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In this paper, an adaptive H∞ control scheme is developed to study the anti-
synchronization behavior of time-delayed chaotic neural networks with unknown parame-
ters. This adaptive H∞ anti-synchronization controller is designed based on Lyapunov-
Krasovskii theory and an analytic expression of the controller with its adaptive laws of
parameters is shown. The proposed synchronization method guarantees the asymptotical
anti-synchronization of drive and response systems. Furthermore, this method reduces the
effect of external disturbance to an H∞ norm constraint. The proposed controller can be
obtained by solving a linear matrix inequality (LMI) problem. An illustrative example is
given to demonstrate the effectiveness of the proposed method.

Subject Index: 044, 055

§1. Introduction

Synchronization is a fundamental phenomenon that enables coherent behavior in
coupled dynamical systems. Since the discovery of chaos synchronization by Pecora
and Carroll,1) there have been tremendous interests in studying the synchronization
of various chaotic systems. It has been widely explored in a variety of fields including
physical, chemical and ecological systems.2) Another interesting phenomenon dis-
covered was the anti-synchronization, which is noticeable in periodic oscillators. The
anti-synchronization, which is the vanishing of the sum of the relevant state variables
of synchronized systems, has been investigated both experimentally and theoretically
in many physical systems.3)–7) A recent study of the anti-synchronization phenom-
enon in non-equilibrium systems suggests that the anti-synchronization could be
exploited as a technique for particle separation in a mixture of interacting parti-
cles.7) There have been trials on applying some control methods to anti-synchronize
chaotic systems. In 5), a linear controller was constructed for anti-synchronizing
coupled identical chaotic systems. Nonlinear anti-synchronization controllers for
nonlinear gyros and non-identical chaotic ratchets were proposed in 6) and 7), re-
spectively. Recently, Al-sawalha and Noorania8) constructed nonlinear controllers
for anti-synchronization between two identical and different chaotic systems.

Time-delay often appears in many physical systems such as aircraft, chemical,
and biological systems. Unlike ordinary differential equations, time-delayed systems
are infinite dimensional in nature and time-delay is, in many cases, a source of insta-
bility. The stability issue and the performance of time-delayed systems are, therefore,
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1392 C. K. Ahn

both of theoretical and practical importance. Since Mackey and Glass9) first found
chaos in time-delay system, there has been increasing interest in time-delay chaotic
systems.10),11) In this regard, some control methods, such as guaranteed cost con-
trol,12),13) delayed feedback control,14) neural network approach,15) and impulsive
control,16),17) were proposed for synchronizing time-delayed chaotic systems.

In real physical systems, one is faced with model uncertainties and a lack of
statistical information on the signals. This had led in recent years to an inter-
est in mini-max control, with the belief that H∞ control is more robust and less
sensitive to disturbance variances and model uncertainties.18) In order to reduce
the effect of the disturbance, Ahn19) firstly adopted the H∞ control concept18) for
the anti-synchronization problem of chaotic systems. In this work, the H∞ anti-
synchronization between the drive and response systems is based on the known sys-
tem parameters. But, in practical engineering situations, parameters are probably
unknown and may change from time to time. When chaotic systems have some
unknown parameters, it is generally difficult to anti-synchronize the chaotic sys-
tems. In this case, it is well known that the adaptive control scheme is an effective
method for the chaos anti-synchronization. Thus, knowledge of the adaptive anti-
synchronization for chaotic systems with unknown parameters is of considerable
practical importance. Recently, controllers for the adaptive anti-synchronization
were proposed in 20) and 21). However, these works were restricted to chaotic sys-
tems without external disturbances and time-delays. To the best of our knowledge,
for the adaptive H∞ anti-synchronization of chaotic systems with both external dis-
turbances and time-delays, there is no result in the literature so far, which still
remains open and challenging.

Motivated by the above discussion, our main aim in this paper is to shorten this
gap by investigating the adaptive H∞ anti-synchronization problem of chaotic neural
networks with external disturbance and time-delay. A new controller with its adap-
tive laws of unknown parameters for the adaptive H∞ anti-synchronization of time-
delayed chaotic neural networks is proposed on the basis of Lyapunov-Krasovskii
method and linear matrix inequality (LMI) approach. This controller is a new con-
tribution to the topic of chaos anti-synchronization. The proposed controller can be
obtained by solving the LMI problem. The LMI problem can be solved efficiently by
using recently developed convex optimization algorithms.22)

This paper is organized as follows. In §2, we formulate the problem. In §3, an
LMI problem for the adaptive H∞ anti-synchronization of delayed chaotic neural
networks is proposed. In §4, a numerical example is given, and finally, conclusions
are presented in §5.

§2. Problem formulation

Consider a class of uncertain time-delayed chaotic neural networks

ẋ(t) = Ax(t) + Āx(t − τ) + Bf(x(t)) + B̄g(x(t − τ))
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Adaptive H∞ Anti-Synchronization 1393

+
p∑

k=1

Φk(x(t))θk +
q∑

l=1

Ψl(x(t − τ))φl, (2.1)

where x(t) ∈ Rn is the state vector, τ > 0 is the time-delay, A ∈ Rn×n is the
self-feedback matrix, Ā ∈ Rn×n is the delayed self-feedback matrix, B ∈ Rn×n is
the connection weight matrix, B̄ ∈ Rn×n is the delayed connection weight matrix,
Φk(x(t)) (k = 1, . . . , p) : Rn → Rn×r and Ψl(x(t)) (l = 1, . . . , q) : Rn → Rn×s are
nonlinear function matrices, and θk ∈ Rr (k = 1, . . . , p) and φl ∈ Rs (l = 1, . . . , q)
represent the unknown constant parameter vectors. f(x(t)) : Rn → Rn and g(x(t)) :
Rn → Rn are activation function vectors satisfying the global Lipschitz conditions
with Lipschitz constants Lf > 0 and Lg > 0:

||f(x(t)) − f(y(t))|| ≤ Lf ||x(t) − y(t)||, ∀x(t), y(t) ∈ Rn, (2.2)
||g(x(t))− g(y(t))|| ≤ Lg||x(t) − y(t)||, ∀x(t), y(t) ∈ Rn. (2.3)

The system (2.1) is considered as a drive system. The anti-synchronization problem
of system (2.1) is considered by using the drive-response configuration. According
to the drive-response concept, the controlled response system is given by

˙̂x(t) = Ax̂(t) + Āx̂(t − τ) + Bf(x̂(t)) + B̄g(x̂(t − τ)) + u(t) + Gd(t), (2.4)

where x̂(t) ∈ Rn is the state vector of the response system, u(t) ∈ Rn is the control
input, d(t) ∈ Rk is the external disturbance, and G ∈ Rn×k is a known constant
matrix. Define the anti-synchronization error e(t) = x̂(t)+x(t). Then we obtain the
anti-synchronization error system

ė(t) = Ae(t) + Āe(t − τ) + B(f(x̂(t)) + f(x(t))) + B̄(g(x̂(t − τ)) + g(x(t − τ)))

+
p∑

k=1

Φk(x(t))θk +
q∑

l=1

Ψl(x(t − τ))φl + u(t) + Gd(t). (2.5)

Throughout this paper, we define that θ̂k(t) (k = 1, . . . , p) and φ̂l(t) (l = 1, . . . , q)
are the estimate values of θk and φl, respectively.
Definition 1. (Adaptive H∞ anti-synchronization) With zero initial condition and
a given level γ > 0, the error system (2.5) is adaptively H∞ anti-synchronized if the
anti-synchronization error e(t) satisfies∫ ∞

0
eT (t)Se(t)dt < γ2

∫ ∞

0
dT (t)d(t)dt, (2.6)

under the control input u(t) with the adaptive laws θ̂k(t) and φ̂l(t) (k = 1, . . . , p, l =
1, . . . , q), where S is a positive symmetric matrix. The parameter γ is called the H∞
norm bound or the disturbance attenuation level.
Definition 2. (Adaptive asymptotical anti-synchronization) The error system (2.5)
is adaptively asymptotically anti-synchronized if the anti-synchronization error e(t)
satisfies

lim
t→∞ e(t) = 0 (2.7)
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1394 C. K. Ahn

under the control input u(t) with the adaptive laws θ̂k(t) and φ̂l(t) (k = 1, . . . , p, l =
1, . . . , q).
Remark 1. The H∞ norm18), 19) is defined as

‖Ted‖∞ =

√∫ ∞
0 eT (t)Se(t)dt√∫ ∞
0 dT (t)d(t)dt

,

where Ted is a transfer function matrix from d(t) to e(t). For a given level γ > 0,
‖Ted‖∞ < γ can be restated in the equivalent form (2.6). If we define

H(t) =

∫ t
0 eT (σ)Se(σ)dσ∫ t
0 dT (σ)d(σ)dσ

, (2.8)

the relation (2.6) can be represented by

H(∞) < γ2. (2.9)

In §4, through the plot of H(t) versus time, the relation (2.9) is verified.
The purpose of this paper is to design the controller u(t) with the adaptive

laws θ̂k(t) and φ̂l(t) (k = 1, . . . , p, l = 1, . . . , q) guaranteeing the adaptive H∞
anti-synchronization if there exists the external disturbance d(t). In addition, the
controller u(t) with the adaptive laws θ̂k(t) and φ̂l(t) will be shown to guarantee
the adaptive asymptotical anti-synchronization when the external disturbance d(t)
disappears.

§3. Main results

In this section, we design the adaptive H∞ anti-synchronization controller for
uncertain time-delayed chaotic neural networks. The following theorem presents the
LMI problem for achieving the adaptive H∞ anti-synchronization.
Theorem 1. For given γ > 0 and S = ST > 0, if there exist P = P T > 0,
Q = QT > 0, R = RT > 0, W = W T > 0, and M such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[1, 1] PĀ W PB PB̄ PG I 0 I
ĀT P −R −W 0 0 0 0 I 0
W −W − 1

τ Q 0 0 0 0 0 0
BT P 0 0 −I 0 0 0 0 0
B̄T P 0 0 0 −I 0 0 0 0
GT P 0 0 0 0 −γ2I 0 0 0

I 0 0 0 0 0 − 1
L2

f
I 0 0

0 I 0 0 0 0 0 − 1
L2

g
I 0

I 0 0 0 0 0 0 0 −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.1)

where

[1, 1] = AT P + PA + M + MT + R + τQ,
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Adaptive H∞ Anti-Synchronization 1395

then the adaptive H∞ anti-synchronization for time-delayed chaotic neural networks
is achieved under the control input

u(t) = P−1M(x̂(t) + x(t)) −
p∑

k=1

Φk(x(t))θ̂k(t) −
q∑

l=1

Ψl(x(t − τ))φ̂l(t) (3.2)

and the adaptive laws

˙̂
θk(t) = ΓΦT

k (x(t))P (x̂(t) + x(t)), (k = 1, . . . , p) (3.3)
˙̂
φl(t) = ΥΨT

l (x(t − τ))P (x̂(t) + x(t)), (l = 1, . . . , q) (3.4)

where Γ and Υ are positive definite matrices for design.
Proof. The closed-loop anti-synchronization error system with the control input
u(t) = K(x̂(t)+x(t))−∑p

k=1 Φk(x(t))θ̂k(t)−
∑q

l=1 Ψl(x(t−τ))φ̂l(t), where K ∈ Rn×n

is the gain matrix of the controller, can be written as

ė(t) = (A + K)e(t) + Āe(t − τ) + B(f(x̂(t)) + f(x(t))) + B̄(g(x̂(t − τ))

+ g(x(t − τ))) −
p∑

k=1

Φk(x(t))θ̃k(t) −
q∑

l=1

Ψl(x(t − τ))φ̃l(t) + Gd(t), (3.5)

where θ̃k(t) = θ̂k(t) − θk and φ̃l(t) = φ̂l(t) − φl. Consider the following Lyapunov-
Krasovskii functional:

V (t) = eT (t)Pe(t) +
∫ 0

−τ

∫ t

t+β
eT (α)Qe(α)dαdβ +

∫ 0

−τ
eT (t + σ)Re(t + σ)dσ

+
[∫ 0

−τ
e(t + σ)dσ

]T

W

[∫ 0

−τ
e(t + σ)dσ

]
+

p∑
k=1

θ̃T
k (t)Γ−1θ̃k(t)

+
q∑

l=1

φ̃T
l (t)Υ−1φ̃l(t). (3.6)

Its time derivative along the trajectory of (3.5) is

V̇ (t) = ė(t)T Pe(t) + eT (t)P ė(t) + τeT (t)Qe(t)−
∫ t

t−τ
eT (σ)Qe(σ)dσ + e(t)TRe(t)

− eT (t − τ)Re(t − τ) + [e(t) − e(t − τ)]T W

[∫ t

t−τ
e(σ)dσ

]
+

[∫ t

t−τ
e(σ)dσ

]T

× W [e(t) − e(t − τ)] + 2
p∑

k=1

θ̃T
k (t)Γ−1 ˙̂

θk(t) + 2
q∑

l=1

φ̃T
l (t)Υ−1 ˙̂

φl(t)

= eT (t)[AT P + PA + PK + KT P ]e(t) + eT (t)PĀe(t − τ) + eT (t − τ)ĀT Pe(t)

+ e(t)T PGd(t) + dT (t)GT Pe(t) + eT (t)PB(f(x̂(t)) + f(x(t))) + (f(x̂(t))

+ f(x(t)))TBT Pe(t) + eT (t)PB̄(g(x̂(t − τ)) + g(x(t − τ))) + (g(x̂(t − τ))
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1396 C. K. Ahn

+ g(x(t − τ)))T B̄T Pe(t) − 2
p∑

k=1

θ̃T
k (t)ΦT

k (x(t))Pe(t)− 2
q∑

l=1

φ̃T
l (t)ΨT

l (x(t − τ))

× Pe(t) + τeT (t)Qe(t) −
∫ t

t−τ
eT (σ)Qe(σ)dσ + e(t)T Re(t) − eT (t − τ)Re(t − τ)

+ [e(t) − e(t − τ)]T W

[∫ t

t−τ
e(σ)dσ

]
+

[∫ t

t−τ
e(σ)dσ

]T

W [e(t) − e(t − τ)]

+ 2
p∑

k=1

θ̃T
k (t)Γ−1 ˙̂

θk(t) + 2
q∑

l=1

φ̃T
l (t)Υ−1 ˙̂

φl(t). (3.7)

Since the activation function vectors f(x(t)) and g(x(t)) of the Hopfield neural net-
works and the cellular neural networks are odd functions, for each x, y ∈ Rn, it is
easy to have

‖f(x(t)) + f(y(t))‖ ≤ Lf‖x(t) + y(t)‖,
‖g(x(t)) + g(y(t))‖ ≤ Lg‖x(t) + y(t)‖, (3.8)

from the Lipschitz conditions (2.2)–(2.3) of f(x(t)) and g(x(t)). If we use the inequal-
ity XT Y + Y T X ≤ XT ΛX + Y T Λ−1Y , which is valid for any matrices X ∈ Rn×m,
Y ∈ Rn×m, Λ = ΛT > 0, Λ ∈ Rn×n, we have

eT (t)PB(f(x̂(t)) + f(x(t))) + (f(x̂(t)) + f(x(t)))TBT Pe(t)

≤ (f(x̂(t)) + f(x(t)))T (f(x̂(t)) + f(x(t))) + eT (t)PBBT Pe(t)

≤ L2
f (x̂(t) + x(t))T (x̂(t) + x(t)) + eT (t)PBBT Pe(t)

= eT (t)(L2
fI + PBBT P )e(t), (3.9)

eT (t)PB̄(g(x̂(t − τ)) + g(x(t − τ))) + (g(x̂(t − τ)) + g(x(t − τ)))T B̄T Pe(t)

≤ (g(x̂(t − τ)) + g(x(t − τ)))T (g(x̂(t − τ)) + g(x(t − τ))) + eT (t)PB̄B̄T Pe(t)

≤ L2
g(x̂(t − τ) + x(t − τ))T (x̂(t − τ) + x(t − τ)) + eT (t)PB̄B̄T Pe(t)

= L2
ge

T (t − τ)e(t − τ) + eT (t)PB̄B̄T Pe(t), (3.10)

and

e(t)T PGd(t) + dT (t)GT Pe(t) ≤ γ2dT (t)d(t) +
1
γ2

e(t)T PGGT Pe(t). (3.11)

Using (3.9), (3.10) and (3.11), we obtain

V̇ (t) ≤ eT (t)
[
AT P + PA + PK + KT P + L2

fI + PBBT P + PB̄B̄T P +
1
γ2

PGGT P

+ τQ + R

]
e(t) + eT (t)PĀe(t − τ) + eT (t − τ)ĀT Pe(t) + eT (t − τ)

[
L2

gI − R
]

× e(t − τ) −
∫ t

t−τ
eT (σ)Qe(σ)dσ + [e(t) − e(t − τ)]T W

[∫ t

t−τ
e(σ)dσ

]

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/122/6/1391/1852814 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Adaptive H∞ Anti-Synchronization 1397

+
[∫ t

t−τ
e(σ)dσ

]T

W [e(t) − e(t − τ)] + γ2dT (t)d(t) + 2
p∑

k=1

θ̃T
k (t)Γ−1

[ ˙̂
θk(t)

− ΓΦT
k (x(t))Pe(t)

]
+ 2

q∑
l=1

φ̃T
l (t)Υ−1

[ ˙̂
φl(t) − ΥΨT

l (x(t − τ))Pe(t)
]
.

Using the inequality23)

[∫ t

t−τ
e(σ)dσ

]T

Q

[∫ t

t−τ
e(σ)dσ

]
≤ τ

∫ t

t−τ
e(σ)T Qe(σ)dσ, (3.12)

we have

V̇ (t) ≤ eT (t)
[
AT P + PA + PK + KT P + L2

fI + PBBT P + PB̄B̄T P +
1
γ2

PGGT P

+ τQ + R

]
e(t) + eT (t)PĀe(t − τ) + eT (t − τ)ĀT Pe(t) + eT (t − τ)

[
L2

gI − R
]

× e(t − τ) − 1
τ

[∫ t

t−τ
e(σ)dσ

]T

Q

[∫ t

t−τ
e(σ)dσ

]
+ [e(t) − e(t − τ)]T W

×
[∫ t

t−τ
e(σ)dσ

]
+

[∫ t

t−τ
e(σ)dσ

]T

W [e(t) − e(t − τ)] + γ2dT (t)d(t) + 2
p∑

k=1

θ̃T
k (t)

× Γ−1
[ ˙̂
θk(t) − ΓΦT

k (x(t))Pe(t)
]

+ 2
q∑

l=1

φ̃T
l (t)Υ−1

[ ˙̂
φl(t) − ΥΨT

l (x(t − τ))Pe(t)
]

=

⎡
⎣ e(t)

e(t − τ)∫ t
t−τ e(σ)dσ

⎤
⎦

T ⎡
⎣ (1, 1) PĀ W

ĀT P (2, 2) −W
W −W − 1

τ Q

⎤
⎦

⎡
⎣ e(t)

e(t − τ)∫ t
t−τ e(σ)dσ

⎤
⎦ − eT (t)Se(t)

+ γ2dT (t)d(t) + 2
p∑

k=1

θ̃T
k (t)Γ−1

[ ˙̂
θk(t) − ΓΦT

k (x(t))Pe(t)
]

+ 2
q∑

l=1

φ̃T
l (t)Υ−1

[ ˙̂
φl(t)

− ΥΨT
l (x(t − τ))Pe(t)

]
,

where

(1, 1) = AT P + PA + PK + KT P + L2
fI + PBBT P + PB̄B̄T P +

1
γ2

PGGT P

+ S + τQ + R,

(2, 2) = L2
gI − R.

If the adaptive laws (3.3)–(3.4) are used and the following matrix inequality is sat-
isfied ⎡

⎣ (1, 1) PĀ W
ĀT P (2, 2) −W
W −W − 1

τ Q

⎤
⎦ < 0, (3.13)
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1398 C. K. Ahn

we have

V̇ (t) < −eT (t)Se(t) + γ2dT (t)d(t). (3.14)

Integrating both sides of (3.14) from 0 to ∞ gives

V (∞) − V (0) < −
∫ ∞

0
eT (t)Se(t)dt + γ2

∫ ∞

0
dT (t)d(t)dt. (3.15)

Since V (∞) ≥ 0 and V (0) = 0, we have the relation (2.6). From Schur complement,
the matrix inequality (3.13) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{1, 1} PĀ W PB PB̄ PG I 0 I
ĀT P −R −W 0 0 0 0 I 0
W −W − 1

τ Q 0 0 0 0 0 0
BT P 0 0 −I 0 0 0 0 0
B̄T P 0 0 0 −I 0 0 0 0
GT P 0 0 0 0 −γ2I 0 0 0

I 0 0 0 0 0 − 1
L2

f
I 0 0

0 I 0 0 0 0 0 − 1
L2

g
I 0

I 0 0 0 0 0 0 0 −S−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (3.16)

where

{1, 1} = AT P + PA + PK + KT P + R + τQ.

If we let M = PK, (3.16) is equivalently changed into the LMI (3.1). Then the gain
matrix of the control input u(t) is given by K = P−1M . This completes the proof.

Remark 2. Various efficient convex optimization algorithms can be used to check
whether the LMI (3.1) is feasible. In this paper, in order to solve the LMI, we utilize
MATLAB LMI Control Toolbox ,24) which implements state-of- the-art interior-point
algorithms.
Corollary 1. Without the external disturbance, if we use the control input (3.2)
and the adaptive laws (3.3)–(3.4), the adaptive asymptotical anti-synchronization is
obtained.
Proof. When d(t) = 0, we obtain

V̇ (t) < −eT (t)Se(t) ≤ 0 (3.17)

from (3.14). This guarantees

lim
t→∞ e(t) = 0 (3.18)

from Lyapunov-Krasovskii theory. This completes the proof.
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Fig. 1. The plot of H(t) versus time.

§4. Numerical example

Consider the following time-delayed chaotic Hopfield neural network:11)

[
ẋ1(t)
ẋ2(t)

]
=

[ −1 0
0 −1

] [
x1(t)
x2(t)

]
+

[
2 −κ1

−5 1.5

] [
tanh(x1(t))
tanh(x2(t))

]

+
[ −1.5 −0.1

−κ2 −1

] [
tanh(x1(t − 1))
tanh(x2(t − 1))

]
, (4.1)

where xi(t) (i = 1, 2) is the state variable of the neural network (4.1). Parameters
κ1 and κ2 are assumed unknown. The neural network (4.1) is rewritten as

ẋ(t) = Ax(t) + Āx(t − 1) + Bf(x(t)) + B̄g(x(t − 1)) + Φ1(x(t))θ1

+ Ψ1(x(t − 1))φ1, (4.2)

where

A =
[ −1 0

0 −1

]
, Ā =

[
0 0
0 0

]
, B =

[
2 0
−5 1.5

]
, B̄ =

[ −1.5 −0.1
0 −1

]
,

f(x(t)) =
[

tanh(x1(t))
tanh(x2(t))

]
, g(x(t − 1)) =

[
tanh(x1(t − 1))
tanh(x2(t − 1))

]
, θ1 = κ1, φ1 = κ2,

Φ1(x(t)) =
[ − tanh(x2(t))

0

]
, Ψ1(x(t − 1)) =

[
0

− tanh(x1(t − 1))

]
.

For the numerical simulation, we use the following parameters:

κ1 = 0.1, κ2 = 0.2, Γ = 50, Υ = 200, Lf = Lg = 1, G =
[

1
1

]
, S =

[
1 0
0 1

]
.
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Fig. 2. State trajectories.

For the design objective (2.6), let the H∞ performance be specified by γ = 0.2.
Solving the LMI (3.1) by the convex optimization technique of MATLAB software
gives

P =
[

0.7503 −0.0248
−0.0248 0.5179

]
, M =

[ −49.1440 −2.5296
−0.9283 −47.5180

]
.

Figure 1 shows the plot of H(t) versus time when d(t) = sin(20t). Figure 1 verifies
H(∞) < γ2 = 0.04. This means that the H∞ norm from the external disturbance
d(t) to the anti-synchronization error e(t) is reduced within the H∞ norm bound
γ. Figure 2 shows state trajectories for drive and response systems when the initial
conditions are given by[

x1(0)
x2(0)

]
=

[
2.4
3.6

]
,

[
x̂1(0)
x̂2(0)

]
=

[ −1.6
−0.8

]
, θ̂1(0) = 1, φ̂1(0) = 0.5, (4.3)

and the external disturbance d(t) is given by

d(t) =
{

w(t), 0 ≤ t ≤ 100,
0, otherwise,

where w(t) means a Gaussian noise with mean 0 and variance 1. The anti-
synchronization error between drive and response systems is given in Fig. 3. It shows
that the proposed method reduces the effect of the external disturbance d(t) on the
anti-synchronization error e(t). In addition, it is shown that the anti-synchronization
error e(t) goes to zero after the external disturbance d(t) disappears. The estimates
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Fig. 3. Anti-synchronization errors.

Fig. 4. The estimate value θ̂1(t) of parameter θ1.

θ̂1(t) and φ̂1(t) of the unknown parameters θ1 and φ1 are illustrated in Figs. 4 and 5,
respectively. These figures show that the estimates θ̂1(t) and φ̂1(t) approach rapidly
to the target values of 0.1 and 0.2, respectively.
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Fig. 5. The estimate value φ̂1(t) of parameter φ1.

§5. Conclusion

In this paper, a new adaptive H∞ anti-synchronization scheme for uncertain
time-delayed chaotic neural networks is proposed. On the basis of Lyapunov-
Krasovskii theory and LMI approach, the proposed controller is designed and an
analytic expression of the controller with its adaptive laws of unknown parameters
is shown. A simulation example is given to show the effectiveness of the proposed
method. It is expected that the proposed method can be extended to studying adap-
tive H∞ anti-synchronization problems for chaotic neural networks with time-varying
and distributed delays.
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