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Adaptive Goal-oriented Data Sampling in Data-Driven Computational Mechanics

Anna Gorgogianni1, Konstantinos Karapiperis2, Laurent Stainier3, Michael Ortiz4, José
E. Andrade5

Abstract: Data-Driven (DD) computing is an emerging field of Computational Mechanics, motivated
by recent technological advances in experimental measurements, the development of highly predictive
computational models, advances in data storage and data processing, which enable the transition from a
material data-scarce to a material data-rich era. The predictive capability of DD simulations is contingent
on the quality of the material data set, i.e. its ability to closely sample all the strain-stress states in the
phase space of a given mechanical problem. In this study, we develop a methodology for increasing the
quality of an existing material data set through iterative expansions. Leveraging the formulation of the
problems treated with the DD paradigm as distance minimization problems, we identify regions in phase
space with poor data coverage, and target them with additional experiments or lower-scale simulations.
The DD solution informs the additional experiments so that they can provide better coverage of the phase
space of a given application.

We first illustrate the convergence properties of the approach through a DD finite element simulation
of a linear elastic cylinder under triaxial compression. The same numerical experiment is then performed
on a specimen of Hostun sand, a material with complex history-dependent behavior. Data sampling is
performed with Level-Set Discrete Element Method (LS-DEM) calculations of unit cells representative of
this granular material, subjected to loading paths determined by the proposed method. It is shown that this
adaptive expansion of the data set, tailored for a particular application, leads to convergent and accurate
DD predictions, without the computational cost of using large databases with potentially redundant or
low-quality data.
Keywords: data-driven computing, multiscale modeling, data acquisition strategies

1 Introduction

In computations of the mechanical behavior of material bodies, constitutive modeling has been an
essential task; together with a set of constraints and conservation laws, such as compatibility and
equilibrium, the constitutive equations provide the closure relations to the associated boundary value
problems. The predictive capability of this conventional computing paradigm is largely governed
by the accuracy of the employed constitutive model in predicting material behavior. However, such
predictions have been traditionally challenged by the scarcity of experimental material data, leading to
material models that had to extrapolate far beyond the range of data used for their calibration. Other
challenges and sources of uncertainty in this process include the non-unique choice of the functional
forms of material laws. Moreover, the calibration procedure can be far from trivial, particularly
for models aiming to capture complex material behavior and introducing a significant number of
parameters, some of which may lack physical interpretation.

Motivated by progress in Data Science, and aiming to reduce the aforementioned sources of bias and
empiricism in the classical material modeling step, various alternatives based on machine learning and
data-driven techniques have been proposed in the literature. One could view such attempts as having
largely followed two different directions. The first direction introduces surrogates for constitutive
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laws learnt directly from the available material data, this way eliminating the bias introduced by the
modeler when proposing a specific stress-strain relationship. Early efforts in this first class of models
include the training of neural networks (NN) with experimental data for predictions of mechanical
behavior [9]. In [10], the performance of NN-based constitutive models of elastoplastic behavior in
finite element analysis was investigated, and improved convergence compared to the use of classical
elastoplastic models was reported. Other examples include successful applications of deep learning
[20,21], with resulting material models that can be predictive beyond the training data set, as well as
computationally efficient to incorporate in the analysis.

The second direction, initiated by [16], does not resort to any explicit material model. With the
mathematical formulation of the Data-Driven distance-minimizing method [16] as well as its exten-
sions [2, 5, 6, 17, 18], predictions of mechanical behavior can be made by directly incorporating the
material data in the analysis, in lieu of material models. Material data are generated through physical
experiments as well as physics-based lower-scale computational models, this way avoiding the phe-
nomenology of classical constitutive models. No extrapolation or prediction beyond a given data set
is attempted. The boundary value problems of mechanics are solved by reformulating them as dis-
tance minimization problems between two sets; the constraint set, consisting of the local strain-stress
states satisfying essential constraints, conservation laws and boundary conditions, and the material
data set, consisting of a finite collection of strain-stress states obtained experimentally. The data-
driven solution consists of pairs of mechanically admissible strain-stress states and their corresponding
nearest-neighboring states from the material data set. The distance between the constraint set and the
material data set quantifies the error made when seeking to satisfy as best as possible the conservation
laws and the captured material behavior.

A major source of this error can be the issue of data scarcity; the experiments providing mate-
rial data may be insufficient to cover all mechanical strain-stress states of a particular application.
Another possibility is a low-quality material database, created from experiments under loading paths
not pertinent to the considered mechanical problem. The process of generating material data, also
referred to as data or phase space sampling, should thus aim to minimize the outlined above sources
of error in data-driven computations, and is the goal of this study.

Various approaches to phase space sampling have been proposed in the literature [7, 13, 16, 19],
however, only few of them have been implemented. Phase space sampling strategies can be broadly
categorized into two types, depending on the existence or not of a priori information for the con-
sidered mechanical problem. These two approaches are termed as offline and on-the-fly sampling
respectively [13]. In the case of offline sampling, the preexisting information could consist of ex-
perimental measurements of the local strains or strain histories at discrete points of the deforming
specimen. The material data set can then be completed by lower-scale computations, e.g. molecular
dynamics, discrete element method, lower-scale finite element method, that will provide the remaining
components of the state, i.e. local stress response. Such prior information though is not required to
guide the process of phase space sampling. It is indeed a salient feature of the Data-Driven distance-
minimizing method [16], which is adopted in this study, that it can provide real-time information on
the errors, expressed in terms of the distance between the mechanically admissible and the material
strain-stress states. Detection of large error values, at a given material point and a given time step of
the data-driven simulation, can be used as a criterion for an on-the-fly expansion of the data set [13],
until the errors become sufficiently small.

Following the concept of the on-the-fly data sampling strategy, the present study introduces an
efficient way to populate an existing database focused on the demands of a particular application,
i.e. goal-oriented. The way to populate the database does not involve any data-fitting or other
empirical process, but is informed by the data-driven solution of the mechanical states, which are
those respecting the physical laws. An initial DD simulation of a considered problem is performed
with an existing material database. The material points whose strain-stress states are not well-covered
by the database are then identified by analyzing the error distribution in the data-driven simulation.
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These material points are targeted for additional lower-scale experiments, providing higher-quality
material data to expand the database with. The process continues with more such iterations of
decoupled DD simulations and lower-scale experiments at the material point level, until the error of
the DD simulations in satisfying conservation laws and material behavior is minimized.

The paper is organized as follows: Section 2 provides a brief review of the data-driven distance-
minimizing method for the case of history-dependent material behavior, which is the main focus of the
present study. Section 3 analyzes the proposed adaptive goal-oriented data sampling strategy. The
remaining of the paper is devoted to numerical applications of the method, initially for the case of linear
elastic material behavior and then for the case of complex nonlinear material behavior. We conclude
with a discussion on the performance of the proposed framework in aiding convergence and increasing
the accuracy of data-driven predictions, the computational benefits of the data-driven method, as well
as the greater paradigm shift it has introduced.

2 Data-Driven distance-minimizing method

2.1 Reformulation of boundary value problems

We present here the Data-Driven formulation of a purely mechanical problem for the general case of a
system discretized in both space and time, [5,13,16]. The Data-Driven framework retains all formerly
developed numerical schemes, e.g. finite elements, time integration techniques. Consider a body
discretized in N nodes and M material points. The body is subjected to applied forces, assembled
in the global nodal force vector, f = {fi}Ni=1, and undergoes nodal displacements, u = {ui}Ni=1

(Fig. 1a)), which are the primary unknowns of the classical finite element method. The Data-Driven
analysis takes place in the global phase space Z, consisting of the collection of the local strain-stress
pairs at all M material points of the discretized system, i.e. z = {(ϵe,σe)}Me=1 ∈ Z. The essential
constraints and conservation laws pertinent to the case of mechanical problems considered herein, are
compatibility and equilibrium, expressed with the following equations:

ϵe,k = Beuk, ∀e = 1, . . . ,M (1)

M∑
e=1

weB
T
e σe,k = fk (2)

where uk,fk, ϵk,σk denote the displacements, forces, strains and stresses at time tk respectively, Be

is a discrete strain operator for material point e, and {we}Me=1 are elements of volume associated with
each material point. Eqs. (1) and (2) impose constraints on the internal strain-stress states that can
be deemed admissible. The set of compatible and equilibrated internal states forms the constraint set
C, Fig. 1b), which is a subset of the global phase space Z, on which the internal state of the system
should lie:

Ck = {z ∈ Z| (1) and (2)} (3)

where the subscript k in Eq. (3) implies that the constraint set could be time-dependent, for instance
due to time-dependent loading.

The contribution of the Data-Driven paradigm is that it eliminates the uncertainty introduced
by empirical constitutive modeling, since it abandons any material law in functional form, but in-
stead it directly incorporates material data in the analysis. Material data can be obtained by on
site measurements, from laboratory experiments, or in silico, i.e. via computational models such as
molecular dynamics, lower-scale finite element method, discrete element method, Fig. 1a). We denote
as y = {(ϵ′e,σ′

e)}
M
e=1 a point in the global data set D, consisting of a finite collection of strain-stress

data points describing local material behavior of the corresponding points, D = D1× · · · ×DM . Each
material point could in general be represented by a different data set, De, for instance due to hetero-
geneity of material properties. Besides, in the case of inelastic material behavior, which is the focus of
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Figure 1

Figure 1: Overview of the Data-Driven Method: a) Finite element model of a boundary value problem
and micromechanical model used to generate material data, b) Illustration of a mechanical strain-
stress state in the constraint set C, a material strain-stress state in the data set D, and their distance
de, c) Sequence of projection operations aiming to minimize the distance between sets C and D, by
minimizing the local distances de, ∀ e = 1, . . . ,M . The black point in the inset denotes the data-driven
mechanical solution, whereas the red point denotes the data-driven material solution.

this study, the data set is time-dependent; it consists of all material states that can be accessed from
the current state given the past local history of deformation:

Dk = {
(
ϵ′e,k,σ

′
e,k

)M
e=1
|(local history of eachmaterial point)} (4)

The solution to the considered problem should satisfy as closely as possible the pertinent con-
straints, Eqs. (1) and (2), and material behavior. The latter is captured through the point data set
Dk, created by experimental measurements. Given the finiteness of the data set, such a solution can
be found provided the data-driven problem is formulated as a distance minimization problem between
the constraint set Ck and the data set Dk:

min
z∈Ck

min
y∈Dk

d2 (zk,yk) = min
y∈Dk

min
z∈Ck

d2 (zk,yk) (5)

d2 (zk,yk) = ||zk − yk||2 (6)

This requires a definition of the distance d in phase space:

d2 (zk,yk) =

M∑
e=1

wed
2
e (ze,k,ye,k) (7)

where de is the corresponding local distance given by

d2e (ze,k,ye,k) =
1

2
{Ce

(
ϵe,k − ϵ′e,k

)
·
(
ϵe,k − ϵ′e,k

)
+ C−1

e

(
σe,k − σ′

e,k

)
·
(
σe,k − σ′

e,k

)
} (8)
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with ze,k = (ϵe,k,σe,k), ye,k = (ϵ′e,k,σ
′
e,k) being two given instantaneous local strain-stress states in the

constraint set and the local material data set respectively. Ce is a symmetric positive definite matrix
of purely numerical nature. It serves as a weight which makes the two terms of Eq. (8), expressing the
distance deviations in strain and stress respectively, having the same units and similar magnitude. In
the present analysis, the matrix Ce is chosen to have the same form as the elasticity matrix, since such
a selection results in good convergence behavior [6]. Another option would be to solve for the optimal
Ce as described in [12], this way avoiding any bias introduced by the choice of the metric tensor and
rendering the scheme completely parameter-free.

The solution to the data-driven problem, Eq. (5), requires identifying the optimal assignment of
strain-stress states from the material data set to all points of the discretized system, that results in the
minimum global distance. This is a problem of combinatorial complexity, since the number of possible
assignments of local material states grows exponentially with the number of material points [6,22]. To
circumvent this complexity, the solution of the global distance minimization problem can be obtained
heuristically through a staggered scheme, i.e. by solving a series of two minimization sub-problems. In

the first sub-problem of a given iteration j, a data point of the global data set, y
(j)
k = {(ϵ∗e,k,σ∗

e,k)} ∈
Dk, is projected to the closest point in the constraint set, z

(j+1)
k = {(ϵe,k,σe,k)} ∈ Ck. The global

data point y
(j)
k represents a possible assignment of strain-stress states from the data set to all material

points of the discretized system. The projection onto the constraint set PC , defined by Eq. (9),

z
(j+1)
k = PC(y

(j)
k ) = min

zk∈Ck

∥zk − y
(j)
k ∥

2 (9)

is performed by solving the following system of equations, obtained from employing the Lagrange
multiplier method to solve the constrained distance minimization problem(

M∑
e=1

weB
T
e CeBe

)
uk =

M∑
e=1

weB
T
e Ceϵ

∗
e,k (10)

(
M∑
e=1

weB
T
e CeBe

)
ηk = fk+1 −

M∑
e=1

weB
T
e σ

∗
e,k (11)

where ηk denote the Lagrange multipliers. The closest compatible and equilibrated global strain-stress

point z
(j+1)
k = {(ϵe,k,σe,k)} can then be calculated by

ϵe,k = Beuk, ∀e = 1, . . . ,M (12)

σe,k = σ∗
e,k + CeBeηe,k, ∀e = 1, . . . ,M (13)

In the second sub-problem of a single iteration, a nearest-neighbor search is performed for every

material point, in order to find the material states y
(j+1)
k which are the closest to the corresponding

states in z
(j+1)
k , regarding the local distance (Eq. (8)). This projection onto the data set, denoted as

PD, is defined below:

y
(j+1)
k = PD(z

(j+1)
k ) = min

ye,k∈De,k

∥ye,k − z
(j+1)
e,k ∥2 ∀e = 1, . . . ,M (14)

For every time step tk, a series of iterations of these projection operations is performed as illustrated
in Fig. 1c), until the assignment of the material strain-stress states to all points of the discretized body
does not change any more. At the first time step of the simulation, the initial assignment of strain-
stress states from the data set would be random, whereas at the next time steps, such assignment can
be informed by the previously found optimal local states. One should also note that this heuristic
solver does not necessarily yield the global minimizer, but the solution is usually a good approximation
of it [6].
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2.2 Universal energy-based parametrization of material history

The Data-Driven framework does not rely on any assumption of material behavior, it can thus be
applied to any type of materials, e.g. elastic or inelastic [5, 16]. The present study focuses on the
case of inelastic material behavior, which is characterized by irreversibility of deformation and history
dependence. In terms of the data-driven constrained distance minimization problem outlined in the
preceding section, the above implies that optimality of a material state is now understood not only in
the sense of that state minimizing the local distance, Eq. (8), but also of that state not resulting in
violation of the thermodynamics laws, which induce additional constraints, this time on the data set.
The first and second laws write as follows:

Ḋ = σ : ϵ̇− Ȧ ≥ 0 (15)

or, when approximating the rates of Eq. (15) within a time-discrete setting, and for a given material
point e

De,k+1 −De,k =
σe,k + σe,k+1

2
: (ϵe,k+1 − ϵe,k)− (Ae,k+1 −Ae,k) ≥ 0 (16)

where De,k, Ae,k denote the dissipation and free energy density at material point e and time step tk.
The time-dependent data set can then be expressed by Eq. (17), and illustrated by Fig. 2.

De,k+1 = {(ϵe,k+1,σe,k+1) | (ϵe,k,σe,k) , (16)} (17)

Figure 2

Figure 2: Energy-based parametrization of material history in the data set; The material strain-
stress states which can be accessed from the current state are those that comply with the laws of
thermodynamics (or within some tolerance, e.g. ε << 1)

This parametrization of material history can readily be obtained as long as the lower-scale compu-
tational model used for predictions of material behavior can provide the free energy and dissipation
in addition to the strain-stress response (Section 4.2.2). Each strain-stress point in the phase space is
then augmented by the corresponding values of free energy and dissipation. The data-driven nearest
neighbor search at every time step can then take place only within the subset of thermodynamically
admissible states described by Eq. (17), which is considered to contain those material states attainable
from the current state given the local history of deformation. Though this universal, energy-based
parametrization of material history, the data-driven solver can navigate through inelastic material
data sets, and effectively differentiate between loading and unloading, as shown in [13]. It should also
be pointed out that the thermodynamics-based history parametrization allows the data-driven solver
to additionally consider neighboring material states from different material response paths as poten-
tial solutions to the distance minimization problem, provided these states have undergone equivalent
history, as defined by an appropriate relaxation of the constraints in Eq. (16) and illustrated in Fig.2.
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3 Adaptive Goal-oriented Data Sampling

The present study introduces an efficient way to sample the phase space of a considered mechanical
problem analyzed within the data-driven framework. The underlying concept is to iteratively expand
an initial data set until all material points of the discretized system are well-covered by their data set,
i.e. the local distances between the mechanical and the assigned nearest-neighboring material states
become sufficiently small for all material points at all time steps of the data-driven simulation. The
suggested approach is characterized as adaptive, since it can iteratively adapt to meet the demands
of any mechanical problem, and goal-oriented, since its results depend on the particular application.

The proposed data sampling strategy, also referred to as phase space sampling, can be implemented
as described below, and illustrated with Fig. 3. A data-driven finite element simulation of the con-
sidered mechanical problem is performed with an initial material database. As the most general case,
the initial database is considered to be scarce and generated in the absence of any prior information
for the mechanical states of the problem. At the end of the simulation, when a converged data-driven
solution is obtained, the distribution of local distances de between the mechanical and their assigned
closest strain-stress states from the material data set is analyzed. High values of the distances indicate
that the mechanical states of the corresponding material points have not been well-covered by the data
set. Provided all other potential sources of large distances, such as errors in the physical or virtual
experiments or inaccurate material representation, are eliminated, the reason for the distance devia-
tions can be safely attributed to insufficient representation of the corresponding mechanical states by
the strain-stress states present in the current data set.

Material states
Mechanical states

Solve DD 
problem

1. Identify mechanical 
    states furthest from 
       the material set

   2. Cluster distant 
 mechanical states and 
    identify centroids

Cluster 2
Cluster 1

Centroids

ε

σ

ε

σ

ε

σ

New Material data
ε

σ

Fr
eq

ue
nc

y

Fr
eq

ue
nc

y

3. Target centroids with 
       new simulations

Poorly covered regions
(large distances)

4. Update material
          dataset

εx

εz

u

p

Figure 3

Figure 3: Illustration of a typical iteration of adaptive goal-oriented data sampling

In the next step, the mechanical states of the “problematic” material points characterized by large
distance deviations, are used to inform the loading to impose on additional lower-scale simulations
of representative unit cells, associated with the corresponding points. In order to avoid unnecessary
lower-scale simulations, since they can be computationally expensive, a clustering analysis is first
performed in order to group mechanical states which are similar. The clustering analysis allows us
then to consider only the truly distinct mechanical states in the unit cell computations, this way
avoiding adding redundant data in the database.

The strain-stress data points obtained from the unit cell simulations are then added to the material
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data set. A new data-driven simulation is performed, which uses the expanded data set. Given that
the loading applied to the unit cells was informed by the mechanical states of the previous data-driven
simulation, each data set expansion will result in decreasing distances de between the mechanical and
their corresponding material strain-stress states. After every new expansion, the distribution of local
distances will change, indicating the different material points in need of better-quality data. The
mechanical states of these points will also change, indicating the regions of the phase space that have
not yet been well-covered by the expanding data set. The process continues with more iterations of
the decoupled data-driven finite element simulations of the global problem and the lower-scale unit
cell simulations at the material point level, until all material points are well-covered by their data set
and the data-driven prediction of mechanical behavior is accurate.

To account for history-dependent material behavior, the outlined data acquisition strategy requires
only minor adjustments, which are the following; The identification of poorly covered regions of the
phase space is based on the distances between the mechanical strain-stress paths traversed in the data-
driven simulation, and the strain-stress paths present in the database. We define as path distance of
a given material point e the sum in time of the instantaneous distances between the mechanical and
material states of the point, i.e.

∑
k wede(ze,k,ye,k), which we denote as

∑
k wede,k for brevity. The

mechanical paths which are similar, i.e. their distance
∑

k wede,k is sufficiently small, are then grouped
into clusters. The centroids of the detected clusters in this case represent mechanical strain-stress
histories instead of strain-stress states. These histories are imposed as the loading paths to additional
lower-scale simulations, triggering new material response strain-stress paths that will augment the
database, upon an efficient parametrization of material history, e.g. as in Section 2.2.

4 Numerical Studies

4.1 Triaxial compression test of linear elastic cylinder

To evaluate the performance of the proposed data sampling strategy in aiding convergence of the Data-
Driven solution, we first apply it in the case of history-independent material behavior, by simulating a
triaxial compression test on a linear elastic homogeneous cylinder, under quasi-static conditions. The
same experiment will subsequently be simulated on a specimen of the same geometry, but made of a
heterogeneous granular material with complex history-dependent behavior. The cylindrical specimen
has a diameter of 1 cm and height of 2.3 cm. The experiment starts with an initial stage of isotropic
compression to 10 kPa. After the isotropic compression stage, the radial cell pressure remains constant
at σr = 10 kPa, while an increasing vertical displacement is applied at the top surface of the cylinder,
up to an ultimate compressive axial strain of magnitude ϵa = 15%. The specimen is discretized
with a regular mesh of linear hexahedral elements, with eight Gauss integration points. The average
dimensions of the hexahedral elements are hx = hy = 0.15 cm, and hz = 0.14 cm (Fig. 4).

The initial material database consists of 100 strain-stress data points following linear elasticity, with
values of the elastic constants E = 100 kPa and Poisson’s ratio ν = 0.3. The material data is plotted in
Fig. 5 in the p−q and ϵa−ϵV spaces, where p = −(1/3) trσ = pressure, q =

√
3/2 ||devσ|| = deviatoric

stress, ϵa = −ϵzz = axial strain, and ϵV = tr ϵ = volumetric strain. The data is plotted for the triaxial
compression stage, which is why the volumetric strain starts from a non-zero value, representing the
uniform contraction of the specimen at the end of the isotropic compression. As can be seen in
Fig. 5, the initial database does not provide a continuous coverage of the phase space. It is the goal
of the adaptive sampling process to identify the missing information in the database and iteratively
expand it so as to better sample the mechanical states developed during this triaxial compression
test. As described in Section 3, the augmentation of the existing database starts by analyzing the
spatial distribution of the distances between the mechanical and material strain-stress states of the
DD solution, in order to identify the material points in need of better coverage. We indeed chose
to calculate the local distances for the total number of finite elements instead of the total number
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Figure 4
Figure 4: Finite element model of the linear elastic triaxial compression cylinder, simulated with the
Data-Driven method

of material, i.e. Gauss integration points. Such a selection reduces memory requirements without
compromising accuracy for the linear elements used in the simulation. The result of this analysis is
shown in the histogram of iteration 1 of Fig. 7a), where one can observe the non-uniform coverage of the
corresponding elements by the initial, not sufficiently dense database of Fig. 5. The mechanical strain-
stress states of the elements with distances larger than a selected distance threshold are subjected to
clustering using the density-based spatial clustering algorithm DB-SCAN [8], a process that will be
described in detail in Section 4.2.4. The distance threshold in this study was taken as the median
value of the local distances of the current DD simulation, and will decrease upon successive iterations
of the data-sampling process as more material points are better covered by the augmented database.
Given that in this example material behavior is known, the truly distinct strain states identified by
the clustering are directly used to calculate the corresponding stress data from linear elasticity. In
the case of a material with similarly history-independent behavior but with a given microstucture,
the corresponding stress data would be obtained by a unit cell calculation. The resulting strain-stress
data points are then added to the existing database. A new DD simulation is then performed, which
uses the enriched database. The mechanically admissible strain-stress states developed in the new DD
simulation will be used to inform the next database expansion, and the process continues with more
such iterations until the phase space of strain-stress states is well-covered, as illustrated in Fig. 6, and
convergence is reached, as shown in Fig. 7.

4.2 Triaxial compression test of cylinder of Hostun sand

4.2.1 Description of analysis

We now proceed by considering the triaxial compression test of a cylinder of Hostun sand, in order
to investigate the performance of the suggested data acquisition strategy in aiding convergence and
accuracy of the data-driven computations, for the case of complex history-dependent material behavior.
Both physical and in silico experiments are available to validate the DD simulation. In the physical
experiment [1], the cylindrical specimen contains 53,939 angular grains, and its geometry is similar
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Figure 5

Figure 5: Representation of the strain-stress data points present in the initial database of the linear
elastic material in p− q and ϵa − ϵV spaces

to that of the elastic cylinder of Fig. 4. The experiment starts with an initial stage of isotropic
compression to 100 kPa. The application of the radial cell pressure σr requires encasing the specimen
with a flexible membrane, whereas the vertical compression is enforced through a freely rotating
platen placed at the top surface of the cylinder, which applies a vertical displacement under quasi-
static conditions. After the isotropic compression stage, the radial cell pressure remains constant
whereas the vertical compression increases, inducing failure through shear-band formation.

A virtual experiment of this triaxial compression test was performed with LS-DEM, a variant of
the discrete element method to be described in Section 4.2.2. For every grain of the actual sample,
which is captured by XRCT scans of the entire cylinder [1], LS-DEM can reconstruct a virtual grain
through a level-set imaging algorithm [15]. The virtual grains are equivalent to the physical ones in
that they have identical shape and initial configuration. The virtual sample is subjected to exactly the
same loading conditions as the physical sample, by simulating both the flexible membrane as well as
the top platen. The LS-DEM simulation has been shown to be highly predictive, able to capture both
the macroscopic stress-strain response, as well as the onset and spatio-temporal evolution of shear
band in the specimen [15], Fig. 8a).

Given the proven predictive capability of LS-DEM, we will use this tool to perform unit cell
simulations for sampling the phase space of local strain-stress states in our DD continuum finite
element simulation. The finite element model of the cylinder, of same geometry as the virtual sample,
is discretized with an unstructured mesh of linear hexahedral elements, with eight Gauss integration
points. The orientation of the finite elements in the region where the shear band will be formed is the
same as the orientation of the shear band in the experiment, Fig. 8b), corresponding to an angle of 48◦

with the horizontal. The meshing in the surrounding region gradually transitions towards regularity.
The average dimensions of the hexahedral elements are hx = hy = 0.15 cm, and hz = 0.14 cm. Starting
from the isotropic compression stage at a 100 kPa, the specimen is subjected to triaxial compression
up to an ultimate axial strain of approximately 15%, similar to the experiment.

4.2.2 Level-Set Discrete Element Method (LS-DEM) for phase space sampling

The Level-Set Discrete Element Method (LS-DEM) [14] is a variant of the Discrete Element Method
(DEM) [4], which has the ability to accurately capture any morphology of the grains. Similarly to
DEM, the material microstructure is explicitly modeled as a collection of particles, each representing a
physical grain. Rigid body kinematics is assumed for the particles, while some small overlap is allowed
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Figure 6

Figure 6: Representation of the strain-stress data points present in the initial (iteration 1) and the
expanded with adaptive sampling (iterations 2-12) databases of the linear elastic material, in p − q
and ϵa − ϵV spaces

to occur locally at the particle contacts.
The total force acting at contact c of a given particle can be resolved to a normal and tangential

component (Fig. 9b)), as follows:
f c = f cn + f ct (18)

It has been shown [15] that the constitutive behavior of sand can adequately be described by a linear
elastic (Hookean) contact law capped by Coulomb friction, which will thus be adopted in the present
study. Neglecting any thermal effects, the contact law is described by:

f cn = knδnn (19)

f ct ← R f ct − kt∥∆s∥, ∥f ct∥ ≯ µ ∥f cn∥ (20)

where kn, kt denote the normal and tangential elastic stiffness respectively, δn is the particles’ inter-
penetration, n is the contact normal, ∆s is the time increment of tangential contact displacement, R
is a matrix that rotates the contact normal from the current to the previous time step, and µ is the
friction coefficient. The total force acting at a given particle is f =

∑
c∈Cp f c, where the summation

is performed over all contacts Cp of the particle. Once the total moment m acting on the particle is
also calculated, time integration of Newton’s equations of motion is performed to update the particle’s
kinematics.

The generation of granular material data sets for this triaxial compression application is performed
through LS-DEM simulations of unit cells representative of material behavior of the corresponding
material points of the specimen, Fig. 9a). The universal, thermodynamics-based parametrization of
material history described in Section 2.2, will be used herein. LS-DEM can provide all required for
the energy-based parametrization, Eq. (16), state variables, i.e. stress, strain, free energy density,
and dissipation density. Assuming quasi-static conditions, the average stress tensor of the granular
assembly is given by [3]:

σ =
1

V

∑
c

f c ⊗ lc (21)

where the summation is performed over all contacts c of all particles in the assembly (unit cell), and
lc are the branch vectors connecting the centroids of contacting particles. The average strain ϵ̄ is
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Figure 7

a) b)

Figure 7: Performance of adaptive sampling for the Data-Driven simulations of linear elastic material
behavior; a) Distribution of values of local distances between mechanical paths and material response
strain-stress paths with iteration and, b) Global distance at the final time step of each DD simulation

obtained directly from the boundary deformation of the unit cell, and the free energy density due to
interpenetration at the particle contacts is given by:

A =
∑
c

Ac =
1

2V

∑
c

(
∥f cn∥2

kn
+

∥f ct∥2

kt

)
(22)

The LS-DEM unit cell simulations consider periodic boundary conditions, for which case one can
calculate the increment of dissipation by the Hill-Mandel macrohomogeneity condition [11], reproduced
below

dD = σ : dϵ− dA (23)

In the present simulations dissipation arises from the frictional slip at the contacts,

dD =
∑
c

dDc =
1

V

∑
c

f ct · duc, slip (24)

where duc, slip = (f c,tt − f c,t+dt
t )/kt. The average stress σ̄ and strain ϵ̄ quantities, augmented by the free

energy and dissipation density, Eq. (22) and Eq. (23), can then be used as the input material data of
the corresponding material points of the data-driven finite element model.

4.2.3 Creation of initial database

For illustrative purposes, we present in detail in Sections 4.2.3-4.2.5 the steps involved in a typical
iteration of the adaptive data sampling, along with the specifics of its application in this case of a
granular material with history-dependent behavior. The DD simulation of the first iteration of the
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Figure 8Figure 8: a) Shear band formation in the inelastic triaxial compression cylinder, as simulated with
LS-DEM and, b) Finite element discretization of the cylinder and shear band formation in the red
corresponding Data-Driven simulation

adaptive sampling process is based on a scarce material database. Two unit cells, extracted from the
LS-DEM (virtual) sample, were used to provide material response data to form the initial database; one
was extracted from a location outside the shear band, and the second one was extracted from within
the region where the shear band would be formed. These two unit cells are considered to represent
entire spatial regions; the region outside and the region within the shear band, respectively. However,
due to material heterogeneity, unit cells from more spatial locations can be extracted in subsequent
iterations of the data sampling. In the DD simulation, every material point is associated to the
corresponding unit cell depending on its location and it only accesses the corresponding generated
material data, a restriction which will later be lifted.

The extracted unit cells have approximately 5, 000 grains each (Fig. 9a)). The void ratios are 0.43
and 0.41 for the cell outside and the cell inside the shear band respectively. Each cell was subjected
to two loading histories, obtained by homogenization of the response of the triaxial compression LS-
DEM cylinder, over the corresponding spatial regions represented by the two cells. The suggested
data acquisition strategy though does not require any prior information of the mechanical states of
the problem. Convergence of the stress-strain response was confirmed by considering cells of different
sizes, i.e. number of grains. The material response histories are used to create the initial database,
which contains 260 strain-stress data points, augmented by the corresponding values of free energy
and dissipation. Given the scarce initial database, the distance between the mechanical and material
strain-stress paths traversed in the DD simulation is non-negligible, as shown in iteration 1 of Fig. 13a),
and the DD simulation is not able to capture the experimental response, as shown in iteration 1 of
Figs. 11. It is the goal of the adaptive sampling process to expand the database in the direction of
decreasing distance.
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Figure 9

Figure 9: a) LS-DEM model of a unit cell representative of the considered granular material (Hostun
sand), and b) Contact force and branch vector

4.2.4 Analysis of mechanical strain-stress paths of the DD simulation

The next step in the adaptive data sampling process is to identify the material elements which have not
been well-covered by the current database and analyze their mechanical paths to inform additional
unit cell LS-DEM simulations. A clustering analysis of the mechanical paths of these elements is
performed using DB-SCAN, [8]. Every cluster identified by the algorithm consists of mechanical paths
which are sufficiently close to one another with respect to the custom distance metric dp:

d2p =
∑
k

d2 (ze1,k, ze2,k) (25)

where index k runs over all time steps for which the DD mechanical states were stored, the distance
terms d2 are calculated following the local distance definition of Eq. (8), and ze1,k, ze2,k now denote the
strain-stress states in the mechanical paths of any two elements e1 and e2, at a given time step tk. The
algorithm requires two input parameters; the radius r, which is the maximum distance between the
path represented by the centroid of a cluster and a mechanical path at the boundaries of the cluster,
and the minimum number of mechanical paths smin needed to form a cluster. In this study, selecting
r = 0.1dp, where dp is the average of the path distances of the np in number, poorly-covered elements,
and smin = ⌈np/10⌉ where ⌈x⌉ = least integer that is greater than or equal to x, was found to aid
accuracy of the data-driven simulations, as will be shown by the results that follow (Section 4.2.6).

Fig. 10 shows two different clusters, indicated with different color, formed from the mechanical
paths of the poorly-covered finite elements in the initial Data-Driven simulation. The paths are
plotted in p− q− ϵV and p− q− ϵS spaces, where p = pressure, q = deviatoric stress, ϵV = volumetric
strain, and ϵS =

√
2/3 ||dev ϵ|| = deviatoric strain. One of the clusters is characterized by considerably

higher volumetric and deviatoric strains; this cluster was formed by the mechanical paths of the poorly-
covered elements located within the developed shear band. One can also notice that the maximum
volumetric strain reached by the clustered mechanical paths is slightly larger than 0.06. Meanwhile,
from Fig. 11b), it is seen that the target maximum volumetric strain, which is the one provided by
the experiments, is around ϵV,max = 0.065. If the volumetric strain response of the unit cell within the
shear band to the clustered mechanical path of ϵV,max ≈ 0.06 closely follows it, then this will help the
DD solution of the next iteration move closer to the experimental one, since it is the behavior of the
elements within the shear band that governs the global response after localization.
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Figure 10

Figure 10: Clustering of mechanical paths of the poorly-covered elements, traversed in the initial DD
simulation of the inelastic cylinder in; a) p− q − ϵV space and, b) p− q − ϵS space

4.2.5 Database expansion with informed lower-scale unit cell simulations

For every cluster identified in the analysis of the mechanical strain-stress paths, we sample one me-
chanical path, selected as the path closest to the average path of the cluster, which is obtained by
time-averaging of the corresponding strain and stress points from all paths within the cluster. The
sampled mechanical paths are then imposed as the loading paths to the corresponding unit cells, de-
pending on the spatial region these paths represent; mechanical paths sampled from locations within
the shear band will be subjected to the unit cell extracted from the shear band, and accordingly for
the paths representing the surrounding region.

The LS-DEM unit cell simulations consider mixed strain-stress control conditions, such that the
dilatancy of granular material behavior is not inhibited. Generally, the choice of the control type could
vary with the different cells, and with every iteration of the data sampling process. After bifurcation,
the elements outside the shear band are expected to unload elastically along the triaxial compression
path, whereas the elements within the shear band will be approximately under simple shear in the
x − z plane, Fig. 8b). Thus, it is deemed reasonable to control the ϵzz = ϵa strain component,
and all remaining stress components, for the unit cell extracted from outside the shear band. For
the cell within the shear band, it is the ϵxz strain component that can be controlled, along with all
remaining stress components. Another way of selecting the type of mixed-control conditions could be
by observing the Data-Driven prediction of the macroscopic response, σ1/σ3− ϵa and ϵV − ϵa plots, in
the previous iteration, and aiming to find a control type for which the response of the unit cells will be
such that the next Data-Driven simulation, with the expanded database, approaches the experiment.
One such case is analyzed in Section 4.2.6.

It is particularly important in the adaptive sampling process, to aim at achieving convergence and
accuracy almost simultaneously. The goal of the adaptive sampling is to expand a given database so
that convergence of the Data-Driven solution is achieved, d2 → 0 (Eq. (7)). However, whether the
converged solution will be accurate depends strongly on the type of mixed-control conditions, as well
as the heterogeneity of the granular sample, which results in variability of the response of the extracted
from it unit cells. The risk of not focusing on achieving convergence and accuracy simultaneously can
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be illustrated by considering the following; If, at a given iteration of the adaptive sampling process,
the Data-Driven solution starts deviating from the experiment, then the sampled loading paths to be
subjected to the unit cells will be such that they minimize the distance with the inaccurate Data-
Driven solution. Thus, convergence will be approached, but accuracy will be compromised. It is also
important to note that the thermodynamics-based parametrization of material history in the data
sets does not result in unique selections of optimal material states from the Data-Driven solver. It is
therefore crucial to scrutinize every database expansion, and aim in finding the optimal parameters of
the clustering algorithm, since these affect what loading paths will be imposed to the unit cells, as well
the optimal type of mixed-control conditions, which affects the material response, where optimality in
both cases is understood in the sense of the newly generated data, through which the DD solver will
have to navigate, aiding accuracy. Once the material data from such informed experiments is generated,
then, in the next iteration, the initial assignment of local strain-stress states to all material points
of the finite element model can be informed by the newly added data, so as to improve convergence.
Given the sensitivity of the data-driven inelastic simulations to the initial assignment of local material
states, it is indeed worthwhile making an informed assignment, whenever possible.

The adaptive data sampling process continues with a new Data-Driven simulation, which uses
the expanded database. The resulting Data-Driven solution will inform a new set of experiments to
further improve the quality of the current database. The series of iterations, illustrated with Fig. 3,
is repeated until sufficient accuracy is achieved, as shown in Figs. 11-12.
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Figure 11: Data-driven mechanical solutions of the macroscopic behavior of the inelastic cylinder,
upon successive iterations; a) Stress ratio vs axial strain and, b) Volumetric strain vs axial strain

4.2.6 Results and discussion

In the preceding section, we illustrated in detail a single iteration of the adaptive sampling process.
Here we present the results for all iterations attempted. As seen in Figs. 11-13, a total of seven
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Figure 12
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Figure 12: Data-driven material solutions of the macroscopic behavior of the inelastic cylinder, upon
successive iterations; a) Stress ratio vs axial strain and, b) Volumetric strain vs axial strain

iterations was sufficient to considerably improve the accuracy and convergence of this data-driven
simulation of triaxial compression test.

Figs 11 and 12 present the data-driven predictions of macroscopic behavior in terms of stress ratio
versus axial strain, σ1/σ3 − ϵa, and volumetric strain versus axial strain, ϵV − ϵa. The stress ratio is

computed as the ratio σt
zz

(σxx+σyy)/2
, where σt

zz is calculated by averaging the nodal stresses among the

nodes located at the upper 15% of the specimen height, in order to be consistent with the computation
of the stress ratio in the corresponding LSDEM simulation used for validation. The other stress
components, σxx and σyy, are computed by averaging the nodal stresses in the entire finite element
model of the cylinder. The volumetric strain ϵV is computed by averaging the volumetric strains at
all material points of the discretized specimen. We remind that in Data-Driven we have two solutions;
the mechanical solution, which respects the physical laws and essential constraints, and the material
solution, which respects material behavior. At convergence, both solutions should be sufficiently close
to each other. In terms of the mechanical solution with respect to iteration, we see that, in iterations
1-3, the mechanical prediction of σ1/σ3 − ϵa behavior remains almost constant, whereas the ϵV − ϵa
prediction considerably changes, until it almost overlaps with the LS-DEM prediction at iteration
3. The change in the corresponding material solutions of iterations 1-3 is much less pronounced.
Thus, the distance reduction between the mechanical and material solutions is mostly due to the
change in the mechanical volumetric strain response, which drastically approaches the corresponding
material solution. The change in the global distance with respect to iteration can be seen in Fig. 13b),
where one can more clearly observe the drastic distance reduction from iteration 1 to iteration 3.
The corresponding distribution of the distances between the mechanical and material response strain-
stress paths, as shown in Fig. 13a), also changes; As more elements become better-covered by the
expanding database, the distribution becomes narrower and transitions towards the lower values of
path distances.

17



Figure 13

a) b)

Figure 13: Performance of adaptive sampling for the Data-Driven simulations of inelastic material
behavior; a) Distribution of values of local distances between mechanical and material response strain-
stress paths with iteration and, b) Global distance at the final time step of each DD simulation

As already commented, it is crucial in the data sampling process to aim at achieving convergence
and accuracy almost simultaneously. Even though iterations 1-3 contribute significantly to convergence
and the mechanical solution of volumetric strain response is as accurate as it can be, since it coincides
with the LS-DEM prediction, the stress ratio vs axial strain response has hardly changed. Thus, one
should now focus on improving the accuracy of the mechanical stress prediction. To achieve that, when
performing the unit cell simulations to create the database of iteration 4, we changed the control type
of the unit cell outside the shear band, such that the peak developed σzz = σ1 stress of the unit cell is
closer to the peak stress in the experiment. This helped the global stress response start approaching
the experiment, as seen in iteration 4 of Fig. 11a). However, the volumetric strain response now largely
deviates from the experiment, Fig. 11b), and from the corresponding material solution. Given that
the global distance is a summation of the distance deviations in strain and stress space, the global
distance momentarily increased from iteration 3 to iteration 4, Fig. 13b). We accepted though, for
this instantaneous increase, in our attempt to reach a solution with errors that are balanced in both
spaces.

Besides, one should also keep in mind, that, in the case of inelastic material behavior, the data-
driven nearest-neighbor search takes place only within the subset of thermodynamically admissible
states. This can lead the nearest-neighbor search assign material states that are sub-optimal in terms
of minimizing the distance to the corresponding mechanical states, if the truly optimal states violate
thermodynamics. Thus, illustration of convergence with respect to database expansion may not be as
clear in this application on inelastic material behavior as it has been in the elastic case.

Lastly, we have mentioned that in order to capture localization in this triaxial compression test,
which arises mostly from material heterogeneity and not from the boundary conditions, we considered
two distinct databases; one representing the material outside the shear band, and a second one,
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Figure 14

a) b)

c) d)

Figure 14: Data-driven simulation results of iteration 7 for the case of inelastic material behavior:
a), b) by using different databases for the elements within and outside the shear band and, c), d) by
allowing all elements to access data from both databases

representing the material within the shear band. In iterations 1-5, each database could only be accessed
by the corresponding material points, depending on their location. In the last iterations however, we
lift this restriction and allow all material points of the finite element mesh to access all available data,
while informing only the initial assignment of material states so as to capture material heterogeneity.
This serves only as the starting point for the data-driven iterative solver. Upon such initialization, data
from both databases are available to all material points. As seen in Fig. 14, the results remain fairly
insensitive, illustrating the efficiency of the thermodynamically-motivated parametrization of material
history in navigating through the unified database and correctly capturing the global response. The
failure mechanism of the specimen, as predicted by the last Data-Driven simulation, is also sufficiently
well captured, as shown in Fig. 8b).

5 Conclusions

The Data-Driven distance-minimizing method [16] reformulates the solution of boundary value prob-
lems of mechanics directly in stress and strain data, this way bypassing the use of empirical constitutive
models. The method was motivated by the development of highly predictive computational models,
able to capture material behavior across scales, as well as advances in Data Science, the combination
of which can foster the creation and efficient organization of databases of mechanical data, obtained
from physical as well as high-fidelity virtual experiments. The method is also rather appealing from a
computational point of view; few of its important features include the ability to standardize finite ele-
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ment (FE) solvers given that they are no longer tied to constitutive models, the linearity of the system
of equations defining the projection of a strain-stress data point onto the constraint set, Eqs. (10)-(13),
the decoupling of the search for the optimal data points from this equilibrium projection, as well as
the real-time information on the solution errors that the data-driven solver provides. Recent research
efforts have implemented the data-driven solver in commercial FE software [22], and aim to increase
the computational efficiency of the data-driven method so that it is comparable, and possibly higher,
than that of the conventional, constitutive model-tied FE method.

Given that the predictability of data-driven computations is governed by the quality of material
data, the process of generating material data sets pertinent to a considered application will remain a
topic worth exploring. To the best of the authors’ knowledge, this study provides the first demonstra-
tion of a data acquisition strategy, applicable to any mechanical problem and type of material behavior,
that results in convergent data-driven predictions without any a priori knowledge of the strain-stress
states to be encountered. The underlying concept is to exploit the reformulation of boundary value
problems as distance minimization problems that the data-driven method requires. The suggested
approach uses the distance deviations between the constraint set and the material data set to inform
new experiments, which are now targeted to better sample the phase space of the considered problem.
The process involves a set of iterations of decoupled data-driven simulations followed by lower-scale
experiments at the material point level that provide the higher-quality data to expand an existing
database with. The lower-scale experiments are solely informed by the compatible and equilibrated
local strain-stress states provided by the data-driven solution, thus no empiricism is involved during
the data population.

Application of the method in numerical simulations of triaxial compression on linear elastic ma-
terial, and subsequently on a granular material with complex history-dependent behavior, clearly
shows its ability to identify and complete any missing information of strain-stress states in an existing
database. The results in both cases are rather promising; starting from scarce material databases, the
method is able to effectively populate them within only a minimum number of iterations involved, i.e.
database expansions. The latter has important implications on the computational cost of the data-
driven simulations. It is known that the most time-consuming step of the data-driven solution process
is the nearest-neighbor (NN) search within the material data set. The search time increases with an
increasing database size, thus, the creation of databases of size that is just sufficient to cover the phase
space of the considered application, as suggested by the proposed method, avoids any unnecessary
overload in the NN search. One could also consider removing any poor-quality material data points
upon iterations of the adaptive data sampling, to accelerate the NN search.

It should be noted that the purpose of this study is to illustrate the concept underlying our
proposed data sampling method. This very first implementation of the adaptive sampling algorithm
lacks features which can greatly improve its efficiency. Such features have already been implemented
in other studies, and can be incorporated in the current algorithm as well. A few suggestions are: 1)
Implementation of a data structure for acceleration of the NN search in the augmented database [6].
In the case of history-dependent material behavior, one could expect that the most efficient data
structure could depend on the representational paradigm considered, e.g. internal-variable or energy-
based history parametrization. 2) Optimization of the metric tensor to aid convergence, as described
in [12]. In general, the implemented decoupled scheme implies increased simulation time compared to
the alternative of on-the-fly database expansion, [13]. However, an on-the-fly sampling scheme would
involve higher memory requirements for the case of history-dependent material behavior, since one
would need to store the prior states of the granular unit cells, before applying incremental loading to
trigger new material responses on-the-fly.

Lastly, one can comment on the greater paradigm shift that the data-driven approach has initiated;
while in the conventional approach, modelers would have been mostly pleased with the experimental
validation of their computations of mechanical behavior, in the data-driven era, modelers are given a
new direction to look into; this is the one of relying on a material model-free computational framework
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to perform better-informed experiments and fill in any crucial missing information of material behavior.
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