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Abstract. Sharpness enhancement and noise reduction play crucial roles
in computer vision and image processing. The problem is to enhance the
appearance and reduce the noise of the digital images without causing
halo artifacts. In this paper, we propose an adaptive guided image filtering
(AGF) able to perform halo-free edge slope enhancement and noise reduc-
tion simulaneously. The proposed method is developed based on guided
image filtering (GIF) and the shift-variant technique, part of adaptive bi-
lateral filtering (ABF). Experiments showed the results produced from our
method are superior to those produced from unsharp masking-based tech-
niques and comparable to ABF filtered output. Our proposed AGF out-
performs ABF in terms of computational complexity. It is implemented
using a fast and exact linear-time algorithm.

Keywords: Edge-preserving smoothing, guided image filter, sharpness
enhancement, noise reduction.

1 Introduction

Enhancing the sharpness and reducing the noise of the digital images have at-
tracted much interest during the last decades. These pre-processing techniques
play crucial roles in computer vision and image processing. However, how to si-
multaneously reduce noise and increase the slope of edges without creating halo
artifacts is still a challenging issue.

Conventional linear filter effectively smooths noise in homogeneous regions,
however, blurring the edges of an image. Conversely, edge-preserving smoothing
techniques only filter noise, while preserving edge structures. Existing techniques
that feasibly perform this kind of operation include anisotropic diffusion (AD)
[14], bilateral filtering (BLF) [17] and guided image filtering (GIF) [9]. However,
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none of them can be directly applied to achieve sharpness enhancement and
noise reduction simultanenously, as is our stated goal.

Anisotropic diffusion is able to preserve and sharpen edges, but both noise
and fine details are unexpectedly removed due to its over-smooth characteristic.
Although BLF is widely used and has become the de facto standard for computer
vision and image processing, its ability to enhance the sharpness of an image is
limited. While GIF proposed in [9] outperforms BLF in a variety of computer
vision applications, it shares the same limitation as does BLF.

In terms of image sharpening, the unsharp masking technique (USM) is pop-
ularly used due to its simplicity. A high-pass filter (HPF) is applied to the input
image under the guidance of the unsharp mask, obtained by subtracting the in-
put image and its blurred version. Thus, the contrast along the edges is increased
in the sharpened output. However, as discussed in [3,10,19], USM has two major
drawbacks. First, the overshoot and undershoot artifacts occur around the edges
of the sharpened image due to the large boost of high contrast areas. Second,
HPF not only enhances the edges but also significantly amplifies the noise in the
input image. This reduces image quality.

Investigations have been conducted to improve these two limitations of USM
[3,10,15]. Especially, Kim et al. proposed the optimal unsharp mask (OUM) [10]
to reduce noise in the homogeneous regions, while achieving the equivalent level
of sharpness as USM does. The Laplacian of Gaussian (LoG) filter is used to
determine the locally adaptive optimal λ value, instead of a fixed λ for HPF.
However, the halo artifacts have not been overcome completely.

In summary, state-of-the-art edge-preserving smoothing techniques cannot be
used to achieve the goal directly, while unsharp masking-based approaches create
overshoot and undershoot artifacts during the sharpening process. In a notable
recent work, Zhang et al. [19] made use of the shift-variant technique to propose
an adaptive bilateral filter (ABF) able to enhance the sharpness and remove the
noise simultaneously. Unfortunately, the introduction of locally adaptive optimal
parameters make this approach infeasible to fully adapt with the existing BLF
acceleration schemes. It must be implemented using the two nested loops brute-
force approach, whose computational complexity is O(|w|2), where |w| is the size
of the filter kernel.

In this paper, we present adaptive guided image filtering (AGF) for image
sharpening and de-noising. Our proposed AGF method is based on GIF and the
shifting technique proposed in [19]. The optimal training parameters produced
from [19] are slightly modified and reused in our method to visually compare
to ABF and OUM. However, we will prove the participation of these adaptive
parameters does not corrupt the acceleration scheme of GIF - the O(N) time
exact algorithm can still be applied to achieve the speed up. Experiments show
the results produced from our method are superior to those produced from USM
and OUM and comparable to ABF filtered results.

The remainder of this paper is organized as follows. Section 2 presents the
connection between bilateral filter and guided image filter. Section 3 examines
the adaptive bilateral filter with the shift-variant technique and adaptive optimal
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parameters. Section 4 presents the adaptive guided image filtering using the
shift-variant technique. Section 5 presents the experimental results to compare
our method to methods from the literature. Finally, this paper is drawn to a
conclusion and future work outlined in Section 6.

2 Bilateral and Guided Image Filtering

In this section, we present the relationship between BLF and GIF in terms of
the filter kernel. These two edge-preserving smoothing techniques play a central
role in ABF and our proposed AGF.

2.1 Bilateral Filtering

As we briefly mentioned above, BLF is widely used due to its appealing char-
acteristics. The name bilateral filter was first termed in [17] based on the work
[1,16]. It is a non-iterative, non-linear filter that smooths low gradient regions,
while preserving strong edges. Each output pixel is computed as a weighted mean
of its neighbors. The weight is computed based on the spatial domain, like other
linear filters, and on the intensity range domain. Let Ip be the intensity value at
pixel p, wk be the kernel window centered at pixel k, BLF is given by:

BLF (I)p =
1

∑

q∈wk

WBLFpq(I)

∑

q∈wk

WBLFpq(I)Iq (1)

where the division term normalizes the weights sum to 1 and the kernel weights
function WBLFpq(I) can be expressed by:

WBLFpq(I) = exp

(

−‖p − q‖2

2σ2
s

)

exp

(

−|Ip − Iq|2
2σ2

r

)

(2)

where the standard deviations parameters σs and σr control the decrement of
weights in the spatial and intensity range domains, respectively. Each domain
is represented by a Gaussian function. The spatial domain gives higher weight
to pixels closer to the center pixel, whilst lower weight is assigned to distant
pixels. Correspondingly, the same rule can be applied to the intensity range
domain. Higher or lower weight will be assigned to the pixels that are similar
to or different from the center pixel in terms of intensity value. The degree of
smoothing can be adjusted by changing the value of σr. In most applications, this
value must be sufficiently small to avoid filtering meaningful features, because
BLF becomes equivalent to the Gaussian filter when σr increases.

Excessive time consumption is one of BLF’s disadvantages, although it is
efficient to implement. The brute-force approach consists of two nested loops.
The computational complexity is O(|w|2), where |w| is the size of the spatial
domain. Studies have investigated reducing the time-taken [5,7,11,13]. The main
concepts of these acceleration schemes can be found in [12]. Notably, the fast
approximation approach proposed in [11] has been proved to be a very useful
technique. It has been applied to a variety of bilateral-based applications [12].
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2.2 Guided Image Filtering

He et al. [9] proposed GIF to overcome the gradient reversal artifacts occurring,
using BLF in detail manipulation technique that is not mentioned in this paper.
Instead, we focus on its ability of edge-preserving and fast implementation. It
has been analyzed and proved that GIF shares the good edge-preserving charac-
teristic compared to BLF. Furthermore, its fast and exact linear-time algorithm
outperforms BLF in terms of computational complexity.

The filtering process of GIF is originally done under the guidance of an image
G that can be another image or the input image I itself. It is similar to the joint
bilateral filter [12] which is used to denoise the no-flash image I using the flash
image G. When I and G are identical, joint bilateral filter becomes bilateral
filter naturally. We first express GIF in terms of the filter kernel to establish the
connection between BLF and GIF. Let Ip and Gp be the intensity value at pixel
p of the input and guided image, wk be the kernel window centered at pixel k,
to be consistent with BLF. GIF is then formulated by:

GIF (I)p =
1

∑

q∈wk

WGIFpq(G)

∑

q∈wk

WGIFpq(G)Iq (3)

where the kernel weights function WGIFpq(G) can be expressed by:

WGIFpq(G) =
1

|w|2
∑

k:(p,q)∈wk

(

1 +
(Gp − μk) (Gq − μk)

σ2
k + ε

)

(4)

where μk and σ2
k are the mean and variance of guided image G in local window

wk, |w| is the number of pixels in this window. The key to understanding the
edge-preserving ability of GIF lies in the term 1+[(Gp − μk) (Gq − μk)]

/(
σ2

k + ε
)

in this equation. When both Gp and Gq are concurrently on the same side of
an edge (smaller or larger than the mean), the weight assigned to pixel q is
large. Conversely, a small weight will be assigned to pixel q when they are on
different sides (one is smaller and one is larger than the mean). Some further
computations in [9] confirm the normalization term in equation (3) equals 1. The
filter kernel of GIF can be shortened as follows:

GIF (I)p =
∑

q∈wk

WGIFpq(G)Iq (5)

The degree of smoothing of GIF is adjusted via parameter ε. The larger the
value of ε is, the smoother the filtered image will be. It plays an equivalent role
to σr in BLF. Some further experiment and demonstration in [9] prove that BLF
and GIF yield approximately equivalent smoothing results, by setting ε = σ2

r

in the normalized [0; 1] intensity range value. Of course, the guided image G is
identical to the input image I in this relation. This property is crucial, because
it is going to be used to convert the optimal parameters of ABF to our proposed
AGF, as shown in Section 4.
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The O(N) exact algorithm of GIF is performed by applying a chain of box
filters using the O(N) time integral image technique [6]. The linear translation-
variant takes the place of the filter kernel (4) when computing this fast and exact
linear-time algorithm. We will discuss this issue in more detail in Section 4.2.

3 Adaptive Bilateral Filtering

In this section, we examine ABF for sharpness enhancement and noise removal.
We mainly focus on the shift-variant technique, because it will be applied to our
method. This method was proposed in [19] based on the work [18]. The main
differences of ABF compared to BLF is the introduction of the shifting technique
and locally adaptive optimal parameters. These modifications make ABF out-
performs conventional BLF in terms of image sharpening and de-noising. The
filter kernel and weighting function of ABF are expressed by:

ABF (I)p =
1

∑

q∈wk

WABFpq(I)

∑

q∈wk

WABFpq(I)Iq (6)

WABFpq(I) = exp

(

−‖p − q‖2

2σ2
s

)

exp

(

−|(Ip + ξp) − Iq|2
2σ2

r

)

(7)

where ξp is the introduced offset that enables ABF to sharpen the image. The
näive strategy for choosing this value is guided by:

ξp =

⎧
⎨

⎩

MAX(wk) − Ip if Δp > 0
MIN(wk) − Ip if Δp < 0

0 if Δp = 0
(8)

where Δp = Ip − μk is the intensity difference between pixel p and the mean of
local window wk. While MAX(wk) and MIN(wk) are the maximum and minimum
values of local window wk, respectively.

This strategy is due to the histogram analysis, as shown in Fig. 1. For an
input image shown in Fig. 1(a), the histogram and 3-D visualization of its en-
larged window (Fig. 1(b)) are shown in Fig. 1(c) and 1(d), respectively. For the
conventional BLF, the intensity range domain normally computes the affinities
between the center pixel p and its neighbors q. This center value Ip is represented
by the dotted-red line in the histogram. Thus, the slope of the edge in the fil-
tered output is only just preserved, but not sharpened. The second row of Fig.
1 represents the corresponding conventional BLF output. In contrast, the edge
is extremely enhanced by applying ABF with the näive offset choosing strategy.
The center value Ip has been shifted to MAX(wk) (red line), because its intensity
value (dotted-red line) is larger than the mean μk (green line). However, as we
can see in the third row, the aliasing effect and unexpected outliers occur in the
sharpened output.

Zhang et al. proposed a more reliable strategy for choosing offset value to
overcome this problem. They estimated both the offset ξ and standard deviation
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(a) Input (b) Enlarged (c) Histogram (d) 3D Visualization

(e) BLF (f) Enlarged (g) Histogram (h) 3D Visualization

(i) Näive ABF (j) Enlarged (k) Histogram (l) 3D Visualization

Fig. 1. Illustration of the effect of ABF (σs = 1.0, σr = 20) with the näive offset
choosing strategy compared to conventional BLF (σs = 1.0, σr = 20)

σr of the intensity range domain via a training procedure. Given the N sets of
training images, where each set S consists of a high-quality original image I, a
degraded image J and its restored output Ĵ , the optimal parameters are obtained
by solving the following minimum mean squared error estimation problem:

{
ξ∗i , σ∗

r,i

}
= arg min

{ξi,σr,i}

N∑

n=1

∥
∥
∥In,p − Ĵn,p

∥
∥
∥

2

S(n)
(9)

where i = 1, 2, . . . , T is the pixel classified number obtained by applying a 9× 9
Laplacian of Gaussian filter (LoG) with σLoG = 1.5. The resultant parameters
are locally adaptive, making ABF more robust. Zhang et al. [19] show how to
find these parameters; we refer the reader to their paper for further details.

The main concern when applying ABF with optimal parameters is the large
computational cost of its brute-force implementation. The standard deviation
σr must be fixed in order to accelerate it using the method [11]. Otherwise,
it will degrade the 3-D convolution model of method [11] when applying both
adaptive offset and standard deviation parameters. Our proposed AGF with the
use of these optimal parameters can achieve comparable results to ABF, while
still keeping the generality of the linear translation-variant of the GIF. That is,
the exact and linear-time algorithm is easily applied to achieve the acceleration.
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4 Proposed Adaptive Guided Image Filtering for Image
Sharpening and De-noising

4.1 Proposed Adaptive Guided Image Filtering

In this section, we present our proposed method using the shifting technique.
As we have seen when we analyzed the relationship between BLF and GIF in
terms of the filter kernel in Section 2, the main difference between them lies
in their weighting functions of the filter kernel, as shown in equation (2) and
(4). However, the intensity range domain of BLF and kernel function of GIF
are similar in principle, because each of them takes the intensity value of center
pixel p, local neighbors q and a smoothing parameter (σr in BLF, ε in GIF) in
the computation process.

This is based on the shifting technique of ABF, in which the offset ξp is added
to the intensity value of center pixel p in the intensity range domain of BLF.
The same strategy is applied to our proposed AGF - the offset is added to the
intensity value of center pixel p in the kernel weights function of GIF. Formally,
the filter kernel and weighting function of our proposed AGF are given by:

AGF (I)p =
∑

q∈wk

WAGFpq(G)Iq (10)

WAGFpq(G) =
1

|w|2
∑

k:(p,q)∈wk

(

1 +

((
Gp + ξ′p

)− μk

)
(Gq − μk)

σ2
k + ε

)

(11)

where ξ′p is the added offset and ε is the smoothing parameter. The näive offset
choosing strategy is also applied to our proposed AGF, as does ABF. That is:

ξ′p =

⎧
⎨

⎩

MAX(wk) − Gp if Δ′
p > 0

MIN(wk) − Gp if Δ′
p < 0

0 if Δ′
p = 0

(12)

where the intensity difference is defined by Δ′
p = Gp − μk.

The same histogram analysis is applied to GIF and our proposed AGF, as
shown in Fig. 2. GIF only preserves the edges during the smoothing process,
while the sharpened result produced from our proposed AGF with the näive
offset choosing strategy contains the aliasing effect and unexpected outliers, as
did näive ABF. In order to achieve the better result by applying the adaptive
optimal parameters produced from [19], the values of ε in AGF need to be
computed based on the corresponding optimal values of σr in ABF. In Section
2, we showed these two parameters can be converted by the following expression:

ε = σ2
r

/
255 (13)

where both ε and σr are in the range [0; 255] intensity value. Fig. 3 shows the
corresponding offset and converted epsilon values we will use in AGF. The offset
tends to be unchanged. However, to make sure the term Gp + ξ′p is still within
the range [MIN(wk); MAX(wk)], it is constrained by the following equation:
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(a) GIF (b) Enlarged (c) Histogram (d) 3D Visualization

(e) näive AGF (f) Enlarged (g) Histogram (h) 3D Visualization

Fig. 2. Illustration of the effect of our proposed AGF (ε = 1.5686) with the näive offset
choosing strategy compared to conventional GIF (ε = 1.5686)

(a) Offset ξ (b) Epsilon ε

Fig. 3. Optimal offset and converted epsilon correspoding to each LoG class

ξ′p =

⎧
⎨

⎩

MAX(wk) − Gp if Ap > MAX(wk)
MIN(wk) − Gp if Ap < MIN(wk)

ξp otherwise
(14)

where ξp is the optimal offset obtained from [19] and Ap = Gp + ξp. It’s noted
that, each pixel p is classified by the corresponding LoG class number obtained
by applying a LoG filter. The rounded LoG class is limited within the range
[−60; 60] as does ABF.

4.2 Linear Transform Model of AGF

In this section, we present AGF in terms of the linear translation-variant, because
the O(N) time exact algorithm takes advantage of this model to implement it.
First, we will show the linear transform model of GIF, and then apply it to the
proposed AGF. As described in [9], the filtered output Î of GIF is represented
by a linear transform of guided image G within a local window wk centered at
pixel k as follows:

Îp = akGp + bk, ∀p ∈ wk (15)
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where ak and bk are constant linear coefficients determined by solving the opti-
mization problem that seeks to minimize the difference between the output and
input image. Formally, it is expressed by:

E(ak, b) =
∑

p∈wk

(
(akGp + bk − Ip)

2 + εka2
k

)
(16)

where εk is unchanged over the entire image. It controls the degree of smooth-
ing of GIF. These coefficients are formally determined using linear regression
method:

ak =
1
|w|
∑

p∈wk
GpIp − μk Īk

σ2
k + εk

(17)

bk = Īk − akμk (18)

where Īk is the mean of I in wk. To ensure the value of Îp does not vary when
computed in different windows, the final output is computed by:

Îp =

⎛

⎝ 1
|w|

∑

k∈wp

ak

⎞

⎠Gp +

⎛

⎝ 1
|w|

∑

k∈wp

bk

⎞

⎠ (19)

For our proposed AGF, the question is how to include the adaptive optimal
parameters into the linear transform-variant of the GIF. First, we can clearly
see the varying adaptive ε∗ obviously fits well to equation (17) when computing
linear coefficient ak. Second, the function

Îp =

⎛

⎝ 1
|w|

∑

k∈wp

ak

⎞

⎠
(
Gp + ξ′p

)
+

⎛

⎝ 1
|w|

∑

k∈wp

bk

⎞

⎠ (20)

is the linear transform model of AGF with the participation of the adaptive
offset. The appendix presented at the end of this paper shows the correspondence
between this linear transform model and its filter kernel expressed in equation
(10) and (11). Hence, the algorithm can be implemented by applying a chain of
box filters using O(N) integral image technique, as does GIF.

(a) Input text (b) USM (c) OUM (d) ABF (e) Our AGF

Fig. 4. Scanned text image rendered by our proposed AGF and existing methods.
Parameters are configured as follows: (b) USM: r = 5, λ = 4; (c) OUM: r = 5; (d)
ABF: r = 3, σs = 1.0, rLoG = 4; (e) AGF: r = 3, rLoG = 4.
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5 Experimental Results

We evaluate the performance of AGF and existing methods with a scanned text
image and the Lena image. The text image scanned at 600 dpi was obtained
from [19] and cropped due to space limitations. For the text image, as shown in
Fig. 4, the contrast of restored outputs produced from USM and OUM increase;
but visible halos occur around the edges. Conversely, restored texts produced
from ABF and our AGF do not suffer such artifacts, and the contrast is nearly
identical to that of the input image. For the Lena image, the difference between
these methods can be seen more clearly, as shown in Fig. 5. USM produces
visible halos around the edges, and the noise is also significantly enhanced. OUM
reduces noise but suffers from the artifacts. Both ABF and our AGF with the
use of optimal adaptive parameters effectively remove noise and significantly
enhance the sharpness. We used a PC with an AMD Athlon 64 X2 Dual Core
Processor 3800+ 2.00 Ghz to measure the processing time of both AGF and
ABF with a kernel radius r = 5. Our proposed AGF takes about 1.4s to process
a 1-megapixel gray-scale image, while the O(|w|2) time ABF [19] takes about
12.7s to process it.

(a) Input (b) USM (c) OUM (d) ABF (e) Our AGF

(f) Input (g) USM (h) OUM (i) ABF (j) Our AGF

(k) Input (l) USM (m) OUM (n) ABF (o) Our AGF

Fig. 5. Lena image rendered by our proposed AGF and existing methods. Parameters
are configured as follows: (b), (g), (l) USM: r = 5, λ = 4; (c), (h), (m) OUM: r = 5;
(d), (i), (n) ABF: r = 3, σs = 1.0, rLoG = 4; (e), (j), (o) AGF: r = 3, rLoG = 4.
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6 Conclusion

In this paper, we presented an adaptive guided image filtering (AGF) for sharp-
ness enhancement and noise reduction. The proposed method is developed based
on guided image filtering and the shift-variant technique. The relationship be-
tween the conventional bilateral filter and the guided image filter is presented to
convert optimal parameters from ABF to our proposed AGF.

Experiments showed the results produced from our method to be superior
to those produced from unsharp masking-based techniques and comparable to
ABF filtered output. It effectively removes noise and sharpens the edges simul-
taneously, without producing overshoot and undershoot artifacts as the ideal
approach. Our method outperforms ABF in terms of computation cost, where
the computational complexity is O(N) compared to O(|w|2) of ABF.

References

1. Aurich, V., Weule, J.: Non-linear gaussian filters performing edge preserving dif-
fusion. In: Proceedings of the DAGM Symposium, pp. 538–545 (1995)

2. Barash, D.: A Fundamental Relationship Between Bilateral Filtering, Adaptive
Smoothing, and the Nonlinear Diffusion Equation. IEEE Transactions on Pattern
Analysis and Machine Intelligence 24(6), 844–847 (2002)

3. Bilcu, R.C., Vehvilainen, M.: Constrained Unsharp Masking for Image Enhance-
ment. In: Proc. of Intl. Conf. on Image and Signal Processing, pp. 10–19 (2008)

4. Buades, A., Coll, B., Morel, J.M.: The staircasing effect in neighborhood filters
and its solution. IEEE Trans. Image Processing 15(6), 1499–1505 (2006)

5. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the
bilateral grid. ACM Transactions on Graphics 26(3) (2007)

6. Crow, F.C.: Summed-area tables for texture mapping. In: SIGGRAPH (1984)
7. Durand, F., Dorsey, J.: Fast Bilateral Filtering for the Display of High-Dynamic-

Range Images. ACM Transactions on Graphics 21(3), 257–266 (2002)
8. Elad, M.: On the bilateral filter and ways to improve it. IEEE Transactions on

Image Processing 11(10), 1141–1151 (2002)
9. He, K., Sun, J., Tang, X.: Guided Image Filtering. In: Daniilidis, K., Maragos, P.,

Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg
(2010)

10. Kim, S., Allebach, J.P.: Optimal unsharp mask for image sharpening and noise
removal. Journal of Electronic Imaging 14, 023007-1–023007-13 (2005)

11. Paris, S., Durand, F.: A Fast Approximation of the Bilateral Filter using a Sig-
nal Processing Approach. International Journal of Computer Vision 81(1), 24–52
(2009)

12. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral Filtering: Theory and
Applications. In: Foundations and Trends in Computer Graphics and Vision (2009)

13. Pham, T.Q., Van Vliet, L.J.: Separable bilateral filtering for fast video preprocess-
ing. In: Proceedings of the IEEE Intl. Conf. on Multimedia and Expo (2005)

14. Penora, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639
(1990)



334 C.C. Pham, S.V.U. Ha, and J.W. Jeon

15. Polesel, A., Ramponi, G., Mathews, V.G.: Image Enhancement via Addaptive Un-
sharp Masking. IEEE Trans. Image Processing 9(3), 505–510 (2000)

16. Smith, S.M., Brady, J.M.: SUSAN - A new approach to low level image processing.
International Journal of Computer Vision 23(1), 45–78 (1997)

17. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Pro-
ceedings of the IEEE Intl. Conf. on Computer Vision (ICCV), pp. 839–846 (1998)

18. Zhang, B., Allebach, J.P.: Adaptive Bilateral Filter for Sharpness Enhancement
and Noise Removal. In: Proc. Intl. Conf. on Image Processing (ICIP), vol. 4, pp.
417–420 (2007)

19. Zhang, B., Allebach, J.P.: Adaptive Bilateral Filter for Sharpness Enhancement
and Noise Removal. IEEE Transactions on Image Processing 17(5), 664–678 (2008)

Appendix: Derivative of the AGF Filter Kernel

This is based on the proof that shows the filter kernel of GIF corresponds to its
linear translation-variant in [9], we shortly present the correspondence between
the filter kernel and linear transform model of AGF with the introduction of
optimal offset ξ∗ and ε∗ in this part.

First, we rewrite equation (10) by Îp =
∑

q∈wk
WAGFpq(G)Iq . So, the filter

kernel WAGFpq(G) is computed by taking the partial derivative of Îp with respect
to Iq. Formally, it is expressed by:

WAGFpq(G) =
∂Îp

∂Iq
(21)

Replacing bk in (20) by (18), we have:

Îp =
1
|w|

∑

k∈wp

[
ak

((
Gp + ξ′p

)− μk

)
+ Īk

]
(22)

So, the partial derivative of Îp with respect to Iq is formulated by:

∂Îp

∂Iq
=

1
|w|

∑

k∈wp

[
∂ak

∂Iq

((
Gp + ξ′p

)− μk

)
+

∂Īk

∂Iq

]

(23)

From [9], we already had:

∂ak

∂Iq
=

1
σ2

k + εk

(
1
|w|Gq − 1

|w|μk

)

δk∈wq (24)

∂Īk

∂Iq
=

1
|w|δq∈wk

=
1
|w|δk∈wq (25)

where δq∈wk
equals 1 when q is in wk, and equals 0 otherwise.

Placing (24) and (25) into (23), we get:

∂Îp

∂Iq
=

1
|w|2

∑

k:(p,q)∈wk

(

1 +

((
Gp + ξ′p

)− μk

)
(Gq − μk)

σ2
k + εk

)

(26)

This is exactly the filter kernel WAGFpq(G) that we expressed in equation (11).
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