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ADAPTIVE HARD-THRESHOLDING FOR LINEAR INVERSE PROBLEMS

Paul Rochet1

Abstract. A number of regularization methods for discrete inverse problems consist in considering
weighted versions of the usual least square solution. These filter methods are generally restricted to
monotonic transformations, e.g. the Tikhonov regularization or the spectral cut-off. However, in several
cases, non-monotonic sequences of filters may appear more appropriate. In this paper, we study a
hard-thresholding regularization method that extends the spectral cut-off procedure to non-monotonic
sequences. We provide several oracle inequalities, showing the method to be nearly optimal under mild
assumptions. Contrary to similar methods discussed in the literature, we use here a non-linear threshold
that appears to be adaptive to all degrees of irregularity, whether the problem is mildly or severely
ill-posed. Finally, we extend the method to inverse problems with noisy operator and provide efficiency
results in a conditional framework.
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1. Introduction

We are interested in recovering an unobservable signal x0, based on noisy observations of the image of x0

through a linear operator A. The observation y satisfies the following relation

y(t) = Ax0(t) + ε(t),

where ε is a Gaussian random process representing the noise. This problem is studied in [6,10,12] and in many
applied fields such as medical imaging in [15] or seismography in [16] for instance. When the measured signal
is only available at a finite number of points t1, . . . , tn, the operator A must be replaced by a discrete version
An : x �→ (Ax(t1), . . . , Ax(tn))t, leading to a discrete linear model

y = Anx0 + ε,

with y ∈ R
n (vt denotes the transpose of v). Difficulties in estimating x0 occur when the problem is ill-posed,

in the sense that small perturbations in the observations induce large changes in the solution. This is caused by
an ill-conditioning of the operator An, reflected by a fast decay of its singular values b2i . In such problems, the
least square solution, although having a small bias, is generally inefficient due to a too large variance. Hence,
regularization of the problem is required to improve the estimation. A large number of regularization methods
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are based on considering weighted versions of the least square estimator. The idea is to allocate low weights λi,
or filters, to the least square coefficients that are highly contaminated with noise, thus reducing the variance, at
the cost of increasing the bias at the same time. The most famous filter-based method is arguably the one due
to Tikhonov (see [18]), where a collection of filters is indirectly obtained via a minimization procedure with �2

penalization. Tikhonov filters are entirely determined by a parameter τ that controls the balance between the
minimization of the �2 norm of the estimator and the residual. Another well spread filter method that will be
given a particular attention, is the spectral cut-off discussed in [2,8,9]. One simply considers a truncated version
of the least square solution, where all coefficients corresponding to arbitrarily small eigenvalues are removed.
Thus, spectral cut-off is associated to binary filters λi, equal to 1 if the corresponding eigenvalue bi exceeds in
absolute value a certain threshold τ , and 0 otherwise.

A common feature of spectral cut-off and Tikhonov regularization is the predetermined nature of the fil-
ters λi, defined in each case as a fixed non-decreasing function f(τ, .) of the eigenvalues b2i , and where only the
parameter τ is allowed to depend on the observations. However, in many situations, non-monotonic sequences
of filters may seem to be more appropriate. Actually, optimal values for λi generally depend on both the noise
level, which is determined by the eigenvalue bi, and the component, say xi, of x0 in the direction associated
to bi. A restriction to monotonic collections of filters may turn out to be inefficient in situations where the
coefficients xi are uncorrelated to the singular values of the operator An.

Regularization methods involving more general classes of filters have also been treated in the literature. For
example, the unbiased risk estimation (URE) introduced by Stein in [17] and studied in this context in [6], applies
to arbitrary classes of filters, dealing in particular with non-monotonic collections. However, this approach has
proven inefficient in cases where the set of possible values for the filters grows exponentially with the number
of observations. A suitable alternative is given by the more recent risk hull method discussed in [4], although
the computation of the estimator may require computationally expensive Monte-Carlo procedures.

Here, we focus on the class of unrestricted binary filters λi ∈ {0, 1}, known as projection filters. The compu-
tation of the estimator relies on the choice of a proper set of coefficients, m ⊆ {1, . . . , n}, which increases the
number of possibilities compared to the spectral cut-off. A suitable set m is chosen by a hard-thresholding pro-
cedure on the observations, which results in selecting only the indices i for which the corresponding observation
is greater (in absolute value) than a threshold ci. While most thresholding methods studied in the literature
consider a threshold proportional to the variance (see for instance [1] or [14]), we propose a non-linear threshold
that adapts to all degree of irregularity. We show this method to satisfy a non-asymptotic oracle inequality,
when the oracle is computed in the class of projection filters. Moreover, we show our estimator to nearly achieve
the rate of convergence of the best linear estimator in the maximal class of filters, i.e. when no restriction is
made on λi.

It many actual situations, one may consider that the operator An is not known precisely and only an approx-
imation of it is available. Regularization of inverse problems with approximate operator is studied in [5, 7, 11].
We tackle the problem of estimating x0 in the situation where we observe independently a noisy version b̂i of
each eigenvalue bi. We consider a framework where the observations b̂i are made once and for all, and are thus
seen as non-random. We provide a bound on the conditional risk of the estimator, given the values of b̂i, in the
form of a conditional oracle inequality.

The paper is organized as follows. We introduce the problem in Section 2. We define our estimator in Section 3,
and provide two kinds of oracle inequalities and numerical applications. Section 4 is devoted to an application of
the method to inverse problems with noisy operators. The proofs of our results are postponed to Appendix A.

2. Problem setting

Let (X , ‖.‖) be a Hilbert space and An : X → R
n (n > 2) a linear operator. We tackle the problem of

recovering an unknown signal x0 ∈ X based on the indirect observations

y = Anx0 + ε, (2.1)
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where ε is a Gaussian vector representing the noise. We assume that ε is centered with known covariance
matrix σ2I, where I denotes the identity matrix. We endow R

n with the inner product 〈u, v〉n = 1
nu

tv and
the associated norm ‖.‖n and we note A∗

n : R
n → X the adjoint of An. Let Kn be the kernel of An and K⊥

n

its orthogonal in X which we assume to be of dimension n. The fact that An is surjective ensures that the
observation y provides information in all directions. If this condition is not met, one may simply reduce the
dimension of the image in order to make An surjective.

Let {bi;φi, ψi}i=1,...,n be a singular system for the linear operator An, that is, Anφi = biψi, A∗
nψi = biφi and

b21 ≥ . . . ≥ b2n > 0 are the ordered non-zero eigenvalues of the self-adjoint operator A∗
nAn. The φi’s (resp. ψi’s)

form an orthonormal system of K⊥
n (resp. R

n). Note that due to the discretized nature of the problem, bi, φi, ψi

all depend on n although the dependency is dropped to ease notations.
The efficiency of the estimator relies first of all on the accuracy of the discrete operator An and how “close” it

is to the true value A. The convergence of the estimator toward x0 is subject to the condition that the distance
of x0 to the set K⊥

n tends to 0, which is reflected by a proper asymptotic behavior of the design t1, . . . , tn. This
aspect is not discussed here, we consider a framework where we have no control over the design t1, . . . , tn and
we focus on the convergence of the estimator toward the best approximate solution x†, that is, the orthogonal
projection of x0 onto K⊥

n . Remark that the best approximate solution can also be expressed as the image of Anx0

through the generalized Moore–Penrose inverse operator A†
n = (A∗

nAn)†A∗
n, where (A∗

nAn)† denotes the inverse
of A∗

nAn, restricted to K⊥
n . We refer to [8] for more details.

Searching for a solution in the subspace K⊥
n allows to reduce the number of regressors to n. Then, estimat-

ing x† can be made using a classical linear regression framework where the number of regressors is equal to
the dimension of the observation. Decomposing the observation in the singular basis {ψi}i=1,...,n leads to the
following model

yi = bixi + εi, i = 1, . . . , n,

where we set yi = 〈y, ψi〉n, εi = 〈ε, ψi〉n and xi = 〈x0, φi〉. It now suffices to divide each term by the known
singular value bi to observe the coefficient xi, up to a noise term ηi := b−1

i εi. Equivalently, this is obtained
by applying the Moore–Penrose inverse A†

n in the model (2.1). We thus consider the function z = A†
ny ∈ K⊥

n ,
defined as the inverse image of y through An with minimal norm. Identifying z with the vector of its coefficients
zi = b−1

i yi in the basis {φi}i=1,...,n, we obtain

zi = xi + ηi, i = 1, . . . , n. (2.2)

In this model, the noise η = (η1, . . . , ηn)t is Gaussian with diagonal covariance matrix, as we have E(ηiηj) =
σ2

n b
−1
i b−1

j 〈ψi, ψj〉n which is null for all i 
= j and equal to σ2
i := σ2

n b−2
i if i = j. This is an heteroscedastic

sequential model, with the variances σ2
i inversely proportional to the eigenvalues b2i . This representation points

out the effect of the decay of the singular values bi on the noise level, making the problem ill-posed. To
control the noise with a too large variance σ2

i , a solution is to consider weighted versions of z. For some
filter λ = (λ1, . . . , λn)t, note x̂(λ) ∈ K⊥

n the function defined by 〈x̂(λ), φi〉 = λizi for i = 1, . . . , n. Filter-
based methods aim to cancel out the high frequency noises by allocating low weights to the components zi

corresponding to small singular values. A widely used example is the Tikhonov regularization, with weights of
the form λi = (1 + τσ2

i )−1 for some τ > 0. The Tikhonov solution can be expressed as the minimizer of the
functional

‖y −Anx‖2 +
τσ2

n
‖x‖2, x ∈ X ,

which makes the method particularly convenient in cases where the SVD of A∗
nAn or the coefficients zi are not

easily computable. We refer to [3, 18] for further details.
Another common filter-based method is the truncated singular value decomposition or spectral cut-off studied

in [2, 8, 9]. An estimator of x0 is obtained as a truncated version of z, where all coefficients zi corresponding
to arbitrarily small singular values are replaced by 0. This approach can be viewed as a principal component
analysis, for which only the highly explanatory directions are selected. The spectral cut-off estimator is associated
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to filters of the form λi = �{i ≤ k}, where �{.} denotes the indicator function and k is a bandwidth to be
determined. Data-driven methods for selecting suitable values of k are discussed in [3, 4, 9, 19, 20].

A natural way to generalize the spectral cut-off procedure is to enlarge the class of estimators by considering
non-ordered truncated versions of z, as made in [12,13] or [14] (see also examples 1 and 2 in [6]). This approach
reduces to a model selection issue where each model is identified with a set of indices m ⊆ {1, . . . , n}. Precisely,
for m a given model, define x̂m ∈ K⊥

n and xm ∈ K⊥
n as the orthogonal projections of z and x0 respectively onto

Xm := span{φi, i ∈ m}, that is

〈x̂m, φi〉 =
{
zi if i ∈ m,
0 otherwise and 〈xm, φi〉 =

{
xi if i ∈ m,
0 otherwise.

The objective is to find a model m that makes the expected risk E‖x̂m − x0‖2 small. The computation of the
estimator no longer relies on the choice of one parameter k ∈ {1, . . . , n} as for spectral cut-off, but on the choice
of a set of indices m ⊆ {1, . . . , n}, which increases the number of possibilities. In particular, this approach allows
non-monotonic collections of filters that may perform better than decreasing sequences obtained by spectral
cut-off. To see this, write the bias-variance decomposition of the estimator x̂m for a deterministic model m,
E‖x0 − x̂m‖2 = ‖x0 − xm‖2 + E‖xm − x̂m‖2, which follows by

E‖x̂m − x0‖2 = E‖x0 − x†‖2 +
∑
i/∈m

x2
i +

∑
i∈m

σ2
i . (2.3)

In these settings, it appears that in order to minimize the risk, best is to select indices i for which the compo-
nent x2

i is larger than the noise level σ2
i . Thus, a proper choice of filter should reasonably depend on both the

variance σ2
i and the coefficient x2

i . Consequently, the resulting sequence {λi}i=1,...,n has no reason of being a
decreasing function of σ2

i if some coefficients x2
i are large enough to compensate for a large variance.

3. Hard-thresholding regularization

The construction of the projection estimator reduces to finding a proper set m. An optimal value for m
(minimizing the risk) is obtained by keeping small simultaneously the bias term

∑
i/∈m x2

i and the variance term∑
i∈m σ2

i in the expression of the risk E‖x̂m−x0‖2. Following this argument, a minimizer of the risk E‖x̂m−x0‖2

is obtained by selecting only the indices i for which the coefficient x2
i is larger than the noise level σ2

i . An optimal
model is thus given by m∗ :=

{
i : x2

i ≥ σ2
i

}
. The coefficients xi being unknown to the practitioner, the optimal

set m∗ can not be computed in practical cases. For this reason it is referred to as an oracle.
We shall now provide a model m̂ constructed from the available information, that mimics the oracle m∗.

Fixing a threshold on the coefficients xi being impossible, we propose to use a threshold on the coefficients zi.
Precisely, consider the set

m̂ =
{
i : z2

i ≥ 4σ2
i μi

}
=

{
i : y2

i ≥ 4σ2μi

n

}
,

for {μi}i=1,...,n a sequence of positive parameters to be chosen and where we recall that yi = bizi. Obviously,
the behavior of the resulting estimator x̂m̂ relies on the choice of the sequence {μi}i=1,...,n: the larger the μi’s,
the more sparse is x̂m̂. It must be chosen so that the resulting set m̂ contains only the indices i for which the
noise level is small compared to the actual value of xi, but the only knowledge of the observations zi and the
variances σ2

i makes it a difficult task.
A number of thresholding procedures have been studied in the inverse problem literature. In [13], Loubes

proposes a �1-penalization procedure to the inverse problem, corresponding to a soft-thresholding approach with
a threshold on y2

i of the order c log n
n σ2, for some c > 0. In [1], Abramovich and Silverman discuss an approach

based on the decomposition of the observation in a wavelet basis, for which the coefficients can be selected via
a thresholding criterion. Here again, a threshold of the order c log n

n σ2 is suggested. For these two approaches,
the threshold is a linear function of the variance, which with our notations, corresponds to taking a parameter
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μi = c logn that does not depend on the index i. In Theorem 3.1, we discuss the accuracy of using a non-linear
threshold.

3.1. Oracle inequalities

In the definition of m̂, the choice of the parameters μi is crucial. Too large values of μi will result in an
under-adjustment, keeping too few relevant components zi to estimate x0. On the contrary, a small value of μi

increases the probability of selecting a component zi that is highly affected with noise. Thus, it is essential to
find a good balance between these two types of errors.

We introduce the notation κn = supi∈m∗ b−2
i . Remark that the sequence {n−1κn}n∈N is bounded by ‖x0‖2.

Besides, the condition κn = o(n) is actually quite mild, as it occurs for instance in the ideal case where the
SVD of A∗

nAn does not depend on n, or if it converges in a weak sense toward the SVD of A∗A (typically, if
the sequence {bi, φi}n∈N converges in R ×X as n→ ∞, for all i).

For i = 1, . . . , n, we note γi := η2
i /σ

2
i = nε2i /σ

2, which have χ2 distribution with one degree of freedom.
Moreover, we use the notation a ∨ b = max{a, b}.
Theorem 3.1. For θ, β > 0, let μi = 1 ∨ 2β log(θ−1b−2

i ). The estimator x̂m̂ satisfies

E‖x̂m̂ − x0‖2 ≤ ‖xm∗ − x0‖2 +
(
1 + 2

√
1 ∨ 2β log(θ−1κn)

)2 ∑
i∈m∗

σ2
i +

2σ2θβ

n

∑
i/∈m∗

b
2(β−1)
i .

The advantage of the method is that suitable values of θ and β can be chosen prior to the observations,
based only on the degree of ill-posedness, i.e. on the behavior of the singular values b−2

i . In order to control the
residual term, we propose to take θ and β such that

θβ
n∑

i=1

b
2(β−1)
i = o

(
nδ

)
, ∀δ > 0, (3.1)

while θ is chosen sufficiently large to keep the term log(θ−1κn) small. Let us discuss some examples. In the
literature, we usually distinguish three main kinds of inverse problems. The problem can be well-posed, meaning
that the eigenvalues of (A∗

nAn)† are bounded, b−2
i = O(1). In this case, one may take β = 1 and θ ∼ 1/n

(or θ ∼ logn/n), recovering usual thresholds of order logn used in direct problems. If the problem is mildly
ill-posed, i.e. if the singular values grow polynomially, b−2

i = O(i2t) for some t > 0, we propose to take β = 1+ 1
t

and θ ∼ logn yielding

θβ
n∑

i=1

b
2(β−1)
i = O

(
(logn)β+1

)
,

thus satisfying (3.1). Finally, if the inverse problem is severely ill-posed, i.e. if the singular values grow expo-
nentially, b−2

i = O(e2it) for some t > 0, the condition (3.1) is fulfilled for β > 1 and θ ∼ logn. We will show in
Section 3.3 that these parameter values provide adaptive estimators.

The estimator x̂m̂ being built using binary filters λi ∈ {0, 1}, it is natural to measure its efficiency by
comparing its risk to that of the best linear estimator in this class. Nevertheless, we see in the next corollary
that a similar oracle inequality holds if we consider the oracle in the maximal class of filters, that is, allowing
the λi’s to take any real value.

Corollary 3.2. If θ and β are chosen such that (3.1) holds, the estimator x̂m̂ of Theorem 3.1 satisfies for all
δ > 0,

E‖x̂m̂ − x†‖2 ≤ 2
(
1 + 2

√
1 ∨ 2β log(θ−1κn)

)2

inf
λ∈Rn

E‖x̂(λ) − x†‖2 + o
(
n−1+δ

)
.

This result is a straightforward consequence of Lemma A.2 in the Appendix, where it is shown that the oracle
in the class of binary filters λi ∈ {0, 1} achieves the same rate of convergence up to a factor 2, as the best filter
estimator obtained with non-random values of λ. This results points out that the class of unrestricted binary
filters only induces a slight loss of efficiency compared to the maximal class.
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3.2. Comparison with unbiased risk estimation and risk hull method

In a general point of view, the estimator x̂m̂ can be obtained via a minimization procedure, using a BIC-type
criterion for heteroscedastic models,

x̂m̂ = arg min
x∈X

{
‖z − x‖2 + 4

n∑
i=1

σ2
i μi�{〈x, φi〉 
= 0}

}
.

However, expressing the estimator as the solution to a minimization problem does not ease the computation.
The method requires in any case calculation of the SVD of A∗

nAn and the coefficients zi, which may be com-
putationally expensive. On the other hand, the computation of the estimator is simple once the decomposition
of z in the SVD of A∗

nAn is known, as it suffices to compare each coefficient z2
i to the threshold 4σ2

i μi.
Let us compare our approach to general methods dealing with arbitrary classes of filters. First, we discuss

the unbiased risk estimation (URE) introduced in [17] and studied in [6] in the inverse problem framework.
The method constructs an estimator of x0 via the minimization of an unbiased estimate of the risk, over an
arbitrary set Λ of filters. When restricted to the class of projection filters λi ∈ {0, 1}, unbiased risk estimation
reduces to minimizing over the collection M of all subsets of {1, . . . , n}, the criterion

m �→ ‖z − x̂m‖2 + 2
∑
i∈m

σ2
i .

The minimum is achieved for the set m = {i : z2
i ≥ 2σ2

i }, which corresponds to taking μi = 1/2. This choice is
shown to be unadapted to the class of projection filters λi ∈ {0, 1} in Proposition 2 in [6], yielding a residual
term of the order of the constant.

A good alternative to URE is the risk hull method (RHM) discussed in [4]. Rather than considering an
unbiased estimate of the risk, the idea of RHM is to find a function �(λ) that bounds the risk from above,
uniformly over the class Λ of filters. So, let �(.) be such that

E sup
λ∈Λ

{‖x̂(λ) − x†‖2 − �(λ)
} ≤ 0. (3.2)

The estimator is then defined via the minimizer λ̃ of λ �→ �(λ) over Λ. By the previous inequality, we obtain an
upper bound of the risk by

E‖x̂(λ̃) − x†‖2 ≤ E �(λ̃) ≤ min
λ∈Λ

E �(λ).

The risk hull � has to be chosen as small as possible, while still satisfying (3.2), in order to obtain a sharp bound
on the risk of the estimator x̂(λ̃). An analytic form of the minimal risk hull may be difficult to obtain but it
can be computed by Monte-Carlo (see [4]). In the class of projection filters where all filter λ can be canonically
identified with a model m ⊆ M, the objective is to find � : M → R such that

E sup
m∈M

{∑
i/∈m

x2
i +

∑
i∈m

η2
i − �(m)

}
≤ 0.

Although it is not necessarily minimal, convenient is to consider a risk hull of the form �(m) = δ +
∑

i/∈m x2
i +∑

i∈m ci, where δ ≥ 0 is a tolerance term and the ci’s are such that

E sup
m∈M

{∑
i∈m

(η2
i − ci)

}
=

n∑
i=1

E
[
(η2

i − ci)�{η2
i ≥ ci}

] ≤ δ,

in order to recover (3.2). Of course, the true coefficients x2
i are unknown, but they can be replaced by their

unbiased estimates z2
i − σ2

i , as suggested in [4]. It appears that taking ci ∼ c logn σ2
i yields a δ of the order

n−α
∑n

i=1 σ
2
i for some α ≥ 0. On the other hand, adding a term logσ2

i in the expression of ci enables to obtain
a tolerance term δ that does not involve the variances σ2

i (see for instance the proof of Lemma A.1), which
somehow justifies the choice of the threshold used in Theorem 3.1.
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3.3. Simulations

We shall now see numerical applications. We consider an heteroscedastic sequential model,

yi = xi + σiεi, i = 1, . . . , n,

with εi ∼ N (0, 1). This model illustrates the inverse problem, where the observation is expressed via the singular
value decomposition of the operator An. So, the xi’s stand for the coefficients of x0 in the singular basis {φi},
i.e. xi = 〈x0, φi〉. The noises εi are independently drawn from a standard Gaussian distribution. The variance
of the model is determined by the non-decreasing sequence {σ2

i }i=1,...,n which reflects the decay of the spectrum
of AnA

∗
n. For now, we do not need to specify the value of basis {φi}, as it is not directly involved in the model.

Consequently, the function of interest x0 is not fully determined. Nevertheless, this framework covers several
possible values for x0, depending on the underlying value of the operator An.

We calculate the risks of the following statistics.

• x̂m∗ is the optimal linear projection estimator defined in Section 3.2, obtained with the filters λi = �{x2
i ≥

σ2
i };

• x̂∗sco is the best spectral cut-off estimator, obtained with the filters λi = �{i ≤ k∗}, with optimal bandwidth
k∗ ∈ {0, . . . , n};

• x̂∗lin is the best estimator computed with linear thresholds, obtained with the filters λi = �{z2
i ≥ τ∗σ2

i }, with
optimal tuning parameter τ∗ ≥ 0;

• x̂∗th is the estimator of Theorem 3.1 obtained with optimal tuning parameter θ∗;
• x̂m̂ is the estimator of Theorem 3.1 obtained with tuning parameter θ = logn.

For the last two estimators, the value of the parameter β is taken such that
∑n

i=1 b
2(β−1)
i = O(log n) as suggested

in Section 3.1. Precisely, we take β = 1 + t−1 if the problem is mildly ill-posed with degree of ill-posedness t
and we take β = 1.1 if the problem is severely ill-posed. The risks of the estimators are calculated by Monte
Carlo with 10 000 replications of the procedure. We consider two mildly ill-posed situations with a polynomial
growth of the variances, b−2

i � i2 and b−2
i � i3, and a severely ill-posed problem with b−2

i � 2i (for the examples
treated here, the notation b−2

i � ui simply means that b−2
i = cui for some positive constant c). For sake of

objectivity, the coefficients xi are randomly drawn from independent centered Gaussian variables xi ∼ N (0, v2
i ),

with variances v2
i to be made precise. The coefficients xi are drawn once and for all and are treated as non-

random. This means that the risk of an estimator E‖x̂−x0‖2 is to be understood as an expectation conditionally
to the values of the xi’s.

Case 1. The xi’s are drawn beforehand from Gaussian distributions xi ∼ N (0, v2
i ) with vi = 10

i . We consider
two sample sizes n = 50 and n = 200. The risks of the estimator and the oracles are given in the following
tables.

n = 50 b−2
i � i2 b−2

i � i3 b−2
i � 2i

x̂m∗ 13.63 15.20 18.30
x̂∗sco 14.08 15.20 18.30
x̂∗th 15.42 15.28 18.60
x̂∗lin 22.53 16.96 22.54
x̂m̂ 21.17 16.96 21.92

n = 200 b−2
i � i2 b−2

i � i3 b−2
i � 2i

x̂m∗ 9.84 15.80 14.29
x̂∗sco 13.18 15.90 14.29
x̂∗th 12.53 16.60 14.45
x̂∗lin 17.61 18.21 17.94
x̂m̂ 17.79 18.20 17.79

Here, taking vi = 10
i causes an attenuation in the signal corresponding to a decreasing trend of order i−2

in the coefficients x2
i . This results in the function of interest being somehow correlated with the SVD of An,

which makes the spectral cut-off method particularly efficient. We see that the estimator of Theorem 3.1 with
optimal tuning parameter θ∗ nearly achieves the same efficiency as the optimal spectral cut-off estimate. We
remark moreover a gap between the risk of x̂∗th and that of the best linear threshold estimate x̂∗lin. Finally,
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the estimator computed with the arbitrary value θ = logn is rather satisfactory, as it performs as well as the
best linear threshold. These remarks hold for all degrees of ill-posedness and for the two sample sizes.

To illustrate these results, we consider an operator A∗
nAn with eigenfunctions {φ2k = cos(kπ.), φ2k+1 =

sin(kπ.), k ∈ N}, forming an orthogonal system on L
2([−1; 1]). We assume that the coefficients xi are the

decomposition of the signal in this basis. We see in the graphics below a realization of the estimator and the
linear threshold oracle when the problem is mildly ill-posed (b−2

i � i2). The simulations are made both for
n = 50 and n = 200.

n = 50 n = 200

Mildly ill-posed problem: b−2
i � i2, xi ∼ i−1.

On both graphics, we observe that the optimal linear threshold tends to be overly smooth while the non-linear
threshold estimator (here obtained with the arbitrary value θ = logn) matches more the true function. In the
following graphics, we compare realizations of the optimal spectral cut-off and the optimal non-linear threshold
estimator obtained with optimal tuning parameter θ∗.

n = 50 n = 200

Mildly ill-posed problem: b−2
i � i2, xi ∼ i−1.

In this example, the coefficients xi are computed in a way that the sequence {xi} tends to decrease as
the variance σ2

i grows. As a result, the spectral cut-off procedure appears to be very efficient (with optimal
bandwidth) because only the first coefficients are likely to belong in the optimal model m∗. Nevertheless, the
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above graphics show that the non-linear threshold estimator performs roughly as well with optimal tuning
parameter θ∗.

We now consider an example where no condition is imposed on the trend of the sequence {xi}. To do
so, we draw a uniform random permutation ρ(.) on the indices i = 1, . . . , n and we compute the coefficients
xi ∼ N (0, v2

ρ(i)).

Case 2. The xi’s are drawn beforehand from Gaussian distributions xi ∼ N (0, v2
ρ(i)) with vi = 10

i and ρ(.) is a
uniformly drawn permutation on {1, . . . , n}. The risks of the estimator and the oracles are given in the following
table for n = 50.

n = 50 b−2
i � i2 b−2

i � i3 b−2
i � 2i

x̂m∗ 3.59 9.81 16.63
x̂∗sco 8.94 11.21 17.37
x̂∗th 5.41 11.36 18.58
x̂∗lin 5.94 12.89 19.25
x̂m̂ 6.55 11.70 19.48

In this table, we observe a significant difference of efficiency between the spectral cut-off and the threshold
procedure for a low degree of ill-posedness. This difference vanishes as the regularity decreases, as we see that
the risk of the spectral cut-off estimator with optimal bandwidth is roughly equal to that of the non-linear
threshold estimator obtained with optimal value of θ in the cases b−2

i � i3 and b−2
i � 2i. Here again, we observe

that the efficiency of the estimator obtained for θ = logn performs overall as well as the best linear threshold.

b−2
i � i2 b−2

i � i3

Mildly ill-posed problem: xi ∼ ρ(i)−1, n = 50.

In this particular case, the spectral cut-off estimator remains overly smooth with optimal bandwidth, es-
pecially with a low degree of ill-posedness, as we see in the graphics above. The efficiency is increased using
a threshold procedure, even with non-optimal values of the tuning parameter (here again, the estimator is
computed taking θ = logn). We observe that the thresholding procedure becomes roughly as efficient as the
spectral cut-off (with optimal tuning parameters) when the degree of ill-posedness increases, making the last
coefficients xi harder to estimate.
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4. Regularization with unknown operator

We shall now discuss a situation where the operator An is not precisely known and is observed with a noise,
independently from y. This situation is studied in [5, 7] or [11]. As in [5], we assume that the eigenvectors φi

and ψi are known. This seemingly strong assumption is actually met in many situations, for instance if the
problem involves convolution or differential operators which can be decomposed in Fourier basis (see also the
examples in [3]). Thus, only the eigenvalues bi are unknown and we assume they are observed independently
of y, with a centered noise ξi with known variance s2 > 0:

b̂i = bi + ξi, i = 1, . . . , n.

The method discussed in this paper is different according to whether the eigenvalues are known exactly or
observed with a noise. Thus, we need to assume here that s is positive and the known operator framework can
not be seen as a particular case. Moreover, we assume that the ξi’s are independent and satisfy the two following
conditions.

A1. There exist K,α > 0 such that ∀t > 0, ∀i = 1, . . . , n, P(ξ2i /s
2 > t) ≤ Ke−t/α.

A2. There exist C, δ > 0 such that ∀i = 1, . . . , n, min{P(ξi < −δs),P(ξi > δs)} ≥ C.
The condition A1 simply states that the ξi’s have finite exponential moments. The condition A2 is hardly
restrictive, and is fulfilled for instance as soon as the ξi’s are identically distributed. As we shall see in the
sequel, the method requires knowledge of the constant δ (or at least an upper bound for it), but no information
on the constants α, K or C is needed to build the estimator.

Knowing the eigenvectors of A∗
nAn allows us to write the model in the form

yi = bixi + εi, i = 1, . . . , n.

In our framework where the actual eigenvalues bi are unknown, a natural estimator of each component xi is
obtained by z̃i = b̂−1

i yi, provided that b̂i 
= 0. However, it is clear that this estimate is not satisfactory if b̂i
is far from the true value (consider for instance the extreme case where b̂i = 0 or if b̂i and bi are of opposite
signs). Actually, the naive estimator b̂−1

i can not be used efficiently to estimate b−1
i because it may have an

infinite variance. In [5], the authors fix a threshold w the estimate can not exceed and consider an estimator
of b−1

i equal to b̂−1
i if |b̂i| > 1/w and null otherwise. As we shall see below, we use the same idea here, where

the threshold fixed on the b̂i’s is implicitly part of the variable selection process.
We can reasonably assume that null values of b̂i do not provide any relevant information and can not be used

to estimate x0. Thus, to avoid considering trivial situations, we assume that all b̂i are non-zero. In all generality,
the z̃i’s can be viewed as noisy observations of xi by writing

z̃i = xi + η̃i, i = 1, . . . , n,

with z̃i = b̂−1
i 〈y, ψi〉n and η̃i = b̂−1

i (εi − ξixi), where we recall εi = 〈ε, ψi〉n. As in the previous section, we
propose a threshold procedure to filter out the observations z̃i that are potentially highly contaminated with
noise. Here, the noise η̃i is more difficult to deal with because it depends on the unknown coefficient xi.

Our objective is to find an optimal variable selection criterion conditionally to the b̂i’s. In order to do so, we
consider a framework where the b̂i’s are observed once and for all, and are treated as non-random. Thus, we define
as an oracle, a model m∗

ξ minimizing the conditional risk Eξ‖x̂m − x0‖2, where Eξ(.) denotes the expectation
knowing ξ = (ξ1, . . . , ξn)t. Following a similar argument as in the previous section, a model minimizing the
conditional risk contains only the indices i for which the coefficient x2

i is larger than the noise level. Hence,
we may define m∗

ξ = {i : x2
i > Eξ(η̃2

i )}. A notable difference here is that the noise η̃i actually depends on the
value xi. We can calculate the conditional expectation of η̃2

i , given by

Eξ(η̃2
i ) = σ̂2

i + b̂−2
i ξ2i x

2
i ,



ADAPTIVE HARD-THRESHOLDING FOR LINEAR INVERSE PROBLEMS 495

where we set σ̂2
i = b̂−2

i σ2/n. After simplifications, it appears that the optimal model conditionally to the ξi’s
can be expressed in the two following equivalent forms

m∗
ξ =

{
i : 2|b̂i| > σ2

n|bi|x2
i

+ |bi|
}

=

{
i : x2

i >
σ2

n(b̂2i − ξ2i )
, |b̂i| > |bi|

2

}
·

In the first expression, we see that the oracle selects indices i for which the observation b̂i exceeds a certain value
depending on both xi and bi. Interestingly, components z̃i corresponding to observations |b̂i| smaller than half
the true eigenvalue |bi| are not selected in the oracle, regardless of the coefficient xi. Here again, the optimal
model m∗

ξ can not be used in practical cases since it involves the unknown values xi and ξi. We can only try to
mimic the optimal threshold, based on the observations z̃i and b̂i. Consider the set

m̂ξ =
{
i : z̃2

i > 8σ̂2
i νi, |b̂i| > δs

}
,

where {νi}i=1,...,n are parameters to be chosen and δ is the constant defined in A2. With this definition, only
the indices for which the observation b̂i is larger than a certain value, namely δs, are selected. This conveys
the idea discussed in [5], that when bi is small compared to the noise level, the observation b̂i is potentially
mainly noise. Remark however that in [5], the lower limit for the observed eigenvalues is s log2(1/s), while in
our method, it is chosen of the same order as the standard deviation s.

Define the set M = {i : |bi| < 2δs}.
Theorem 4.1. The threshold estimator obtained with νi = 2 log(i b̂−2

i ) satisfies,

Eξ‖x̂m̂ξ
− x†‖2 ≤

{
9 + 36 log

(
n‖x†‖
σ

)
∨ 4α
δ2

log n
}

Eξ‖x̂m∗
ξ
− x†‖2 +

∑
i∈M

x2
i +Δ(ξ),

with

Δ(ξ) =
4σ2(1+ log n)

n
+ 4

∑
i/∈m∗

ξ

ξ2i x
2
i

δ2s2
�{ξ2i > s2α logn}.

Moreover, if A1 holds, E(Δ(ξ)) = O
(

log n
n

)
.

The threshold is chosen in order to control the conditional risk. Inspection of the proof shows that choosing
a term νi = 2 log(i b̂−2

i ) involving the index i in the logarithm enables to control the variance regardless of
the degree of ill-posedness and the nature of the inverse problem. The main interest of this result lies in the
fact that it provides an oracle inequality, conditionally to the b̂i’s. In particular, the conditional oracle x̂m∗

ξ

performs better than the minimizer of the expected risk m �→ E‖x̂m − x†‖2, since the optimal set m∗
ξ is allowed

to depend on the ξi’s. We see that the estimator x̂m̂ξ
performs almost as well as the conditional oracle. Indeed,

the residual term Δ(ξ) is independent from ξ with high probability, and its expectation is negligible under A1
as pointed out in the theorem. The non-random term

∑
i∈M x2

i is small if the eigenvalues bi are observed with
a good precision, i.e. if the variance s2 is small. Moreover, this term can be shown to be of the same order as
the risk under the condition A2.

Corollary 4.2. If the conditions A1 and A2 hold, the threshold estimator defined in Theorem 4.1 satisfies

E‖x̂m̂ξ
− x†‖2 ≤ K1 logn E‖x̂m∗

ξ
− x†‖2 +O

(
logn
n

)
,

for a constant K1 independent from n and s.

With a noisy operator, we manage to provide an estimator that achieves the rate of convergence of the con-
ditional oracle, regardless of the precision of the approximation of the spectrum of An. Indeed, the constant K1

in Corollary 4.2 does not involve the variance s2 of ξ. Actually, the variance only plays a role in the accuracy
of the oracle. The result is non-asymptotic and requires no assumption on s2.
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Appendix A.

A.1. Technical lemmas

Lemma A.1. For all μi ≥ 0, we have

• E
[
(η2

i − x2
i )�{i ∈ m̂}] ≤ 2σ2

i e−μi/2;

• E
[
(x2

i − η2
i )�{i /∈ m̂}] ≤ [(

2
√
μi + 1

)2 − 1
]
σ2

i .

Proof. Using the inequality (a+ b)2 ≤ 2a2 + 2b2, we find that η2
i − x2

i ≤ 2η2
i − z2

i /2. By definition of m̂, we get

(η2
i − x2

i )�{i ∈ m̂} ≤ 2σ2
i (γi − μi)�{i ∈ m̂} ≤ 2σ2

i (γi − μi)�{γi ≥ μi},
where we used that X ≤ X�{X ≥ 0}. Since γi has χ2(1) distribution, we get

E
[
(η2

i − x2
i )�{i ∈ m̂}] ≤ 2σ2

i√
2π

∫ ∞

√
μi

(t2 − μi) e−t/2 dt ≤ 2σ2
i e−μi/2.

For the second part write x2
i − η2

i = z2
i − 2ηizi ≤ z2

i + 2|ηi||zi|. Using that E|ηi| ≤ σi, we get

E
[
(x2

i − η2
i )�{i /∈ m̂}] ≤ [

(2
√
μi + 1)2 − 1

]
σ2

i . �

Lemma A.2.
inf

m∈M
E‖x̂m − x†‖2 ≤ 2 inf

λ∈Rn
E‖x̂(λ) − x†‖2.

Proof. The minimal values of the expected risks can be calculated explicitly in the two classes considered here.
Minimizing over R

n the function λ �→ E‖x̂(λ) − x†‖2, we find that the optimal value of λi is reached for λ∗i =
x2

i /(x
2
i + σ2

i ). On the other hand, we know that m �→ E‖x̂m − x†‖2 reaches its minimum at m∗ = {i : x2
i ≥ σ2

i },
yielding

inf
λ∈Rn

E‖x̂(λ) − x†‖2 =
n∑

i=1

x2
i σ

2
i

x2
i + σ2

i

and inf
m∈M

E‖x̂m − x†‖2 =
∑

i∈m∗
σ2

i +
∑

i/∈m∗
x2

i .

By definition, if i ∈ m∗, x2
i /(x

2
i + σ2

i ) ≥ 1
2 . In the same way, σ2

i /(x
2
i + σ2

i ) ≥ 1
2 , for all i /∈ m∗. We conclude by

summing all the terms. �

Lemma A.3. For all νi ≥ 0, we have,

• Eξ

[
(η̃2

i − x2
i )�{i ∈ m̂ξ}

] ≤ 4σ̂2
i e−νi/2 + 4ξ2

i x2
i

δ2s2 ;
• Eξ

[
(x2

i − η̃2
i )�{i /∈ m̂ξ}

] ≤ 9σ̂2
i νi + 8Eξ(η̃2

i ) + x2
i�{|b̂i| ≤ δs}.

Proof. Remark that η̃2
i = b̂−2

i (εi − ξixi)2 ≤ 2b̂−2
i ε2i + 2b̂−2

i ξ2i x
2
i . Using that x2

i ≥ z̃2
i /2 − η̃2

i , we deduce

η̃2
i − x2

i ≤ 4b̂−2
i ε2i + 4b̂−2

i ξ2i x
2
i −

z̃2
i

2
·

Writing m̂ξ = {i : z̃2
i > 8σ̂2

i νi, |b̂i| > δs}, we find

(η̃2
i − x2

i )�{i ∈ m̂ξ} ≤ 4σ̂2
i (γi − νi)�{γi ≥ νi} + 4b̂−2

i ξ2i x
2
i�{|b̂i| > δs},

where we recall that γi = nε2i /σ
2. Clearly, b̂−2

i �{|b̂i| > δs} < δ−2s−2 and the result follows using that γi ∼ χ2(1).
For the second part of the lemma, remark that the complement of m̂ξ is {i : z̃2

i ≤ 8σ̂2
i νi, |b̂i| > δs}∪{i : |b̂i| ≤ δs}.

Using that x2
i − η̃2

i ≤ (1+ a−1)z̃2
i + aη̃2

i , we get for a = 8,

(x2
i − η̃2

i )�{i /∈ m̂ξ} ≤ 9σ̂2
i νi + 8η̃2

i + x2
i�{|b̂i| ≤ δs}. �
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Lemma A.4. If A1 holds, we have

ξ2i ≤ s2α logn+ ξ2i �{ξ2i > s2α logn},

with E
(
ξ2i �{ξ2i > s2α logn}) = O

(
log n

n

)
.

Proof. Write ξ2i ≤ s2α logn �{ξ2i ≤ s2α log n}+ ξ2i �{ξ2i > s2α logn}. To bound the first term, we use the crude
inequality �{ξ2i ≤ s2α logn} ≤ 1. For the second term, we have as a consequence of A1,

E
[
ξ2i �{ξ2i > s2α logn}] =

∫ ∞

0

P
(
ξ2i �{ξ2i /s2 > α logn} > t

)
dt

= s2α logn P(ξ2i /s
2 > α log n) + s2

∫ ∞

α log n

P(ξ2i /s
2 > t) dt

≤ Kαs2(1 + logn)
n

· �

A.2. Proofs

Proof of Theorem 3.1. Write

‖x̂m̂ − x0‖2 = ‖x̂m∗ − x0‖2 +
∑

i/∈m∗
(η2

i − x2
i )�{i ∈ m̂} +

∑
i∈m∗

(x2
i − η2

i )�{i /∈ m̂}.

The objective is to bound the terms E[(η2
i −x2

i )�{i ∈ m̂}] and E[(x2
i − η2

i )�{i /∈ m̂}] separately. By Lemma A.1,
we know that E

[
(η2

i − x2
i )�{i ∈ m̂}] ≤ 2σ2

i e−μi/2, which gives if μi = 2β log
(
θ−1b−2

i

)
,

E
[
(η2

i − x2
i )�{i ∈ m̂}] ≤ 2σ2θβ

n
b
2(β−1)
i .

By Lemma A.1, the same result holds if 1 ≥ 2β log
(
θ−1b−2

i

)
yielding μi = 1. On the other hand, if i /∈ m̂, then

Lemma A.1 warrants
E

[
(x2

i − η2
i )�{i /∈ m̂}] ≤ [

(1 + 2
√
μi)

2 − 1
]
σ2

i .

Using that E‖x̂m∗ − x0‖2 = ‖xm∗ − x0‖2 +
∑

i∈m∗ σ2
i , we get by summing all the terms

E‖x̂m̂ − x0‖2 ≤ ‖xm∗ − x0‖2 +
(
1 + 2

√
1 ∨ 2β log(θ−1κn)

)2 ∑
i∈m∗

σ2
i +

2σ2θβ

n

∑
i/∈m∗

b
2(β−1)
i ,

where we recall that κn = supi∈m∗ b−2
i , yielding supi∈m∗ μi = 2β log(θ−1κn∨1). �

Proof of Theorem 4.1. The proof starts as in Theorem 3.1. Write

‖x̂m̂ξ
− x†‖2 = ‖x̂m∗

ξ
− x†‖2 +

∑
i/∈m∗

ξ

(η̃2
i − x2

i )�{i ∈ m̂ξ} +
∑

i∈m∗
ξ

(x2
i − η̃2

i )�{i /∈ m̂ξ},

and the objective is to bound the conditional expectation of each term separately. Using successively Lemmas A.3
and A.4, we get

Eξ

[
(η̃2

i − x2
i )�{i ∈ m̂ξ}

] ≤ 4σ2

i.n
+

4ξ2i x
2
i

δ2s2
≤ 4α logn

δ2
x2

i +Δi(ξ),

with

Δi(ξ) =
4σ2

i.n
+

4ξ2i x
2
i

δ2s2
�{ξ2i > s2α logn}.
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Using the inequality
∑n

i=1
1
i ≤ 1 + logn, we find that Δ(ξ) =

∑
i/∈m∗

ξ
Δi(ξ) satisfies

E(Δ(ξ)) ≤ 4(1+logn)(σ2+ δ−2Kα‖x†‖2)
n

= O

(
log n
n

)
,

by Lemma A.4. On the other hand, Lemma A.3 gives

Eξ

[
(x2

i − η̃2
i )�{i /∈ m̂ξ}

] ≤ 9σ̂2
i νi + 8Eξ(η̃2

i ) + x2
i�{|b̂i| ≤ δs}.

For all i ∈ m∗
ξ , we know that |b̂i| ≥ |bi|/2. Thus, if i ∈ m∗

ξ , �{|b̂i| ≤ δs} ≤ �{i ∈ M}, where we recall
M = {i : |bi| < 2δs}. We know also that, if i ∈ m∗

ξ , then νi > 0 and b̂−2
i ≤ nx2

i /σ
2, yielding νi = 2 log(i b−2

i ) ≤
4 logn+ 2 log(‖x†‖2/σ2). Since σ̂2

i ≤ Eξ(η̃2
i ), we have

Eξ

[
(x2

i − η̃2
i )�{i /∈ m̂ξ}

] ≤ {
36 log

(
n‖x†‖
σ

)
+ 8

}
Eξ(η̃2

i ) + x2
i�{i ∈M}.

The result follows by summing all the terms, in view of the expression of the risk of the oracle

Eξ‖x̂m∗
ξ
− x†‖2 =

∑
i/∈m∗

ξ

x2
i +

∑
i∈m∗

ξ

Eξ(η̃2
i ). �

Proof of Corollary 4.2. It suffices to show that the term
∑

i∈M x2
i is of the same order as the risk of the oracle.

Write

E‖x̂m∗
ξ
− x†‖2 ≥

n∑
i=1

x2
i P(i /∈ m∗

ξ) ≥
n∑

i=1

x2
i P(|b̂i| ≤ |bi|/2).

For all i ∈M , the probability P(|b̂i| ≤ |bi|/2) is greater than C as a consequence of A2. We deduce
∑

i∈M x2
i ≤

C−1
E‖x̂m∗

ξ
− x†‖2. �
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