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Abstract

Graph Convolutional Neural Networks (Graph CNNs) are
generalizations of classical CNNs to handle graph data such as
molecular data, point could and social networks. Current filters
in graph CNNs are built for fixed and shared graph structure.
However, for most real data, the graph structures varies in both
size and connectivity. The paper proposes a generalized and
flexible graph CNN taking data of arbitrary graph structure as
input. In that way a task-driven adaptive graph is learned for
each graph data while training. To efficiently learn the graph, a
distance metric learning is proposed. Extensive experiments on
nine graph-structured datasets have demonstrated the superior
performance improvement on both convergence speed and
predictive accuracy.

Introduction

Although the Convolutional Neural Networks (CNNs) have
been proven supremely successful on a wide range of ma-
chine learning problems (Hinton et al. 2012; Dundar et al.
2015), they generally require inputs to be tensors. For in-
stance, images and videos are modeled as 2-D and 3-D tensor
separately. However, in many real problems, the data are on
irregular grid or more generally in non-Euclidean domains,
e.g. chemical molecules, point cloud and social networks.
Instead of regularly shaped tensors, those data are better to
be structured as graph, which is capable of handling varying
neighborhood vertex connectivity as well as non-Euclidean
metric. Under the circumstances, the stationarity and the com-
positionality, which allow kernel-based convolutions on grid,
are no longer satisfied. Therefore, it is necessary to reformu-
late the convolution operator on graph structured data.

However, a feasible extension of CNNs from regular grid
to irregular graph is not straightforward. For simplicity of con-
structing convolution kernel, the early graph CNNs usually
assume that data is still low-dimensional (Bruna et al. 2013;
Henaff, Bruna, and LeCun 2015). Because the convolver han-
dled nodes separately according to node degree. And their
convolution kernel is over-localized and infeasible to learn
hierarchical representations from complex graphs with un-
predictable and flexible node connectivity, e.g molecules and
social networks.
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Figure 1: Example of graph-structured data: organic com-
pound 3,4-Lutidine (C7H9N) and its graph structure.

In some cases, e.g classification of point cloud, the topo-
logical structure of graph is more informative than vertex
feature. Unfortunately, the existing graph convolution can
not thoroughly exploit the geometric property on graph due
to the difficulty of designing a parameterized spatial kernel
matches a varying number of neighbors (Shuman et al. 2013).
Besides, considering the flexibility of graph and the scale of
parameter, learning a customized topology-preserving spatial
kernel for every unique graph is impractical.

Beyond spatial convolution on restricted graphs, spectral
networks, based on graph Fourier transform, offer an elastic
kernel (Defferrard, Bresson, and Vandergheynst 2016). Inher-
ited from classical CNNs, a shared kernel among samples is
still assumed. Consequently, to ensure the unified dimension-
ality of layer output, the inputs have to be resized, which is
also a constraint of classical CNNs. However, this kind of
preprocessing on graph data may destroy the completeness
of graph-oriented information. For instance, the coarsening
of molecule is hard to be justified chemically, and it is likely
that the coarsened graph has lost the key sub-structures that
differentiate the molecule from others. In Figure. 1, removing
any Carbon atom from the graph breaks the Benzene ring.
It would be much better if the graph CNNs could accept
original data samples of diverse graph structures.

Lastly, the data we feed to graph CNNs either have an in-
trinsic graph structure or we can construct one by clustering.
At previous graph CNNs, the initial graph structure will be
fixed during the training process (Bruna et al. 2013). But,
it is hard to evaluate if the graphs constructed by unsuper-
vised clustering (or from domain knowledge) are optimal
for supervised learning tasks. Although the supervised graph
construction with fully connected networks has been pro-
posed (Henaff, Bruna, and LeCun 2015), their dense training
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Figure 2: Convolution kernel comparison. Red point: centre of kernel. Orange points: coverage of kernel. (1) 3× 3 kernel of
classical CNN on 2-D grid; (2) graphconv/neural fingerprint, strictly localized kernel; (3) GCN, K-localized kernel merely on the
shared graph; (4) AGCN, K-localized kernel on adaptive graph (individual graph + learned residual graph). Edges from learned
residual graph Laplacian are dash lines. Color of edge indicates the weights in spectral kernels. Levels of value as color bar.

weights restrict the model to small graphs. Furthermore, the
graph structures learned from a separate network are not
guaranteed to best serve the graph convolutions.

The bottlenecks of current graph CNNs include:

• restrict graph degree;

• require identical graph structure shared among inputs;

• fixed graph constructed without training;

• incapability of learning from topological structure.

In the paper, we propose a novel spectral graph convolution
network that feed on original data of diverse graph structures.
e.g the organic molecules that consist of a different number
of benzene rings. To allow that, instead of shared spectral
kernel, we give each individual sample in batch a customized
graph Laplacian that objectively describes its unique topol-
ogy. A customized graph Laplacian will lead to a customized
spectral filter that combines neighbor features according to
its unique graph topology.

It is interesting to question what exact graph best serves a
supervised learning task. For example, the chemical bonds
naturally build a graph for a compound. However, it is never
guaranteed that the convolver that works on intrinsic graph
has extracted all meaningful features. Therefore, we train a so-
called residual graph to discover the residual sub-structures
that the intrinsic graph never includes. Moreover, to ensure
that the residual graph is the best supplement for particular
task, we design a scheme to learn the residual graph during
training the rest of graph CNN.

Direct learning of graph Laplacian costs O(N2) complex-
ity for a R

N×d graph of N vertices. Allowing unique graph
topology preserved in M training samples means learning M
unique graph Laplacian, which is highly costly. If harnessing
a supervised metric learning with Mahalanobis distance, we
could reduce the parameter number to O(d2) or even O(d),
assuming metric parameters are shared across samples. As a
consequence, the learning complexity becomes independent
of graph size N . In classical CNNs, back-propagation gener-
ally updates kernel weights to adjust the relationship between
neighboring nodes at each feature dimension individually.
Then it sums up signals from all filters to construct hidden-
layer activations. To grant graph CNNs a similar capability,
we propose a re-parameterization on the feature domain with
additional transform weights and bias. Finally, the total O(d2)
training parameters in the convolution layer consist of two

parts: distance metric, and the vertex feature transform and
bias. Given the trained metric and transformed feature space,
the updated residual graph is able to be constructed.

In experiments, we explore the proposed spectral convolu-
tion network on multiple graph-structured datasets including
chemical molecules and point cloud generated by LIDAR.
The innovations of our graph CNN are summarized as below:

1. Construct unique graph Laplacian. Construct and learn
unique residual Laplacian matrix for each individual sam-
ple in batch, and the learned residual graph Laplacian will
be added onto the initial (clustered or intrinsic) one.

2. Learn distance metric for graph update. Through learn-
ing the optimal distance metric parameters shared among
the data, the topological structures of graph are updated
along with the training of prediction network. The learning
complexity is cheap as O(d2), independent of input size.

3. Feature embedding in convolution. Transforming of ver-
tex features is done before convolution connecting both
intra- and inter-vertex features on graph.

4. Accept flexible graph inputs. Because of 1 and 2, the
proposed network can be fed on data of different graph
structure and size, unlocking restrictions on graph degree.

Related Work

Spectral Graph Convolution

The first trial of formulating an analogy of CNN on graph
was accomplished by (Bruna et al. 2013). Particularly, the
spatial convolution summed up the features from neighbor-
hood defined by graph adjacency matrix Ak. The finite-size
kernel is nonparametric but over-localized. The convolution
layer was reduced to an analog of fully connected layer with
sparse transform matrix given by Ak. Spatial convolution has
intrinsic difficulty of matching varying local neighborhoods,
so there is no unified definition of spatial filtering on graph
without strict restriction on graph topology. Spectral graph
theory (Chung 1997) makes it possible to construct convo-
lution kernel on spectrum domain, and the spatial locality is
supported by the smoothness of spectrum multipliers. The
baseline approach of the paper is built upon [Eq(3), (Deffer-
rard, Bresson, and Vandergheynst 2016)] that extended the
one-hop local kernel to the one that brought at most K-hop
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connectivity. According to graph Fourier transform, if U is
the set of graph Fourier basis of L,

xk+1 = σ
(

gθ(L
K)xk

)

= σ
(

Ugθ(Λ
K)UTxk

)

. (1)

diag(Λ) is the O(N) frequency components of L. (Deffer-
rard, Bresson, and Vandergheynst 2016) also utilized Cheby-
shev polynomials and its approximate evaluation scheme to
reduce the computational cost and achieve localized filtering.
(Kipf and Welling 2016) showed a first-order approximation
to the Chebyshev polynomials as the graph filter spectrum,
which requires much less training parameters. Even though,
(De Brabandere et al. 2016; Simonovsky and Komodakis
2017; Looks et al. 2017) have started to construct customized
graphs with more emphasis on topological structure, or even
unlock the constraint on input graph dimensionality, design-
ing a more flexible graph CNN is still an open question.

Neural Networks on Molecular Graph

The predictions on checmical property of organic molecule
were usually handled by handcrafted features and feature
embedding (Mayr et al. 2016; Weiss, Torralba, and Fergus
2009). Since molecules are naturally modeled as graph, (Du-
venaud et al. 2015; Wallach, Dzamba, and Heifets 2015;
Wu et al. 2017) have made several successful trials of con-
structing neural networks on raw molecules for learning
representations. However, due to the constraints of spatial
convolution, their networks failed to make full use of the
atom-connectivities, which are more informative than the
few bond features. More recent explorations on progres-
sive network, multi-task learning and low-shot or one-shot
learning have been accomplished (Altae-Tran et al. 2016;
Gomes et al. 2017). So far, the state-of-the-art network on
molecules (Wallach, Dzamba, and Heifets 2015; Duvenaud
et al. 2015) still use non-parameterized spatial kernel that can
not fully exploit spatial information. Besides, the topological
structures can be rich sources of discriminative features.

Method

SGC-LL Layer

In order to make the spectral convolution kernel truly feasible
with the diverse graph topology of data, we parameterize the
distance metrics, so that the graph Laplacian itself becomes
trainable. With the trained metrics, we dynamically construct
unique graph for input samples of different shape and size.
The new layer conducts convolution with K-localized spec-
tral filter constructed on adaptive graph. In the meanwhile,
the graph topological structures of samples get updated mini-
mizing training losses. The new Spectral Graph Convolution
layer with graph Laplacian Learning is named as SGC-LL. In
this section, we introduce the innovations of SGC-LL layer.

Learning Graph Laplacian Given graph G = (V,E) and
its adjacency matrix A and degree matrix D, the normalized
graph Laplacian matrix L is obtained by :

L = I −D−1/2AD−1/2. (2)

Obviously, L determines both the node-wise connectivity and
the degree of vertices. Knowing matrix L means knowing

the topological structure of graph G. Because L is a symmet-
ric positive definite matrix, its eigendecomposition gives a

complete set of eigenvectors U formed by {us}
N−1

s=0 , N is
the number of vertices. Use U as graph Fourier basis, graph
Laplacian is diagonalized as L = UΛUT . Similar to Fourier
transform on Euclidean spaces, graph Fourier transform, de-
fined as x̂ = UTx, converts graph signal x (primarily vertex
feature) to spectral domain spanned by basis U . Because the
spectral representation of graph topology is Λ, the spectral fil-
ter gθ(Λ) indeed generates customized convolution kernel on
graph in space. (Chung 1997) tell us that a spectrum formed
by smooth frequency components results in localized spatial
kernel. The main contribution of (Defferrard, Bresson, and
Vandergheynst 2016) is to formulate gθ(Λ) as a polynomial:

gθ(Λ) =
K−1
∑

k=0

θkΛ
k, (3)

which brings us an K-localized kernel that allows any pair
of vertices with shortest path distance dG < K to squeeze in.
Also, the far-away connectivity means less similarity and will
be assigned less importance controlled by θk. Polynomial
filter smoothen the spectrum, while parameterization by θk
also forces a circular distribution of weights in resulted kernel
from central vertex to farthest K-hop vertices. This restricts
the flexibility of kernel. What’s more important is that the
similarity between two vertices is essentially determined by
the selected distance metrics and the feature domain. For data
deployed in non-Euclidean domain, the Euclidean distance is
no longer guaranteed to be the optimal metrics for measuring
similarity. Therefore, it is possible that the similarity between
connected nodes is lower than those disconnected because the
graphs are suboptimal. And there are two possible reasons:

• The graphs were constructed in raw feature domain before
feature extraction and transform.

• The graph topology is intrinsic, and it merely represents
physical connections, e.g the chemical bonds in molecule.

To unlock the restrictions, we propose a new spectral filter
that parameterizes the Laplacian L instead of the coefficients
θk. Given original Laplacian L, features X and parameters
Γ, the function F(L,X,Γ) outputs the spectrum of updated

Laplacian L̃, then the filter will be:

gθ(Λ) =
K−1
∑

k=0

(F(L,X,Γ))k. (4)

Finally, the SGC-LL layer is primarily formulated as:

Y = Ugθ(Λ)U
TX = U

K−1
∑

k=0

(F(L,X,Γ))kUTX. (5)

Evaluating Eq.(5) is of O(N2) complexity due to the dense

matrix multiplication UTX . If gθ(L̃) was approximated as a

polynomial function of L̃ that could be calculated recursively,
the complexity would be reduced to O(K) due to the sparsity

of Laplacian L̃. We choose the same Chebychev expansion as
(Defferrard, Bresson, and Vandergheynst 2016) to compute

polynomial Tk(L̃)X of order k.
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Training Metric for Graph Update For graph structured
data, the Euclidean distance is no longer a good metric to
measure vertex similarity. Therefore, the distance metric need
to be adaptive along with the task and the features during
training. In articles of metrics learning, the algorithms were
divided into supervised and unsupervised learning (Wang and
Sun 2015). The optimal metric obtained in unsupervised fash-
ion minimizes the intra-cluster distances and also maximizes
the inter-cluster distances. For labeled datasets, the learning
objective is to find the metric minimizes the loss. Generalized
Mahalanobis distance between xi and xj is formulated as:

D(xi, xj) =
√

(xi − xj)TM(xi − xj). (6)

If M = I , Eq.(6) reduces to the Euclidean distance. In our
model, the symmetric positive semi-definite matrix M =
WdW

T
d , where Wd is one of the trainable weights of SGC-

LL layer. The Wd ∈ R
d×d is the transform basis to the space

where we measure the Euclidean distance between xi and xj .
Then, we use the distance to calculate the Gaussian kernel:

Gxi,xj
= exp(−D(xi, xj)/(2σ

2)). (7)

After normalization of G, we obtain a dense adjacency matrix

Â. In our model, the optimal metric Ŵd is the one that build

the graph Laplacian set {L̂} minimizing the predictive losses.

Re-parameterization on feature transform In classical
CNNs, the output feature of convolution layer is the sum
of all the feature maps from last layer in which they were
calculated by independent filters. This means the new features
are not only built upon the neighbor vertices, but also depend
on other intra-vertex features. However, on graph convolution,
it is not explainable to create and train separate topological
structures for different vertex features on the same graph. In
order to construct mappings of both intra- and inter-vertex
features, at SGC-LL layer, we introduce a transform matrix
and bias vector applied on output features. Based on Eq.(5),
the re-parameterization on output feature is formulated as:

Y =
(

Ugθ(Λ)U
TX

)

W + b. (8)

At i-th layer the transform matrix Wi ∈ R
di−1×di and the

bias bi ∈ R
di×1 are trained along with metrics Mi, where di

is the feature dimensionality. Totally, at each SGC-LL layer,
we have the parameters {Mi,Wi, bi} of O(didi−1) learning
complexity, independent of input graph size or degree. At
next SGC-LL layer, the spectral filter will be built in another
feature domain with different metrics.

Residual Graph Laplacian Some graph data have intrin-
sic graph structures, such as molecules. Molecule is modeled
as molecular graph with atom as vertex and bond as edge.
Those bonds could be justified by chemical experiments. But,
the most of data do not naturally have graph structure, so we
have to construct graphs before feed them to the network. Be-
sides above two cases, the most likely case is that the graphs
created in unsupervised way can not sufficiently express all
of the meaningful topological structure for specific task. Use
chemical compound as example, the intrinsic graph given by
SMILES (Weininger 1988) sequence does NOT tell anything

about the toxicity of compound. Merely on intrinsic graph, it
is hard to learn the meaningful representations of toxicity.

Because there is no prior knowledge on distance metric,
the metrics M are randomly initialized, so it may take long to
converge. In order to accelerate the training and increase the
stability of learned graph topology structure, we announce a

reasonable assumption that the optimal graph Laplacian L̂ is
a small shifting from the original graph Laplacian L:

L̂ = L+ αLres (9)

In other words, the original graph Laplacian L has disclosed
a large amount of helpful graph structural information, except
for those sub-structures consist of virtual vertex connections
that can not be directly learned on intrinsic graph. Therefore,

instead of learning L̂, we learn the residual graph Lapla-
cian Lres(i) = L(Mi, X), which is evaluated by Eq.(7) and
Eq.(2). The influence of Lres(i) on final graph topology is
controlled by α. The operations in SGC-LL layer are summa-
rized as Algorithm 1.

Algorithm 1 SGC-LL Layer

Data X = {Xi},L = {Li}, Parameter α,M,W, b

1: for i-th graph sample Xi in mini-batch do

2: Ãi ← Eq.(6), Eq.(7)

3: Lres(i) ← I − D̃
−1/2
i ÃiD̃

−1/2
i � D̃i = diag(Ãi)

4: L̃i = Li + αLres(i)
5: Yi ← Eq.(8)

6: return Y = {Yi}

AGCN Network

The proposed network is named as the Adaptive Graph Con-
volution Network (AGCN), because the SGC-LL layer is
able to efficiently learn adaptive graph topology structure
according to the data and the context of learning task. Besides
SGC-LL layer, the AGCN has graph max pooling layer and
graph gather layer (Gomes et al. 2017).

Graph Max Pooling The graph max pooling is conducted
feature-wise. For feature xv at v-th vertex of graph, the pool-
ing replaces the j-th feature xv(j) with the maximum one
among the j-th feature from its neighbor vertices and himself.
If N(v) is the set of neighbor vertices of v, the new feature
at vertex v: x̂v(j) = max({xv(j), xi(j), ∀i ∈ N(v)}).

Graph Gather The graph gather layer element-wise sums
up all the vertex feature vectors as the representation of graph
data. The output vector of gather layer will be used for graph-
level prediction. Without the graph gather layer, the AGCN
can also be trained and used for vertex-wise prediction tasks,
given labels on vertex. The vertex-wise predictions include
graph completion and many predictions on social networks.

Bilateral Filter The purpose of using bilateral filter layer
(Gadde et al. 2016) in AGCN is to prevent over-fitting. The
residual graph Laplacian definitely adapts the model to better
fit the training task, but, at the risk of over-fitting. To mitigate
over-fitting, we introduce a revised bilateral filtering layer
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Figure 3: AGCN network configuration. Directly feed it on the original graph-structured data and their initial graphs.

to regularize activation of SGC-LL layer by augmenting the
spatial locality of L. We also introduced batch normalization
layers to accelerate the training (Ioffe and Szegedy 2015).

Network Configuration The AGCN consists of multiple
consecutive layer combos, the core layer of which is SGC-LL
layer. The layer combo comprises one SGC-LL layer, one
batch normalization layer (Ioffe and Szegedy 2015) and one
graph max pooling layer. See Figure. 3 for illustration. A
residual graph Laplacian is trained at each SGC-LL layer.
At the graph pooling layer that follows, the adaptive graph
(intrinsic + residual graph) is reused until next SGC-LL layer,
because SGC-LL transform features, so the next SGC-LL
need to retrain a new residual graph.

After passing a layer combo, the graph structures in batch
will be updated, while the graph sizes remain. Because for
data like organic compound, small sub-structures are decisive
on specific chemical property, e.g toxicity. For instance, aro-
matic hydrocarbons are usually strongly toxic, while if the
hydrogen (H) atom was replaced by methyl group (-CH3),
their toxicity would be greatly reduced. Therefore, any graph
coarsening or feature averaging will damage the complete-
ness of those informative local structures. So, we choose max
pooling and do not skip any vertex in convolution. In the
paper, we test the network on graph-wise prediction tasks.
So, the graph gather layer is the last layer before regressors.

Batch Training of Diverse Graphs

One of the greatest challenges for conducting convolution on
graph-structured data is the difficulty of matching the diverse
local topological structures of training samples: 1) bring ex-
tra difficulty of designing convolution kernel, because the
invariance of kernel is not satisfied on graph, and the node in-
dexing sometimes matters; 2) Resizing or reshaping of graph
is not reasonable for some data e.g molecules. Different from
images and videos, which work with classical convolution on
tensor, the compatibility with diverse topology is necessary
for convolution on graph. The proposed SGC-LL layer train
separate graph Laplacian, that preserve all local topological
structures of data. Because we find that it is the feature space
and the distance metrics that actually matter in constructing
graph structure, the SGC-LL layer only requires all samples
in batch to share the same feature transform matrix and dis-
tance metrics. Furthermore, the training parameter number
is only dependent on feature dimensionality. Therefore, the

AGCN accepts training batch consist of raw graph-structured
data samples with different topology and size. It is noted that
additional RAM consumption will be brought by the initial
graph Laplacians that need to be constructed before training,
and we still need to keep them for updating kernels. But, it is
acceptable because graph Laplacians are usually sparse.

Experiments

In the experiments, we compared our AGCN network with
the state-of-the-art graph CNNs. (Bruna et al. 2013) imple-
mented convolution with a spectral filter formed by linear B-
spline interpolation, referred as graphconv. Neural fingerprint
(Duvenaud et al. 2015), referred as NFP, is the cutting-edge
neural network for molecules. It uses kernel constructed in
spatial domain. We refer to the graph CNN equipped with
K-localized spectral filter as GCN (Defferrard, Bresson, and
Vandergheynst 2016). In this section, extensive numerical
results show that our AGCN outperforms all existing graph
CNNs, and we explain how the proposed SGC-LL layer boost
the performance.

Figure 4: Two heat maps of 28 × 28 similarity matrix S
of nodes of C20N2O5S (Benfuracarb). One (labeled by 0)
is before training, and the other is after the first 20 epoch.
Enlarged part of matrix better indicates the learning of graph.
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Performance boosted by SGC-LL Layer

The spectral filter at SGC-LL Layer is constructed on adap-
tive graph that consists of individual graph and residual graph.
Individual graph is either intrinsic graph directly given by
data itself or from clustering. Individual graph which enables
the network to read data of different structure. Furthermore,
the graphs will be updated during training since the network is
trained to optimize the distance metric and feature transform
for training data. The experiment demonstrated a close corre-
lation between the updated graph and network performance.
In Figure. 4, if zoom in, it is easy to find the significant differ-
ence on node similarity after 20 epochs. This means the graph
structure of compound in the trained distance metric has been
updated. In the meanwhile, the weighted l2 losses dropped
dramatically during the first 20 epoch, so did the mean RMSE
score. Besides, the RMSE and losses curves proved that the
AGCN (red line) has overwhelmingly better performance
than other graph CNNs in both convergence speed and pre-
dictive accuracy (Figure. 5). We attribute this improvement to
the adaptive graph and the learning of residual Laplacian
at SGC-LL layer.

Figure 5: (1) training losses; (2) RMSE scores for solubility
value prediction on delaney dataset (Delaney 2004).

Multi-task Prediction on Molecular Datasets

Delaney Dataset (Delaney 2004) contains aequeous solubil-
ity data for 1,144 low molecular weight compounds. The
largest compound in the dataset has 492 atoms, while the
smallest only consists of 3 atoms. NCI Database has around
20,000 compounds and 60 prediction tasks from drug reac-
tion experiments to clinical pharmacology studies. At last,
Az-logD dataset from ADME (Vugmeyster, Harrold, and
Xu 2012) offers the logD measurements on permeability for
4200 compounds. Besides, we also have a small dataset of
642 compounds for hydration-free energy study. The pre-
sented task-averaged RMSE scores and standard deviations
were obtained after 5-fold cross-validation.

Tox21 Dataset (Mayr et al. 2016) contains 7,950 chemical
compounds and labels for classifications on 12 essays of tox-
icity. However, additional difficulty comes from the missing
labels for part of the 12 tasks. For those with missing labels,
we excluded them from loss computation, but still kept them
in training set. ClinTox is a public dataset of 1451 chemical
compounds for clinical toxicological study together with la-
bels for 2 tasks. Sider (Kuhn et al. 2010) database records
1392 drugs and their 27 different side effects or adverse re-
actions. Toxcast (Dix et al. 2006) is another toxicological re-

search database that has 8,599 SMILES together with labels
for 617 predictive tasks. For N -task prediction, the network
graph model will become an analog of K-ary tree with N
leaf nodes, each of which comprises a fully connected layer
and a logistic regression for each task.

To prove the advantages of AGCN, we compared it with
three state-of-the-art graph CNN benchmarks: the first spec-
tral graph CNN (graphconv) with spline interpolated kernel
(Bruna et al. 2013), the extension to k-localized spectral filter
(GCN) (Defferrard, Bresson, and Vandergheynst 2016) and
neural fingerprint (NFP) (Duvenaud et al. 2015), the cutting-
edge neural network for molecules. In Table. 1, our AGCN
reduced the mean RMSE by 31% -40% on Delaney dataset,
averagely 15% on Az-logD and 2∼4% on testing set of NCI.
It looks the adaptive graph and the residual Laplacian learn-
ing for hidden structures are more useful when data is short.
As to the multi-task classification results from Table. 2, we
notice that the AGCN significantly boosted the accuracy on
both small and large datasets. For the mass of 617 tasks of
Toxcast, the performance of classifier still got improved by
3% (0.03) on average, compared to the state-of-the-arts.

Molecular graph, directly given by chemical formula, is
the intrinsic graph for compound data. They come with high
variety in both topological structure and graph size. The spec-
tral kernel in graphconv (Bruna et al. 2013) can only connect
1-hop neighbor (nearby vertex directly connected by edge),
so it is over-localized. This becomes an issue when deal-
ing with molecules, because some important sub-structures
of molecular graph are impossible to be covered by over-
localized kernels. For example, centered at any carbon atom
of Benzene ring (C6H6), the kernel at least needs to cover
the vertices of distance dG <=3, if you want to learn repre-
sentation from the ring as a whole. The K-localized kernel
in GCN (Defferrard, Bresson, and Vandergheynst 2016) is no
longer too local, but the kernel is still assumed to be shared
among data. It is fine if the molecules in training set share
many common sub-structures such as OH (carbonyl group)
and C6H6 (Benzene). See Figure. 2 for illustration. How-
ever, if the molecules are from different classes of compound,
GCN may not work well especially when data from some
type are short. This is probably why the GCN has similar
performance as AGCN on large datasets such as the Sider,
but it dramatically worsened on small datasets, e.g Delaney
and Clintox.

The AGCN is able to handle molecular data in a better
way. The adaptive graph allows input samples to have unique
graph Laplacian, so each compound indeed has its unique
convolution filter customized according to its unique topo-
logical structure. Because of this capability, we can feed the
network on the original data (atom/edge features and molec-
ular graph) without any loss of information. Furthermore,
our SGC-LL layers train the distance metric minimizing pre-
dictive losses of specific tasks together with other transform
parameters. Therefore, when it converged, at each SGC-LL,
we would find the optimal feature space and distance metric
to construct the graph that best serve the task, e.g. toxicity
and solubility prediction. This learned graph may contain
new edges that did not exist in original molecular graph.
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Datasets Delaney solubility Az-logD NCI Hydration-free energy

graphconv 0.4222 ± 8.38e−2 0.7516 ± 8.42e−3 0.8695 ± 3.55e−3 2.0329 ± 2.70e−2
NFP 0.4955 ± 2.30e−3 0.9597 ± 5.70e−3 0.8748 ± 7.50e−3 3.4082 ± 3.95e−2
GCN 0.4665 ± 2.07e−3 1.0459 ± 3.92e−3 0.8717 ± 4.14e−3 2.2868 ± 1.37 e−2
AGCN 0.3061 ± 5.34e−3 0.7362 ± 3.54e−3 0.8647 ± 4.67e−3 1.3317 ± 2.73e−2

Table 1: Mean and standard deviation of RMSE on Delaney, Az-logD, NIH-NCI and Hydration-free energy Datasets. Compare
AGCN with graphconv (Bruna et al. 2013), NFP (Duvenaud et al. 2015), GCN (Defferrard, Bresson, and Vandergheynst 2016)

Datasets Tox21 ClinTox Sider Toxcast

Validation Testing Validation Testing Validation Testing Validation Testing

graphconv 0.7105 0.7023 0.7896 0.7069 0.5806 0.5642 0.6497 0.6496
NFP 0.7502 0.7341 0.7356 0.7469 0.6049 0.5525 0.6561 0.6384
GCN 0.7540 0.7481 0.8303 0.7573 0.6085 0.5914 0.6914 0.6739
AGCN 0.7947 0.8016 0.9267 0.8678 0.6112 0.5921 0.7227 0.7033

Table 2: Task-averaged ROC-AUC Scores on Tox21, ClinTox, Sider, Toxcast Datasets . The same benchmarks as Table. 1.

Point Cloud Object Classification

The Sydney urban point cloud dataset contains street objects
scanned with a Velodyne HDL-64E LIDAR, collected in the
CBD of Sydney, Australia. There are 631 individual scans of
objects across 26 classes. Due to the actual size and shape
of object highly differ, the numbers of received point for
different objects also vary (see Figure. 6 for illustration).

Figure 6: Point cloud examples of different size. 1: bicycle,
124 points; 2: truck, 615 points; 3: pedestrian, 78 points.

Before feed point sets to previous CNNs, we need to unify
the size by downsampling. Coarsened samples must lose
part of structural information. While, the AGCN overcomes
such drawback by accepting raw point sets of different size.
Previous graph convolution share an identical kernel, but, the
shared one may mix up features on points regardless of the
actual distance. While, the AGCN is able to do convolution
exactly according to the spatial relations. The initial graphs
of point cloud were constructed by agglomerative clustering.
The cutting-edge method on point set recognition, PointNet
(Qi et al. 2016), cannot handle varying sized point cloud data.

After 5-fold cross-validation, averaged ROC-AUC scores
were calculated on a testing set that has 200 samples. From

All Classes Building Traffic Light

graphconv 0.6523 0.6754 0.5197
NFP 0.6350 0.8037 0.5344
GCN 0.6657 0.8427 0.7417

AGCN 0.6942 0.9906 0.8556

Table 3: Average ROC-AUC Scores on testing set of Sydney
Urban Objects Dataset.The same benchmarks as Table. 1.

Table. 3, we see the AGCN outperformed other graph CNNs
by 3 ∼ 6% on all classes average score. For specific large
objects like building, we have the AUC score close to 1,
while other networks did worse because they have to coarsen
the graphs first. For important road objects such as traffic
light, the AGCN also lifted the classification accuracy by at
least 10% in terms of ROC-AUC. It sufficiently showed that
the AGCN can extract more meaningful features than other
graph CNNs on point clouds. The information completeness
of data fed to the AGCN also benefit the performance, which
is attributed to the adaptive graphs constructed and learned at
proposed SGC-LL layers.
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Conclusions

We proposed a novel spectral graph convolver (SGC-LL) that
work with adaptive graphs. SGC-LL learns the residual graph
Laplacian via learning the optimal metric and feature trans-
form. As far as we know, the AGCN is the first graph CNN
that accepts data of arbitrary graph structure and size. The
supervised training of residual Laplacian drives the model to
better fit the prediction task. The extensive multi-task learn-
ing experiments on various graph-structured data indicated
that the AGCN outperformed the state-of-the-art graph CNN
models on various prediction tasks.
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