance of the different filters in noise attenuation using two

RGB images.

Filtering results for the test image “Peppers” (Fig. 1)

are depicted in Figs. 2–8 while filtering results for the

Fig. 15. ANNMF of Fig. 9 using 3 � 3 window.

Fig. 16. CANNMF of Fig. 9 using 3 � 3 window.

test image “Lenna” (Fig. 9) are depicted in Figs. 10–16. A

visual comparison of the images clearly favors the adaptive

designs over existing techniques.

Having defined the measures for the assessment of per-

formance by various filters, we proceed to the assessment

itself.

One of the obvious observations from the results in Tables

3–10 is the effect of window size on the performance of

the filter. In the case of rank-type filters, such as the VMF,

the BVDF, the CBVF, the DDF, as well as the hybrid

directional filter (HF) and the adaptive hybrid directional

filter (AHF), the bigger window size (5 5) gives con-

siderably better results for the removal of Gaussian noise

(noise model 1), while decreasing the performance for the

removal of impulsive noise (noise model 2). Although a

similar pattern follows for the adaptive fuzzy filters, the
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Table 3
NMSE(�10�2) for the RGB “Lenna” Image, 3 � 3 Window

Table 4
NMSE(�10�2) for the RGB “Lenna” Image, 5 � 5 Window

effect of the window size on performance is less dramatic

as compared to the rank-type filters.

Analysis of the results summarized here reveals the effect

that the distance (or similarity) measure can have on the

filter output. Even filters which are based on the same

concept, such as VDF, CVDF, CBVF, ANNF, and CANNF,

have different performance simply because a different dis-

Table 5
NMSE(�10�2) for the RGB “Peppers” Image, 3 � 3 Window

Table 6
NMSE(�10�2) for the RGB “Peppers” Image, 5 � 5 Window

tance measure is utilized to quantify dissimilarity among

the color vectors. Similarly, double window adaptive filters

have better smoothing abilities, outperforming the other

filters under consideration when a Gaussian noise or mixed

noise model is assumed.

For the case of impulsive noise, the VMF gives the

best performance among the rank-type filters according
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Table 7
NCD for the RGB “Lenna” Image, 3 � 3 Window

Table 8

NCD for the RGB “Lenna” Image, 5 � 5 Window

to the results, as well as the theory, and it is thus used

as a benchmark to evaluate the fuzzy adaptive designs.

The proposed fuzzy filters perform close to the VMF and

outperform existing adaptive designs, such as the HF or

the AHF with respect to NMSE and NCD, and for both

window sizes.

For the case of pure Gaussian noise, the VMF gave

the worst results. The results summarized in Tables 3–10

Table 9
NCD for the RGB “Peppers” Image, 3 � 3 Window

Table 10

NCD for the RGB “Peppers” Image, 5 � 5 Window

indicate that the adaptive fuzzy filters perform exceptionally

well in this situation.

For the mixture of Gaussian and impulsive noise (noise

models 3 and 4), the adaptive fuzzy filters consistently

outperform any of the existing listed filters, both rank type

or adaptive with respect to NMSE and NCD.

Herein lies the real advantage of the adaptive fuzzy

designs. In real applications, the noise model is unknown a
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priori. Nevertheless, the most common noise types encoun-

tered in real situations are Gaussian, impulsive, or a mixture

of both. Therefore, the use of the presented fuzzy adaptive

filters suggests near-optimal performance for the removal

of any kind of noise encountered in practical applications.

On the contrary, application of a “noise-mismatched” filter,

such as the VMF for Gaussian noise, can have profound

consequences leading to unacceptable results.

In conclusion, from the results listed in the tables, it can

be easily seen that the adaptive designs provide consistently

good results in all types of noise, outperforming the other

multichannel filters under consideration. The adaptive fuzzy

designs discussed here attenuate both impulsive and Gauss-

ian noise. The versatile design of (3) allows for a number of

different filters which can provide solutions to many types

of different filtering problems. Simple adaptive fuzzy de-

signs, such as the ANNF or the CANNF, can preserve edges

and smooth noise under different scenarios, outperforming

other widely used multichannel filters. If knowledge about

the noise characteristics is available, the designer can

tune the parameters of the adaptive filter to obtain better

results. Finally, considering the number of computations,

the computationally intensive part of the adaptive fuzzy

system is the required distance calculation. However, this

step is common in all multichannel algorithms considered

here. In summary, the design is simple, does not increase

the numerical complexity of the multichannel algorithm,

and delivers excellent results for complicated multichannel

signals, such as real color images.

VII. CONCLUSIONS

The paper presented a multichannel signal processing

methodology based on fuzzy concepts. The framework

combines nonlinear filters, fuzzy membership functions,

and distance (similarity) criteria. Several filters can be

considered special cases of this framework. The behavior of

these adaptive designs was analyzed and their performance

was compared with that of the most commonly used filters

for a problem of great practical importance, namely color

image processing. These filters not only have a rigid theo-

retical foundation but promising performance in a variety of

noise characteristics. Indeed, the simulation results included

and the subjective evaluation of the filtered color images

indicate that the proposed fuzzy adaptive filters compare

favorably with other commonly used techniques.

In conclusion, this paper summarizes the present state

of knowledge on the subject of adaptive fuzzy systems

and their application to the problem of multichannel signal

processing. Particular emphasis was given to the formula-

tion of the problem and the filter design procedure. Other

issues, such as the realization of the different methodologies

presented here, and implementation as well as verification

issues, were not discussed in this paper. To assess fully the

applicability of the presented techniques, further analysis

is required on algorithms and architectures, which may be

used for the realization of the adaptive fuzzy systems. Issues

such as speed, modularity, the effect of finite precision

arithmetic, cost, and software transportability should be

addressed.

Multichannel signal processing is a rich and expanding

field. Numerous new and advanced areas have appeared

which have increased the importance of the tools intro-

duced and analyzed here. Multimedia signal processing

[87], visual data processing and analysis [88], multimodal

signal processing [89], telecommunications, digital audio

restoration, satellite imagery, seismic deconvolution, and

biomedicine are only some of the areas in which the

methodologies proposed here can be applied.

From a long-term research perspective, there is a need

to establish a coherent theoretical foundation for nonlinear

filtering algorithms. New algorithms and methodologies

which may result in even more effective filtering structures

suitable for intelligent processing of multimedia signal

processing demand investigation. The framework presented

here can serve as an initial point for further research

and development in the area and ultimately help in the

development of new results and products in the near future.
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