
IEEE TRANSACTIONS ON CYBERNETICS, VOL. 51, NO. 3, MARCH 2021 1175

Adaptive Granularity Learning Distributed Particle

Swarm Optimization for Large-Scale Optimization
Zi-Jia Wang , Student Member, IEEE, Zhi-Hui Zhan , Senior Member, IEEE, Sam Kwong , Fellow, IEEE,

Hu Jin , Senior Member, IEEE, and Jun Zhang , Fellow, IEEE

Abstract—Large-scale optimization has become a significant
and challenging research topic in the evolutionary compu-
tation (EC) community. Although many improved EC algo-
rithms have been proposed for large-scale optimization, the
slow convergence in the huge search space and the trap into
local optima among massive suboptima are still the chal-
lenges. Targeted to these two issues, this article proposes
an adaptive granularity learning distributed particle swarm
optimization (AGLDPSO) with the help of machine-learning tech-
niques, including clustering analysis based on locality-sensitive
hashing (LSH) and adaptive granularity control based on logistic
regression (LR). In AGLDPSO, a master–slave multisubpopula-
tion distributed model is adopted, where the entire population is
divided into multiple subpopulations, and these subpopulations
are co-evolved. Compared with other large-scale optimization
algorithms with single population evolution or centralized mecha-
nism, the multisubpopulation distributed co-evolution mechanism
will fully exchange the evolutionary information among differ-
ent subpopulations to further enhance the population diversity.
Furthermore, we propose an adaptive granularity learning strat-
egy (AGLS) based on LSH and LR. The AGLS is helpful to
determine an appropriate subpopulation size to control the learn-
ing granularity of the distributed subpopulations in different
evolutionary states to balance the exploration ability for escap-
ing from massive suboptima and the exploitation ability for
converging in the huge search space. The experimental results
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show that AGLDPSO performs better than or at least compa-
rable with some other state-of-the-art large-scale optimization
algorithms, even the winner of the competition on large-scale
optimization, on all the 35 benchmark functions from both IEEE
Congress on Evolutionary Computation (IEEE CEC2010) and
IEEE CEC2013 large-scale optimization test suites.

Index Terms—Adaptive granularity learning distributed parti-
cle swarm optimization (AGLDPSO), large-scale optimization,
locality-sensitive hashing (LSH), logistic regression (LR),
master–slave multisubpopulation distributed.

I. INTRODUCTION

E
VOLUTIONARY computation (EC) algorithms, includ-

ing evolutionary algorithms (EAs) and swarm intel-

ligence algorithms (SIs) [1]–[9], such as genetic algo-

rithm (GA) [10], [11]; differential evolution (DE) [12]–[15];

particle swam optimization (PSO) [16]–[18]; and ant colony

optimization (ACO) [19]–[21], have been widely studied and

applied in many real-world optimization problems. However,

with the increasing scale of problems, the traditional EC algo-

rithms lose their effectiveness and advantages rapidly when

the dimension of problem increases, which is so-called “curse

of dimensionality” [22]–[26]. The main reason for this phe-

nomenon can be due to two points. On the one hand, the

search space drastically and exponentially increases with the

growing dimensionality, traditional EC algorithms have to

find the optimal solution in the huge search space, causing

the slow convergence. On the other hand, there are mas-

sive local optimal regions in the search space, traditional EC

algorithms have to further improve the population diversity

so as to escape from the local optima in such a complex

environment.

To tackle with the large-scale optimization problems

(often more than 500 dimensions), a common method

is utilizing a cooperative coevolution (CC) framework in

EC algorithms to decompose the high-dimensional problem

into several mid/lower dimensional subproblems and to

solve each subproblem separately. The CC framework

was first proposed by Potter and Jong in 1994 [27].

Due to its effectiveness, researchers have developed many

variants by introducing the CC framework into differ-

ent EC algorithms (CCECs), including CCGA [27], [28];

CCPSO [29], [30]; and DECC [31]–[34]. Even though the

CCECs are intensively studied and have achieved a consider-

able success, but undeniably, they also have some limitations.

First, the decomposition strategy is the most crucial component
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for CCECs. Therefore, the performance of CCECs is highly

sensitive to the decomposition strategies. Second, a consider-

able number of fitness evaluations (FEs) are required since we

have to solve each subproblem separately, especially when the

dimension of the problem is large. Also, in order to improve

the accuracy of decomposition, additional FEs are often

needed to detect the dependency among variables [33]–[35].

Third, CCECs are only effective and helpful for separable

problems. When dealing with the partially separable prob-

lems or nonseparable problems, the performance of CCECs

deteriorates greatly.

Taking the above limitations of CCECs into account,

researchers proposed some novel search strategies

for EC algorithms to tackle with all dimensions as

a whole [36], [37]. Moreover, studies have shown that

coevolutionary [38], [39] and distributed [40], [41] mech-

anisms with multiple populations can fully improve

optimization efficiency.

However, when using the multipopulation coevolutionary

mechanism, the size of the population (i.e., the granularity)

is also necessary and needed to be set appropriately. Large

population (coarse granularity) and small population (fine-

granularity) may be suitable for different evolutionary states

in different problems. Many current multipopulation coevo-

lutionary algorithms only use the simple dynamic-changed

mechanism. For example, the dynamic multiswarm PSO

(DMS-L-PSO) is proposed in [42], where the swarm size

is randomly changed in every certain generation. However,

random change is difficult for providing the appropriate pop-

ulation size and lacks the adaptive granularity control. If we

can further introduce the adaptive granularity control and find

the appropriate population size to meet the search requirement

of the different evolutionary states in different problems, the

search process will be more effective.

Machine learning (ML) is one of the most promising

research areas in artificial intelligence, which has become

a powerful tool in a wide range of applications [43]. Since

EC algorithms have stored ample data about the search

space, problem features, and population information during the

iterative search process, the ML technique is helpful in ana-

lyzing these data to further enhance the search performance.

In this way, useful information can be extracted to analyze the

evolutionary state and to achieve the adaptive granularity con-

trol. Therefore, to further improve the searching ability and

achieve an adaptive algorithm, this article develops a novel

adaptive granularity learning distributed PSO (AGLDPSO)

with the help of ML techniques, including clustering analysis

based on locality-sensitive hashing (LSH) and adaptive granu-

larity control based on logistic regression (LR). More specifi-

cally, the novelties and advantages of AGLDPSO contain the

following two aspects.

1) The master–slave multisubpopulation distributed model

is adopted in AGLDPSO, where the entire popula-

tion is randomly divided into multiple subpopulations

and these subpopulations are co-evolved. Compared

with other large-scale optimization algorithms with sin-

gle population evolution or centralized mechanism, the

multisubpopulation distributed co-evolution mechanism

will fully exchange the evolutionary information among

different subpopulations to further enhance the popula-

tion diversity.

2) An adaptive granularity learning strategy (AGLS) is fur-

ther proposed based on LSH and LR. The AGLS is

helpful to determine an appropriate subpopulation size

to control the learning granularity of the distributed sub-

populations in different evolutionary states to balance the

exploration ability for escaping from massive suboptima

and the exploitation ability for converging in the huge

search space.

Experiments are conducted on all the 35 benchmark func-

tions from both IEEE Congress on Evolutionary Computation

(IEEE CEC2010) and IEEE CEC2013 large-scale optimization

test suites. The results show that AGLDPSO is better than, or

at least comparable to some other state-of-the-art large-scale

optimization algorithms, even the winner of the competition

on large-scale optimization, showing the effectiveness and

superiority of our AGLDPSO algorithm.

The remainder of this article is organized as follows.

Section II reviews the traditional PSO algorithm and some

PSO variants for large-scale optimization. Section III presents

the AGLDPSO algorithm in detail. The experimental results

from both IEEE CEC2010 and IEEE CEC2013 large-scale

optimization test suites between AGLDPSO and some other

state-of-the-art large-scale optimization algorithms are shown

in Section IV. Finally, the conclusion will be drawn in

Section V.

II. RELATED WORK

A. PSO

In PSO [44], the member of the population is called par-

ticle. Each particle Pi has two vectors. The vector Vi =
[v1

i , v2
i , . . . , vD

i ] means the velocity of Pi, while the vector

Xi = [x1
i , x2

i , . . . , xD
i ] means the position of Pi, where D stands

for the dimensions of the search space. Moreover, each par-

ticle Pi has its own historical best position, called personal

best pbesti = [pbest1i , pbest2i , . . . , pbestDi ]. The best one of all

the pbesti is treated as the globally best of the entire pop-

ulation, called gbest = [gbest1, gbest2, . . . , gbestD]. In every

generation, each particle Pi updates its velocity and position

based on its own pbesti and the gbest of the entire population.

The velocity Vi and position Xi of each particle are updated

according to the following formulas:

vd
i = ω × vd

i + c1 × rd
1i ×

(

pbestdi − xd
i

)

+ c2 × rd
2i ×

(

gbestd − xd
i

)

(1)

xd
i = xd

i + vd
i (2)

where ω is the inertia weight to balance the global and local

search abilities. c1 and c2 are the acceleration coefficients,

where c1 pulls the particle to its own pbest, ensuring the

diversity of the population; while c2 pushes the particle to

the current gbest, ensuring the speed of convergence. rd
1i

and rd
2i are two uniformly distributed random numbers within

[0, 1]. A particle’s velocity and position on each dimension

are clamped in [−Vd
max, Vd

max] and [Xd
min, Xd

max], respectively.
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Fig. 1. Master–slave multisubpopulation distributed model.

B. PSO Variants for Large-Scale Optimization

The traditional PSO algorithm or its variants may

be promising in solving small-scale or low-dimensional

problems [45]–[47]. However, when the scale or dimension

of the problem increases, PSO and its variants may lose their

effectiveness and feasibility. The huge search space and the

exponentially increasing local optima are two of the most

important challenges.

When using PSO to tackle with the large-scale optimization

problems, a common method is combining the CC frame-

work with PSO, called CCPSO [29], [30]. For instance, in

CCPSO-SK [29], it randomly divides the entire problem into

K subcomponents, while each subcomponent contains D/K

dimensions. After that, PSO is applied to optimize each

subcomponent. Meanwhile, its variant CCPSO-HK is also

proposed [29], which combines PSO and CCPSO-SK , where

PSO and CCPSO-SK are evolved alternately. In CCPSO2 [30],

Li and Yao developed a new scheme to dynamically determine

the coevolving subcomponent size by randomly choosing from

a predefined size pool. However, different subcomponent sizes

are suitable for different problems. Using fixed subcomponent

size or using dynamic subcomponent size may be difficult to

provide the suitable subcomponent size for different problems.

Although CCPSOs have achieved a considerable success,

they also have some limitations. First, the performance of

CCPSOs is highly sensitive to the decomposition strategies.

Second, since we have to solve each subproblem separately,

a considerable number of FEs are required, especially when

the dimension of the problem is large. Third, the current

decomposition strategies [33]–[35] also need extra FEs to

detect the dependency among variables. In addition, CCPSOs

are only effective and helpful for separable problems. When

dealing with the partially separable problems or nonseparable

problems, their performance deteriorates greatly.

Taking the above limitations of CCPSOs into consideration,

some researchers design the novel search strategies for PSO

to effectively explore in the huge search space and avoid local

optima. In SL-PSO, proposed by Cheng and Jin [36], each

particle learns from other better particles in the entire pop-

ulation after the fitness sorting. Besides, they also propose

CSO [37], where two particles are randomly selected from

the population for competing, then the loser learns from the

winner. Different from the traditional PSO, both SL-PSO and

CSO use some other better particles and the mean position of

the entire population to guide the evolution rather than using

only the personal best pbest and gbest. Dynamic segment-

based predominant learning swarm optimizer (DSPLSO) [48],

proposed by Yang et al., follows the framework of CSO,

where the worse particles will learn from different better parti-

cles through the segment-based predominant learning strategy.

Moreover, they also develop dynamic level-based learning

swarm optimizer (DLLSO) [49], which first separates parti-

cles into a number of levels, then each particle guides by two

particles from different higher levels. These two methods use

a different dynamic mechanism based on the softmax func-

tion and probabilistic scheme rather than the simple random

mechanism. In DMS-L-PSO [42], it generates several sub-

swarms randomly in every certain generation for exchanging

information among different subswarms to improve the pop-

ulation diversity. Meanwhile, it utilizes a quasi-Newton-based

local search strategy to further refine the solutions.

Although many improved PSOs have been proposed to deal

with the large-scale optimization problems, the slow con-

vergence in the huge search space and the trap into local

optima among massive suboptima are still the main challenges

in large-scale optimization. Therefore, AGLDPSO is proposed

to relieve these issues.

III. AGLDPSO

A. Master–Slave Multisubpopulation Distributed Framework

The master–slave multisubpopulation distributed framework

is illustrated in Fig. 1, where the master node dominates

multiple slave nodes in the parallel hardware.

During the evolution process, the master randomly divides

the entire population into N/M subpopulations of the same

size and sends each subpopulation to its corresponding slave,

where N is the population size and M is the size of the sub-

population. Note that if N%M �= 0, the last subpopulation

will have M + N%M particles (where % stands for the mod-

ulo operation). Then, different subpopulations are co-evolved

concurrently on their slave nodes. After the evolution, each

slave sends the updated subpopulation back to the master.

Different from the traditional master–slave distributed frame-

work, the number of slaves is adaptively changed since the size

(learning granularity) of subpopulation is adaptively controlled

according to the LSH and LR (shown in Section III-C).

B. Velocity and Position Update

Before we introduce AGLS, we first describe the velocity

and position update operators in AGLDPSO. The formulas of

updating the velocity and position are shown as (3) and (4),

which are similar to (1) and (2), but with the following two

differences:

vd
w = ωd × vd

w + c1 × rd
1 ×

(

sbestd − xd
w

)

+ c2 × rd
2 ×

(

gbestd − xd
w

)

(3)

xd
w = xd

w + vd
w. (4)
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1) Strategy Difference: After the population partition, only

the worst particle Pw in each subpopulation is updated

by learning from the best particle in the current subpop-

ulation (called subpopulation best sbest) and the best

particle from the entire population (called global best

gbest), while other particles in the subpopulation will

enter to the next generation directly. This velocity update

strategy only updates the worst particle in each sub-

population, being helpful to save more FEs to prolong

the evolutionary process to further increase the solution

accuracy.

2) Parameter Difference: The inertia weight ω in PSO

is often set as linearly decreasing from 0.9 to 0.4,

while herein it is replaced by the random number in

AGLDPSO. The random mechanism is beneficial to

maintain the learning diversity and the population diver-

sity. Meanwhile, acceleration coefficients c1 and c2 that

control the convergence speed to the sbest and gbest

are often set as 2.0 in the traditional PSO, while in

AGLDPSO, both c1 and c2 are set smaller than that in

traditional PSO to avoid premature convergence, which

is replaced by 1.0 and 0.1, respectively. The new setting

parameters ω, c1, and c2 are beneficial for AGLDPSO to

maintain the population diversity, which can effectively

avoid being trapped in the local optima.

We have also compared the experimental results

between AGLDPSO and the traditional PSO on the IEEE

CEC2010 large-scale optimization test suite, the results

listed in Table S.I in the supplementary file fully show the

effectiveness and superiority of our velocity updating strategy

and parameter setting in AGLDPSO.

C. AGLS

The subpopulation size M is important for AGLDPSO

because it affects the learning granularity for the particle in

each subpopulation and further affects the diversity for explo-

ration and the convergence for exploitation, which is needed

to be set appropriately. For a given population size, if the

subpopulation size M is large, it means the coarse granular-

ity because the number of particles in each subpopulation is

large. Therefore, the sbest is the best particle from a large

subpopulation, so that Pw is learning from a large neighbor-

hood and therefore, is helpful for accelerating the convergence

speed. In contrast, if M is small, it means the fine granular-

ity to learn from small subpopulation. Therefore, the number

of subpopulations is large, so that many sbest can be learned

to increase the diversity. Although the subpopulation size M

has a significant influence on the algorithm performance, how

to precisely determine a suitable M in different evolutionary

states for a given problem is still hard to solve.

In the literature, researchers have found that the exploration

and exploitation abilities of EC algorithms can be adaptively

adjusted according to the evolutionary state [50]–[52]. In this

sense, clustering analysis has been widely used to estimate the

evolutionary state and the parameters of EC algorithms can

be adjusted adaptively. However, when the dimension of the

problem increases, the traditional clustering analysis approach

will be very time consuming and ineffective.

Fig. 2. Example of LSH in a 2-D Euclidean space.

In order to design a more lightweight and efficient evo-

lutionary state estimation approach, the LSH approximation

method is adopted to ensure the estimation quality and to

overcome the time bottleneck [53]. After the clustering based

on LSH, the learning granularity M is adaptively controlled

based on the LR. Therefore, we first introduce a novel clus-

tering analysis method based on LSH and then introduce the

adaptive granularity control based on LR.

1) Clustering Analysis Based on LSH: LSH has been suc-

cessfully applied in EC algorithms for solving multimodal

optimization problems [54]. Here, we modified and applied

this method into AGLDPSO for tackling with the large-scale

optimization problems.

The basic idea of LSH is that two neighboring individuals

in the original space have a large probability to be adjacent

in the new space by the same mapping. Thus, the distance

of individuals in the high-dimensional space can be calcu-

lated approximately and quickly by mapping these individuals

into the low-dimensional space. A simple example of LSH in

a 2-D Euclidean space is shown in Fig. 2. Each hash function

is defined as a projected line in the space, and there are infi-

nite hash functions. Then, each projected line is divided into

several equal segments with size r. Each segment represents

a “bucket” for storing the individuals. We randomly generate

a hash function (projected line) and project all the individuals

onto the line. Then, two close individuals will be hashed into

the same bucket with a large probability. This property can be

used to simplify the distance computing in clustering. Suppose

that there are five individuals (A, B, C, D, and E) in the space.

The similar individuals B and C can be very likely hashed into

the same bucket using the hash functions h2 and h3.

Now, we extend LSH into any dimensional problems. In

a D-dimensional problem, each individual xi can be expressed

as a vector (xi,1, xi,2, . . . , xi,D). In every generation, we first

randomly generate a D-dimensional vector O within the search

space and calculate the dot product (xiO
T). The dot product

projects this individual (vector) onto a line. Therefore, if the

individuals x1 and x2 are close (‖x1−x2‖ is small), the distance

between their projections (x1 −x2) OT is very likely small and
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(a) (b)

Fig. 3. Illustration of the evolutionary state based on the population
distribution. (a) Exploration. (b) Exploitation.

they are in the same bucket with a large probability. In contrast,

if they are far from each other (‖x1−x2‖ is large), the distance

between their projections (x1 −x2) OT is very likely large and

they are in the same bucket with a small probability.

When all these individuals have been projected, we record

the maximal and minimal coordinates (hmax and hmin) of all

the projected points. Then, the bucket size r is calculated as

r =
hmax − hmin

nb
(5)

where nb is the number of buckets. In our method, nb is set

as 0.1 × N. Next, we divide the hash line into nb equal-width

segments with size r, the hash values of these individual are the

segments they are projected to. The hash function is defined as

h(xi) =
⌊

xiO
T + b

r

⌋

(6)

where b is a real number called shifted projection, which is

randomly generated within the interval [0, r]. Assume that the

distance between the projections of two individuals is d, if d is

larger than r, then the two individuals will be obviously in two

different buckets. If d is smaller than r, then the probability of

the two individuals being in the same bucket will be 1 − d/r.

When all the individuals have been projected, the individuals

in the same bucket are assigned to the same cluster.

2) Adaptive Granularity Control Based on LR: After clus-

tering based on LSH, the subpopulation size (granularity) M

will be adaptively controlled based on the clustering analysis

results. Consider two situations. When there are much more

particles clustering nearby the globally worst particle gworst

than the globally best particle gbest, as shown in Fig. 3(a), it

represents the exploration state. At this time, the gbest is far

away from the current population, and the current population

may obtain trapped in the local area. As a result, a smaller M

or decreasing M is more likely to result in a larger number of

subpopulations to maintain and improve the population diver-

sity for the exploration state. Conversely, when there are much

more particles clustering nearby the gbest than the gworst, the

algorithm is in the exploitation state like Fig. 3(b). At this

time, a larger M or increasing M is more suitable to increase

the learning neighborhood to accelerate the convergence speed

for the exploitation state.

Since we have two evolutionary states (exploration and

exploitation) and we wish to decrease or increase the subpopu-

lation size M, respectively, a binary classifier is preferred here.

In ML, LR is a famous binary classifier that can determine

Fig. 4. Illustration of the Tanh-sigmoid function.

one or more independent variables to a dichotomous outcome

(0 or 1). The core of LR is the sigmoid function, which maps

the variables into a probability in (0, 1), shown as

p =
1

1 + e−z
(7)

where z is the linear combination of the variables.

Therefore, we think that the LR can help us to deter-

mine/classify whether the algorithm is in exploration or

exploitation evolutionary state. Herein, the variables for the

input of LR are the number of particles in the same cluster

with gworst (called Ngworst) and the number of particles in

the same cluster with gbest (called Ngbest). Moreover, in our

method, we used a variant of the LR function to estimate the

evolutionary state and adaptively changed the M according to

the evolutionary state. Since we wish to adaptively increase or

decrease the subpopulation size M, herein, we use a variant

of the sigmoid function, called the Tanh-sigmoid function, to

map the variables into the range in (−1, 1), shown as

p =
1 − e−2z

1 + e−2z
(8)

where the input z is set as the difference between Ngworst and

Ngbest, as illustrated in Fig. 4. Therefore, the subpopulation

size M can be adaptively changed at the beginning of every

generation as

M = M − round

(

1 − e−2×(Ngworst−Ngbest)

1 + e−2×(Ngworst−Ngbest)

)

. (9)

Using the above function, the following adaption rules are

implemented. If Ngworst is much larger than Ngbest, it means

the current subpopulation may obtain trapped in the local

optima. In this case, the LR will return 1 as shown in Fig. 4,

where z is very large, and therefore, M will decrease by 1 and

smaller M will improve the population diversity. If Ngbest is

much larger than Ngworst, it indicates the global optima region

may be found. Therefore, M will increase by 1 (as shown in

Fig. 4, where z is very small and the LR will return −1) to

obtain larger M to speed up the convergence. However, when

Ngworst is closed to Ngbest, it means the current population

may have a good balance between diversity and convergence.

In this case, z in Fig. 4 is near 0 and the LR will return 0, so

that M will remain unchanged.

Therefore, the adaptive granularity control based on LSH

and LR can relieve the sensitivity of parameters and find
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an appropriate subpopulation size for AGLDPSO, which can

further find a potential balance between exploration and

exploitation.

D. Complete AGLDPSO Algorithm

Combining all the components mentioned above, the pseu-

docode of the complete AGLDPSO algorithm is outlined in

Algorithm 1.

In each generation, we first adaptively set the size of sub-

population (learning granularity) M according to the LSH and

LR using (9) in master. Then, the entire population will be ran-

domly divided into N/M subpopulations of the same size. Next,

the master will send each subpopulation to its corresponding

slave, and each subpopulation is updated on its correspond-

ing slave. After that, each updated subpopulation will be sent

from its corresponding slave to master, and the master will col-

lect all the updated subpopulations to form a new population.

So far, we have finished a loop sequent. The procedures are

repeated until the maximum number of FEs (MaxFEs) is met.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

To test the performance of AGLDPSO, two widely used

large-scale optimization benchmark functions test suites are

used. The first one is the IEEE CEC2010 test suite [55],

which contains 20 large-scale optimization benchmark func-

tions. While the other one is the IEEE CEC2013 test

suite [56], which contains 15 large-scale optimization bench-

mark functions.

We compare the results obtained by AGLDPSO with

six PSO-based large-scale optimization algorithms, includ-

ing CCPSO2 [30], SL-PSO [36], CSO [37], DSPLSO [48],

DLLSO [49], and DMS-L-PSO [42]. Moreover, we also com-

pare AGLDPSO with other three well-known large-scale

optimization algorithms, including DECC with differential

grouping (DECC-DG) [33], DECC with random group-

ing (DECC-G) [34], and multilevel CC (MLCC) [35]. The

master–slave model of AGLDPSO is built in a multiproces-

sor distributed environment that consists of several distributed

computing servers. The CPU of each server has eight proces-

sors configured with Intel Core i5-7400, 3.00 GHz. Therefore,

we obtain the multiprocessor distributed environment and we

can assign each subpopulation to one processor through MPI.

The MaxFEs is set as 3 000 000 for all competitors. The

population size N is set as 500 in AGLDPSO and the interval

for the M is [10,
√

N]. All the algorithms run 30 times inde-

pendently for statistics and the mean results are reported. The

parameters used in the compared algorithms are set the same

in their original papers for a fair comparison. In addition,

Wilcoxon’s rank-sum test at α = 0.05 is performed between

AGLDPSO and other state-of-the-art large-scale optimization

algorithms to evaluate the statistical significance of their

performance [57]. The symbols “+,” “≈,” and “−” indicate

AGLDPSO performs significantly better than (+), similar

to (≈), or significantly worse than (−) the corresponding

algorithm.

B. Comparisons With State-of-the-Art Large-Scale

Optimization Algorithms on the IEEE CEC2010 Test Suite

The functions in this test suite are with 1000 dimensions and

can be classified into three groups. The first group consists of

three separable functions f 1–f 3. The second group includes the

following 15 functions f 4–f 18, which are partially separable

functions. The last group consists of the last two functions f 19

and f 20 that are nonseparable functions. All these functions are

shifted and rotated, which are more difficult to solve and make

our test more comprehensive and convincing.

The detailed comparison results of AGLDPSO and other

state-of-the-art large-scale optimization algorithms on the

IEEE CEC2010 test suite are listed in Table I. For clarity,

the best results are highlighted in boldface. From Table I, we

can see the following.

For the first three separable functions f 1–f 3, AGLDPSO

performs significantly better than most of other algorithms,

especially on f 3. Although it performs slightly worse than

DLLSO and MLCC on these three functions, they both lose

their feasibilities when dealing with the partially separable or

nonseparable functions, which will be discussed as follows.

For the next 15 partially separable functions f 4–f 18,

AGLDPSO performs best on eight functions (f 4, f 8, f 9,

f 12–f 14, f 17, and f 18). It dominates CCPSO2, DMS-L-PSO,

DECC-G, and MLCC on all the 15 functions; dominates

SL-PSO, CSO, DSPLSO, DLLSO, and DECC-DG on at

least nine functions. Conversely, all the competitors cannot

outperform AGLDPSO on more than five functions.

For the last two nonseparable functions f 19 and f 20, the

performance of AGLDPSO is still better than or at least com-

parable to other algorithms, only worse than DECC-G on f 19

and CSO on f 20.

Overall, AGLDPSO performs better than CCPSO2,

SL-PSO, CSO, DMS-L-PSO, DSPLSO, DLLSO, DECC-DG,

DECC-G, and MLCC on 19, 17, 14, 20, 14, 11, 15,
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TABLE I
EXPERIMENTAL RESULTS ON 1000-D IEEE CEC2010 FUNCTIONS

18, and 18 functions, respectively. Conversely, CCPSO2,

SL-PSO, CSO, DSPLSO, DLLSO, DECC-DG, DECC-G, and

MLCC can only surpass AGLDPSO on 1, 3, 6, 6, 8, 4, 2,

and 2 functions, respectively. DMS-L-PSO cannot outperform

AGLDPSO on any function. Therefore, AGLDPSO achieves

the best performance on this test suite.

To further study the evolutionary behavior of different algo-

rithms on the IEEE CEC2010 test functions, we draw their

convergence curves to observe their evolutionary processes.

Besides, in order to make our comparison more convincing,

we choose several benchmark functions from all the three

groups. Here, we select separable function f 3, partially

separable functions f 4, f 8, f 9, and f 13, and nonseparable

function f 20 as the representative instances. The convergence

curves of AGLDPSO, CCPSO2, SL-PSO, CSO, DMS-L-PSO,

DSPLSO, DLLSO, DECC-DG, DECC-G, and MLCC on these

six selected benchmark functions are plotted in Fig. 5.

From Fig. 5(a), we can see that only AGLDPSO, DSPLSO,

and DLLSO can converge to better solutions quickly while

other algorithms evolve slower on separable function f 3.

Moreover, AGLDPSO achieves faster convergence speed than

DSPLSO and is a little slower than DLLSO on this function.

While on partially separable functions f 4 and f 9 in Fig. 5(b)

and (d), AGLDPSO and SL-PSO can achieve better and

faster convergence than other algorithms, but AGLDPSO still

has a faster convergence speed compared with SL-PSO. On
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(a) (b)

(d) (e) (f)

(c)

Fig. 5. Convergence curves of AGLDPSO and other state-of-the-art algorithms on six representative functions from IEEE CEC2010. (a) f 3. (b) f 4. (c) f 8.
(d) f 9. (e) f 13. (f) f 20.

partially separable function f 8 shown in Fig. 5(c), most algo-

rithms stagnate in the early stage, and only AGLDPSO can

obtain better and more accurate solutions. While for the par-

tially separable function f 13 and nonseparable function f 20

in Fig. 5(e) and (f), most algorithms can achieve the similar

performance. However, AGLDPSO still obtains more accurate

results than other algorithms, only performs a little worse than

CSO on f 20.

Overall, AGLDPSO generally outperforms other large-scale

optimization algorithms on these benchmark functions from

IEEE CEC2010 test suite.

C. Comparisons With State-of-the-Art Large-Scale

Optimization Algorithms on the IEEE CEC2013 Test Suite

The functions in this test suite are with 1000 dimensions

and can be classified into four groups. The first group includes

three separable functions f 1–f 3. The second group consists of

the following eight functions f 4–f 11, which are partially sep-

arable functions. The third group includes three overlapping

functions f 12−f 14. (Note that f 13 and f 14 are with 905 dimen-

sions.) The last group consists of the last function f 15 which

is a nonseparable function.

The detailed comparison results of AGLDPSO and other

state-of-the-art large-scale optimization algorithms on the

IEEE CEC2013 test suite are listed in Table II. For clarity,

the best results are highlighted in boldface. From Table II, we

can see the following.

For the first three separable functions f 1–f 3, AGLDPSO

dominates CSO, DMS-L-PSO, and DECC-DG on at least

two functions. Moreover, AGLDPSO can achieve at least

comparable performance among other algorithms, except

DLLSO and MLCC. Although AGLDPSO performs a little

worse than DLLSO and MLCC, they both lose their fea-

sibilities when dealing with other functions, which will be

discussed as follows.

For the next eight partially separable functions f 4–f 11,

AGLDPSO performs the best on f 4 and f 8. It dominates

all the other algorithms on at least four functions, while all

the competitors cannot outperform AGLDPSO on more than

three functions.

For the next three overlapping functions f 12–f 14, AGLDPSO

performs significantly better than most of other algorithms,

especially on f 14. It dominates other algorithms on at least

two functions, except CSO and DSPLSO. Even if CSO and

DSPLSO perform better than AGLDPSO on f 12 and f 13, they

both lose their feasibilities when dealing with the nonseparable

function, shown as follows.

For the last nonseparable function f 15, AGLDPSO achieves

the best performance significantly and dominates all the

competitors.

Overall, AGLDPSO performs better than CCPSO2,

SL-PSO, CSO, DMS-L-PSO, DSPLSO, DLLSO, DECC-DG,

DECC-G, and MLCC on 9, 8, 9, 11, 7, 7, 12, 10, and 8

functions, respectively. Conversely, CCPSO2, SL-PSO, CSO,

DMS-L-PSO, DSPLSO, DLLSO, DECC-DG, DECC-G, and

MLCC can only surpass AGLDPSO on 4, 5, 4, 4, 3, 5, 3, 5,

and 6 functions, respectively. Therefore, AGLDPSO achieves

the best performance on this test suite.

To further study the evolutionary behavior of different

algorithms on the IEEE CEC2013 test functions, we draw their
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TABLE II
EXPERIMENTAL RESULTS ON1000-D IEEE CEC2013 FUNCTIONS

convergence curves to observe their evolutionary processes.

Besides, in order to make our comparison more convincing, we

choose several benchmark functions from all the four groups.

Here, we select separable function f 1, partially separable func-

tions f 4, f 5, and f 8, overlapping function f 14, and nonseparable

function f 15 as the representative instances. The convergence

curves of AGLDPSO, CCPSO2, SL-PSO, CSO, DMS-L-PSO,

DSPLSO, DLLSO, DECC-DG, DECC-G, and MLCC on these

six selected benchmark functions are plotted in Fig. 6.

From Fig. 6(a), we can see that only AGLDPSO and

MLCC can converge to better solutions quickly while other

algorithms evolve slower on separable function f 1. However,

AGLDPSO converges a little slower than MLCC. While on

partially separable function f 4 in Fig. 6(b), only AGLDPSO

and SL-PSO can obtain more accurate results. Similar phe-

nomenon can be observed on partially separable function f 8

and overlapping function f 14 in Fig. 6(d) and (e). On partially

separable function f 5 in Fig. 6(c), AGLDPSO performs much

better and obtains more promising results than most algo-

rithms, only worse than CSO, DSPLSO, and DLLSO. While

on the nonseparable function f 15 in Fig. 6(e), most algorithms

can achieve the similar performance. However, AGLDPSO

can obtain much better and more accurate results than other

competitors.

Overall, AGLDPSO generally outperforms other large-scale

optimization algorithms on these benchmark functions from

IEEE CEC2013 test suite.

D. Comparison With Winner of IEEE CEC2010 Competition

To further demonstrate the superiority of AGLDPSO,

in this section, we compare AGLDPSO with the win-

ner of the IEEE CEC2010 competition on large-scale

optimization, the memetic algorithm based on local search

chains (MA-SW-Chains) [58]. For a fair comparison, we

directly cite the mean results of MA-SW-Chains from the

original paper [58].

The detailed comparison results of AGLDPSO and

MA-SW-Chains are listed in Table III. The best results are

highlighted in boldface. Due to the lack of the detailed results

of MA-SW-Chains in each run, whether AGLDPSO is better

than (+), worse than (−), or similar to (≈) MA-SW-Chains

is just measured by the mean results.

From Table III, we find that AGLDPSO still keeps its

promising performance when compared with MA-SW-Chains.
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(a) (b)

(d) (e) (f)

(c)

Fig. 6. Convergence curves of AGLDPSO and other state-of-the-art algorithms on six representative functions from IEEE CEC2013. (a) f 1. (b) f 4. (c) f 5.
(d) f 8. (e) f 14. (f) f 15.

TABLE III
EXPERIMENTAL RESULTS OF AGLDPSO AND MA-SW-CHAINS ON

1000-D IEEE CEC2010 FUNCTIONS

First, on the separable functions f 1–f 3 and the partially

separable functions f 4–f 18, AGLDPSO dominates MA-SW-

Chains on two functions and eight functions, respectively,

while only dominated by MA-SW-Chains on one function and

seven functions, respectively. Second, in total, the number of

functions that AGLDPSO dominates MA-SW-Chains is the

same to the number of functions that AGLDPSO is dominated

by MA-SW-Chains, which means AGLDPSO can achieve

the equivalent performance compared to MA-SW-Chains.

However, we can see that AGLDPSO achieves the mean results

with 1.99E+01 and 2.96E+04 on F6 and F8, respectively,

which is much better than the mean results in MA-SW-Chains

with 8.14E+04 and 1.41E+07. Even on the functions where

AGLDPSO is dominated by MA-SW-Chains, AGLDPSO still

achieves the comparable performance to MA-SW-Chains. For

example, on f 10 and F18, AGLDPSO achieves the mean results

with 2.38E+03 and 1.40E+03, which is very close to the mean

results in MA-SW-Chains with 2.07E+03 and 1.30E+03.

Third, compared with MA-SW-Chains, AGLDPSO is much

easier and simpler to understand and implement, which fully

facilitates its practical application.

Overall, we can see that AGLDPSO is better than or at least

competitive to the winner of the IEEE CEC2010 competition.

E. Scalability of AGLDPSO on 2000-D Problems

In order to investigate the scalability of AGLDPSO, we

further compare the performance of AGLDPSO with other

large-scale optimization algorithms on the IEEE CEC2010 test

functions with dimensionality increasing to 2000.

When dealing with the 2000-D problems, the MaxFEs is set

as 6 000 000 for all competitors, while the population size N is

set as 1000 in AGLDPSO. Moreover, the parameter c2 which

controls the convergence speed to the gbest is set as 0.2. The

detailed experimental results can be seen in Table S.II in the

supplementary file.
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TABLE IV
EXPERIMENTAL RESULTS OF AGLDPSO AND ITS VARIANTS WITH DIFFERENT SUBPOPULATION SIZES ON 1000-D IEEE CEC2010 FUNCTIONS

It can be observed that as the dimension increases, the

performance of many algorithms is greatly deteriorated, except

AGLDPSO. Besides, MLCC may be more suitable for solv-

ing separable functions, while CSO performs relatively better

on some partially separable functions. Even so, AGLDPSO

still keeps it tremendous advantage and superiority on all

functions. It performs better than CCPSO2, SL-PSO, CSO,

DMS-L-PSO, DSPLSO, DLLSO, DECC-DG, DECC-G, and

MLCC on 19, 15, 13, 20, 11, 11, 17, 16, and 18 functions,

respectively. Conversely, CCPSO2, SL-PSO, CSO, DSPLSO,

DLLSO, DECC-DG, DECC-G, and MLCC can only surpass

AGLDPSO on 1, 2, 7, 8, 8, 2, 4, and 2 functions, respec-

tively. DMS-L-PSO cannot outperform AGLDPSO on any

functions. These results fully demonstrate that AGLDPSO can

also achieve good performance even the dimension increases

to 2000.

F. Effects of AGLS

In this section, we will discuss the property and influence

of AGLS, which can achieve the adaptive subpopulation size

and control the learning granularity. Herein, to investigate

the effectiveness of the new proposed AGLS, we compare

AGLDPSO with three AGLDPSO variants with fixed sub-

population size and one AGLDPSO variant with random

subpopulation size. We denote the AGLDPSO variant with

fixed subpopulation size M = a as AGLDPSO(a) and denote

the AGLDPSO variant with random subpopulation size as

AGLDPSO(rand). The comparison results of AGLDPSO and

its variants on the IEEE CEC2010 test functions are listed in

Table IV.

As we can see, different subpopulation sizes are suitable

for different problems. For instance, a large subpopulation size

(coarse granularity) is appropriate for exploitation, performing

well on unimodal functions f 4, f 12, and f 19. While a small

subpopulation size (fine-granularity) is suitable for diver-

sity maintaining, performing well on multimodal functions

f 2, f 11, and f 16. However, the adaptive granularity control

achieved by AGLS, without any prior information, still out-

performs AGLDPSO(10), AGLDPSO(15), and AGLDPSO(20)

on 11, 12, and 13 functions, respectively, while is worse than

these three variants on only 5, 1, and 4 functions, respec-

tively. Moreover, it performs better than AGLDPSO(rand) on

16 functions and only worse than AGLDPSO(rand) on 1 func-

tion. This may be due to that the AGLS can estimate the

evolutionary state based on LSH and LR, which will fur-

ther adaptively change the subpopulation size to meet the

search requirement of the current evolutionary state. Therefore,

benefited from the adaptive granularity control, we not only

eliminate the sensitivity of this parameter but also find a poten-

tial balance between exploration and exploitation to obtain

better performance on a broad range of functions.

Moreover, from Table IV, we can see that AGLDPSO gen-

erally consumes more CPU time (measured in second) than its

variants with fixed subpopulation size or random subpopula-

tion size. This may be due to that the adaptive subpopulation

size M in AGLS involves hashing-based clustering and the

LR, which are relatively time consuming. Although the AGLS

induces some extra CPU time to AGLDPSO, it also helps

AGLDPSO find the suitable subpopulation size to effectively

control the learning granularity, which will further balance the

exploration and exploitation, obtaining better results.

Next, we further count the number of different sub-

population size M during the evolutionary process in

AGLDPSO. From the above experiments, we find that the

large subpopulation size (coarse granularity) performs well

on unimodal functions f 4, f 12, and f 19, while the small sub-

population size (fine-granularity) is suitable for multimodal

functions f 2, f 11, and f 16. Thus, we take these six functions

as the representative instances to further verify the effective-

ness of adaptive granularity control. The statistical results of

M in the evolutionary process on these six functions are shown

in Fig. 7.

From Fig. 7, we can see that the small subpopulation size

appears more frequently than the large subpopulation size in

all the listed functions. This may be due to that when solv-

ing the large-scale optimization problems, more diversity is

needed. Small subpopulation size M will result in large number

of subpopulations, and many sbest can be learned to increase
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Fig. 7. Statistical results of subpopulation size M on different functions.

the diversity. As a result, small subpopulation size is more

needed to keep population diversity when solving the large-

scale optimization problems. Moreover, Fig. 7 also shows that

in multimodal functions f 2, f 11, and f 16, the small subpopu-

lation size M appears more frequently than that in unimodal

functions f 4, f 12, and f 19. This is due to that small M can

improve the population diversity to avoid local optima and

therefore, is more needed in the multimodal environment. On

the contrary, the large subpopulation size M appears more

frequently in unimodal functions f 4, f 12, and f 19 than that

in multimodal functions f 2, f 11, and f 16, because large M

can further accelerate the convergence speed and improve the

accuracy of solution in the unimodal environment. Therefore,

we can say that our adaptive granularity control method in

the AGLDPSO algorithm is effective and adaptive to the

evolutionary states of different problems.

G. Influences of Parameters

The bucket number nb has an important influence on the

effectiveness of AGLS. If nb is small, the bucket size will

be large. Thus, gbest and gworst will be in the same bucket

with a higher probability, and there is no difference between

Ngworst and Ngbest. While if nb is large, the bucket size will be

small and the population will be divided more dispersedly.

Therefore, the number of particles in each bucket is rela-

tively small and there is still no significant difference between

Ngworst and Ngbest. Since the subpopulation size M is adap-

tively changed according to the difference between Ngworst and

Ngbest, neither larger nor smaller nb is suitable for AGLS.

The nb is tested with four values, 0.05N, 0.1N (the one

used in AGLDPSO), 0.15N, and 0.2N. The AGLDPSO variant

with nb = λ × N is called AGLDPSO (λ). For exam-

ple, the AGLDPSO variant with nb = 0.05N is called

AGLDPSO(0.05). The comparison results of AGLDPSO and

its variants with different nb values on the IEEE CEC2010 test

suite are listed in Table S.III in the supplementary file.

As we can see, different nb values make nearly no difference

in AGLDPSO on f 1, f 4, f 5, f 15, and f 20. Larger nb value with

0.2N performs the best on f 7, while smaller nb value with

0.05N performs the best on f 2, f 8, and f 10. However, on the

other functions, AGLDPSO with nb = 0.1N performs better

than AGLDPSO(0.05), AGLDPSO(0.15), and AGLDPSO(0.2)

on 10, 11, and 12 functions, respectively. Therefore, nb =
0.1N is the most suitable parameter for AGLDPSO to achieve

a good performance in our testing.

Moreover, we also investigate the influence of population

size N, which is a hyperparameter in AGLDPSO. Generally

speaking, larger population size N can maintain population

diversity and enhance the exploration ability of algorithm,

while smaller population size N can save more FEs in every

generation, so as to result in longer evolutionary generations

to further improve the accuracy of solutions.

N is tested with five values, 100, 300, 500 (the one used

in AGLDPSO), 600, and 1000. The AGLDPSO variant with

N = a is called AGLDPSO(a). For example, the AGLDPSO

variant with N = 100 is called AGLDPSO(100). The com-

parison results of AGLDPSO and its variants with different N

values on the IEEE CEC2010 test suite are listed in Table S.IV

in the supplementary file.

As we can see from Table S.IV in the supplementary

file, AGLDPSO variants with larger population size perform

generally better than the AGLDPSO variants with smaller

population size. Especially, the AGLDPSO variant with the

smallest population size, that is, N = 100, performs the worst

in our test. This may be due to that when solving the large-

scale optimization problems, more diversity is needed. Larger

population size N can increase the diversity, which is more

suitable for large-scale optimization problems. Nevertheless,

AGLDPSO variants with too large population size N may

lead to large FEs consuming in every generation and therefore,

makes the algorithm terminate early with fewer generations.

This is not good for the algorithm to search for the global

optimum sufficiently. For example, both AGLDPSO(600) and

AGLDPSO(1000) perform worse than AGLDPSO on f 5, f 9,

f 11, f 12, f 14, f 15, f 17, and f 19. All in all, AGLDPSO with

N = 500 performs significantly better than AGLDPSO(100),

AGLDPSO(300), AGLDPSO(600), and AGLDPSO(1000) on

20, 15, 13, and 11 functions, respectively, while is only

significantly beaten by them on 0, 4, 2, and 7 functions, respec-

tively. Therefore, N = 500 is the most suitable parameter for

AGLDPSO to achieve a good performance in our test.

V. CONCLUSION

This article develops an algorithm called AGLDPSO with

the help of ML techniques for large-scale optimization. Two

major novel techniques are designed: 1) master–slave multi-

subpopulation distributed model and 2) AGLS.

Several subpopulations are co-evolved by using the master–

slave multisubpopulation distributed model. Compared with

other large-scale optimization algorithms with the single popu-

lation evolution or centralized mechanism, the distributed mul-

tisubpopulation co-evolution mechanism will fully exchange

the evolutionary information among different populations to

further enhance the population diversity. Furthermore, the

AGLS based on LSH and LR in AGLDPSO can find an

appropriate subpopulation size on different evolutionary states,

and further to relieve the sensitivity of parameters. Moreover,
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the adaptive subpopulation size can further control the learn-

ing granularity effectively and can find a potential balance

between diversity and convergence.

Equipped with these two novel techniques, AGLDPSO

achieves a promising and satisfying performance when solv-

ing the large-scale optimization problems. The comparison

results between AGLDPSO and other large-scale optimization

algorithms, even the winner of the competition on large-

scale optimization, fully show the efficiency and feasibility

of AGLDPSO.
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