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Adaptive Harmonic Steady-State Control
for Disturbance Rejection

Jaganath Chandrasekar, Li Liu, Dan Patt, Peretz P. Friedmann, and Dennis S. Bernstein

Abstract—We consider harmonic steady-state (HSS) control for
active noise and vibration rejection when the system dynamics are
unknown. After a brief review and analysis of the HSS control
theory, we develop an adaptive control algorithm based on a recur-
sive least squares algorithm that estimates the system dynamics.
Active noise cancellation in an acoustic drum is demonstrated
using the adaptive control algorithm. The results presented here
unify and extend previous results on HSS control.

Index Terms—Acoustic applications, active noise control, adap-
tive control, disturbance rejection, harmonic steady state (HSS).

NOMENCLATURE

HSS Harmonic steady state.

Euclidean norm.

Transpose of .

Spectrum of .

Spectral radius of .

Largest singular value of .

identity matrix.

zero matrix.

I. INTRODUCTION

T
HE USE OF feedback control for disturbance rejection is

of fundamental importance in a broad range of applica-

tions, and the development of effective algorithms is an ongoing

area of research. For well-modelled plants with broadband dis-

turbance, classical linear quadratic Gaussian (LQG) theory can

be applied with weighting filters to shape the controller effort in

accordance with the disturbance spectrum and performance ob-

jectives. For broadband disturbance rejection, there exists fun-

damental tradeoffs that imply that disturbance reduction over a

given frequency range entails amplification at other frequencies

[1].

On the other hand, if the disturbance is tonal or multitonal

with known spectrum, then a model of the exogenous signal can

be embedded in the controller to produce high-gain feedback
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at frequencies that comprise the disturbance spectrum. The

resulting internal model controller theoretically applies infinite

gain at the disturbance frequencies to obtain asymptotically per-

fect disturbance rejection. The feedback signal can be realized

equivalently by updating the coefficients of harmonic signals,

which provides greater robustness in the event of sensor failure

[2], [3]. In both implementations, guarantees of closed-loop

stability require knowledge of the gain and phase of the plant

at the disturbance frequencies, as well as additional modeling

information.

When the plant and the disturbance are not well modeled,

the problem can be significantly more challenging. Within the

active noise control literature, numerous adaptive algorithms

have been developed that were inspired by digital signal pro-

cessing techniques. These techniques are based on LMS up-

dating of finite-impulse response (FIR) filters (see [4]). These

gradient-based algorithms often ignore the control-input-to-per-

formance-variable secondary path transfer function [4], [5]. The

FXLMS algorithm [6]–[8], on the other hand, is a variation of

the LMS algorithm that takes into account the secondary path

transfer function. Adaptive methods that estimate the secondary

path transfer function have been used in conjunction with the

FXLMS algorithm [9]. A delay in the secondary path transfer

function results in a slow adaptation rate for the FXLMS algo-

rithm, while uncertainty in the secondary path transfer function

further reduces the convergence rate of the adaptive FXLMS al-

gorithm [4, p. 128]. Modifications to the FXLMS algorithm to

improve its convergence properties are developed in [10].

Another approach to disturbance rejection involves continu-

ously adjusting the frequency, magnitude, and phase of the con-

trol input to cancel the disturbance [11], [12]. Alternative tech-

niques, which require limited modeling of the plant dynamics

and disturbance spectrum, have also been developed [13].

Yet another approach, which is applicable in the case of tonal

or multitonal disturbances with known spectrum, allows the

system to effectively reach harmonic steady-state (HSS) (that

is, approximate sinusoidal response after transient decay) and

uses measurements of the steady-state response amplitude and

phase to determine the required amplitude and phase of the con-

trol signal. This technique was developed independently within

two research communities. For helicopter vibration reduction,

this technique is known as higher harmonic control, where

the name reflects the aliasing effect of blade vibrations when

transforming between the fixed and rotating reference frames

[14]–[18]. The same technique was developed independently

for active rotor balancing in this case, known as convergent

control [19]. Helicopter vibration and rotor imbalance are, of

course, closely related problems in which active disturbance
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rejection can be used to suppress the effect of harmonic distur-

bances with known spectrum due to load imbalance. We refer

to this algorithm as HSS control. Connections between higher

harmonic control and internal model control are discussed in

[20].

Implementation of HSS control requires knowledge of the

frequency response of the transfer function between the con-

trol input and the measurements at the disturbance frequency.

In practice, this information is obtained through modeling or of-

fline identification. When this information is uncertain or when

the plant is subject to change, instability can occur. To address

this issue, the robustness of HSS control is analyzed in [19]

for additive and multiplicative model uncertainty. This anal-

ysis gives bounds for the modeling error that can be tolerated

without instability. Of course, the level of disturbance rejection

degrades when the modeled frequency response differs from the

frequency response of the true system.

An adaptive extension of HSS control that removes the need

to independently model the secondary path frequency response

is considered in [21]. Specifically, a recursive least squares

(RLS) (see [22]) procedure estimates this transfer function.

In [23], a simultaneous estimation and control algorithm uses

a moving-window batch (rather than recursive) least squares

procedure to estimate the secondary path transfer function,

where the estimation procedure is started only after a specified

amount of control input and output data is obtained. Persistency

of excitation in the estimation procedure is also addressed in

[23].

In the present paper, we develop a unified framework for

analyzing the properties and performance of nonadaptive and

adaptive HSS control, extending much of the previous litera-

ture. We first analyze the robustness of nonadaptive HSS control

and generalize the results of [19] to additive model uncertainty.

In particular, we quantify the dependence of the performance

and stability of nonadaptive HSS control on the estimate of the

secondary path transfer function. To alleviate the need for of-

fline modeling, we next consider an adaptive HSS control al-

gorithm that uses the RLS procedure to estimate the secondary

path transfer function and uses the estimate in the control up-

date. This adaptive algorithm is direct with respect to the sec-

ondary path transfer function, since the identification is fully

integrated with the control update.

The contents of the paper are as follows. In Sections II and

IV, we review classical HSS control and demonstrate its one-

step convergence property, a key feature that was apparently

overlooked in the prior literature. Next, in Section V, we an-

alyze the robustness and performance of nonadaptive HSS con-

trol. In Section VI, we discuss the use and implementation of a

RLS algorithm for estimating the secondary path transfer func-

tion. Under suitable initialization, we show that the RLS esti-

mate converges to the least squares solution. Convergence of

the estimated transfer function and boundedness of the con-

trol signal are discussed in Section VII. In particular, we show

that the performance of adaptive HSS control depends on the

steady-state value of the RLS estimate of the transfer function.

In Section VIII, we introduce adaptive HSS control with per-

sistent excitation to ensure convergence of the RLS estimate

to the actual secondary path transfer function. In Section VIIII,

Fig. 1. Harmonic steady-state control architecture.

we numerically illustrate the adaptive HSS algorithm using an

acoustic duct example involving two disturbance speakers, three

actuation speakers, two microphones, and a dual-tone distur-

bance. This simulation is followed by an experimental demon-

stration involving active noise cancellation in an acoustic drum

with one disturbance speaker, two actuation speakers, two mi-

crophones, and a single-tone disturbance. These examples show

that an erroneous model of the system dynamics can cause in-

stability in nonadaptive HSS control, whereas the adaptive HSS

algorithm can recover stability. Some conclusions are given in

Section XI.

II. HARMONIC PERFORMANCE ANALYSIS

Assume for convenience that the disturbance acting

on the plant is a single harmonic with constant amplitude and

phase. When the disturbance is a sum of sinusoids of multiple

frequencies, the following analysis carries through with minor

modifications. For details, see Appendix I. The HSS control al-

gorithm waits until the output approximately reaches

HSS, and then measures the amplitude and phase of the output.

With this information, the control input is determined

to minimize the effect of the disturbance on the output . As

shown in Fig. 1, the HSS control algorithm is a feedback con-

troller, and thus, can potentially destabilize the plant, although

not in the usual LTI sense. Note that the performance variable

is the same as the output and, hence, . We assume that the

disturbance signal is unmeasured and, thus, is unavailable for

feedback.

The inputs , and the output are related by

(2.1)

where and are linear time-invariant multi-input

multi-output (MIMO), continuous-time transfer functions with

entries

...
... (2.2)

...
... (2.3)
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In HSS control, the update of the control input is not per-

formed continuously but rather at specified times . The control

input is harmonic with the same spectrum as the disturbance,

and the amplitude and phase of the control input are updated at

. The time interval between two successive updates,

need not be constant but must be sufficiently large to allow the

output to effectively reach HSS. Measurement of the output

is performed once has effectively reached HSS at which time

is approximately harmonic with the same spectrum as the dis-

turbance. Furthermore, the amplitude and phase of the output

are completely determined by the amplitude and phase of the

disturbance and control input. Assuming that the disturbance

is harmonic with frequency and the output has approxi-

mately reached HSS within the time interval , the sig-

nals , and have the components

(2.4)

(2.5)

(2.6)

where are the amplitudes, and

are the phase angles of the th

components of , and , respectively.

Note that the amplitude and phase of the th component

of are independent of the time interval , and fur-

thermore, is determined by the choice of . The subscript

in (2.5) and (2.6) indicates that the amplitude and phase of the

components of and may be different in different time

intervals.

For all it follows from (2.1) that in HSS

(2.7)

Note that, for all , where .

Next, define by

(2.8)

Note that, for all , and are constants deter-

mined by the choice of , and that and are determined

by the control law. It then follows from (2.7)–(2.8) that, for all

(2.9)

where

(2.10)

(2.11)

Define , and by

(2.12)

It follows from (2.9) and (2.12) that the system dynamics in

terms of , and are given by

(2.13)

where and are defined by

...
... (2.14)

...
... (2.15)

Replacing by in (2.13) and subtracting the resulting

equation from (2.13), yields the disturbance-free update model

(2.16)

III. HSS ALGORITHM

Consider the cost function

(3.1)

where , and are

weighting matrices such that is positive definite. Sub-

stituting from (2.13) into (3.1) yields

(3.2)

where and the positive-definite matrix is de-

fined by

(3.3)

Since (3.2) involves only and , we define

(3.4)

and write as

(3.5)
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To determine that minimizes , we set

(3.6)

The optimal control law is given by

(3.7)

and the minimum cost is

(3.8)

where is defined by

(3.9)

Since depends on , whose measurement is not available,

we derive an equivalent control law that can be used for all

.

Setting in (2.13), yields

(3.10)

and, hence, substituting (3.10) into (2.13) yields

(3.11)

From (3.10) the optimal control law in (3.7) can be written

as

(3.12)

and the minimum cost in (3.8) can be expressed as

(3.13)

Finally, as in [17] and [18], assume that so that the

optimal control law (3.12) is given by

(3.14)

and the minimum cost (3.13) is

(3.15)

IV. CONVERGENCE ANALYSIS OF THE HSS ALGORITHM

Note that given by (3.12) is independent of , and hence,

remains constant for all . Substituting (3.12) into (3.11)

and (3.1), the optimal value of for all is given by

(4.1)

and, thus

(4.2)

Using (3.11) in (3.12), the optimal control law can be ex-

pressed recursively as

(4.3)

The state-space representation of the system dynamics with the

optimal control law is

(4.4)

where is defined by

(4.5)

Next, note that

(4.6)

Hence, is an idempotent matrix, and its eigenvalues are either

0 or 1. In fact, can be factored as

(4.7)

which shows that

(4.8)

With the initial conditions and , (4.4) implies that

(4.9)

and

(4.10)

Similarly, for all

(4.11)

Consequently, the optimal values of in (3.12) and in

(4.1) are attained after the first update.

In the case in (4.1), can be expressed as

(4.12)

Hence

(4.13)
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Hence, if and , then

(4.14)

If is large (minimum energy control), it fol-

lows from (4.13) that may be large, indicating poor per-

formance. Alternatively, if is small (cheap

control), then (4.13) implies that the is small, and hence,

the performance is good.

V. ROBUSTNESS OF HSS CONTROL

Implementation of HSS control requires knowledge of . An

erroneous model of can result in degraded performance and

possible instability. When an estimate of is given, the con-

trol law defined in (4.3), becomes

(5.1)

where

(5.2)

The state-space representation of the system dynamics with

(5.1) is

(5.3)

where is defined by

(5.4)

and .

It is useful to factor as

(5.5)

which shows that

(5.6)

Hence, the HSS algorithm is stable if and only if

(5.7)

In the special case , it follows that

(5.8)

Therefore, if

(5.9)

then . If is large

(minimum energy control), then according to (5.9), HSS

control possesses a high degree of robustness. However, if

is small (cheap control), then (5.9) implies

that robustness is compromised.

From (5.5), it follows that

(5.10)

where . Now assume that HSS

control is stable, that is, (5.7) is satisfied. In this case

(5.11)

and

(5.12)

Hence, (5.10), (5.11), and (5.12) imply that

(5.13)

The limiting values of and are given by

(5.14)

Next, define the limiting cost by

(5.15)

Substituting (5.14) into (3.1) yields

(5.16)

Note that

(5.17)

and, hence

(5.18)
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Fig. 2. Adaptive HSS control architecture. The performance variable z is used

to determine an estimate ^T of T , which is used in the adaptive control law.

Since , it follows from (3.15),

(5.16), and (5.18) that

(5.19)

which confirms that the performance is not better than the op-

timal performance obtained when is exactly known.

VI. ADAPTIVE HSS CONTROL USING RLS

Here, we discuss online identification of the matrix , which

is then used as the basis for an adaptive extension of HSS control

(see Fig.2). Define and by

(6.1)

and and by

(6.2)

The system dynamics (2.16) can be represented by

(6.3)

Hence, it follows from (6.1) and (6.3) that

(6.4)

Assuming is nonsingular, we define

(6.5)

and it follows from (6.4) that the least squares estimate of

is given by

(6.6)

Hence, substituting (6.4) and (6.4) into (6.5) yields

(6.7)

Note that and increase in size

as increases and, thus, the computational burden of evaluating

(6.6) increases as increases. Hence, we use a recursive pro-

cedure that uses the estimate and the measurements

and to obtain a new estimate of . The recursive

least squares method is an efficient procedure for iteratively up-

dating based on the past and current values of and

. From (6.5), it follows that

(6.8)

Rewriting (6.6) as

(6.9)

and replacing by in (6.9) yields

(6.10)

Hence, substituting from (6.8) into (6.9) yields

(6.11)

Substituting (6.11) into (6.10) yields

(6.12)

where

(6.13)

and

(6.14)

Using the matrix inversion lemma [22] in (6.8), can be

expressed recursively as

(6.15)

Combining (6.14) and (6.15) yields

(6.16)



CHANDRASEKAR et al.: ADAPTIVE HSS CONTROL FOR DISTURBANCE REJECTION 999

Since is positive semidefinite for all ,

(6.8) implies that if is nonsingular, then

is nonsingular for all . Hence, the recursive procedure

for determining for all is given by

(6.17)

(6.18)

(6.19)

Note that

(6.20)

Since is m m, it follows from (6.20) that

is singular for all . Hence, the recursive

procedure (6.17)–(6.19) cannot be used for .

VII. ADAPTIVE HSS CONTROL USING PSEUDO-RLS

A suboptimal estimate of can be obtained by replacing

in (6.17)–(6.19) by , that is

(7.1)

(7.2)

(7.3)

where is positive definite but otherwise arbitrary, and

is defined by

(7.4)

Note that (7.1)–(7.3) can be started with an arbitrary initial es-

timate of . It follows from (7.1)–(7.3) that is positive

definite for all and is given by

(7.5)

Note that substituting (6.13), (7.1), and (7.3) into (7.2) yields

(7.6)

Multiplying (7.6) by yields

(7.7)

Hence, it follows from (7.5) and (7.7) that, for all is

given by

(7.8)

Since is positive definite, the inverse in (7.8) always exists,

and hence, the recursive procedure can be used for all .

The updated estimate is used at each control update step to

calculate the control law , which is given by

(7.9)

where is defined by

(7.10)

Let be such that is nonsingular. Then it follows

from (7.5) that as , and

hence, (6.4) and (7.8) imply that as .

Next, we show that, for all positive-definite converges

as . Define by

(7.11)

where is updated using (7.1)–(7.3). Substituting (6.4) into

(7.8) yields

(7.12)

Post-multiplying (7.12) by yields

(7.13)

Subtracting from both sides of (7.13) and

then substituting (7.5) into the resulting expression yields

(7.14)

For all

(7.15)

which implies that

(7.16)

and, hence

(7.17)

Furthermore, since is positive definite, it follows from (7.17)

that, for all

(7.18)

It follows from (7.17) and (7.18) that is a nonincreasing se-

quence that is bounded from below. Hence, exists.

Next, define by

(7.19)

Taking the limit as of (7.14) yields

(7.20)

Hence, it follows from (7.11) that exists, that is,

converges. However, there is no guarantee that converges to

. For example, if , and , then (7.9)

implies that . Hence, it follows from (7.1)–(7.3), that

and for all . In the next section, we
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introduce a persistent excitation condition that guarantees con-

vergence of to .

Note that substituting (2.13) into (7.9) yields

(7.21)

Without any loss of generality, let , so that for all

(7.22)

Substituting (7.14) and (7.22) into (7.21) yields

(7.23)

where and are defined by

(7.24)

Note that (7.21) and (7.22) imply that

(7.25)

Since exists, and exist.

Numerical simulations of (7.23) and (7.25) suggest that, for all

positive-definite

(7.26)

and exists, which implies that is bounded.

Hence, (2.13) implies that is also bounded.

VIII. ADAPTIVE HSS CONTROL WITH PERSISTENT EXCITATION

The convergence of is guaranteed by the adaptive HSS

algorithm, and numerical simulations suggest that and are

bounded. However, the steady-state performance of the adaptive

HSS control depends on the steady-state value of the estimate

. It follows from (7.11) and (7.14) that

(8.1)

Consequently, if as , then as .

It follows from (6.2) and (7.5) that

(8.2)

Hence, if

(8.3)

then (8.2) implies that as . A sufficient condition

for (8.3) is that be persistently exciting [22], that is, there

Fig. 3. Acoustic duct.

exists such that, for all

(8.4)

However, since is given by the adaptive control law (7.9),

may not be persistently exciting. Hence, a modified control

law is needed to ensure that (8.3) holds.

Note that the adaptive control law in (7.9) can be expressed

as , where

(8.5)

Next, for and for all

, define by

(8.6)

where . Next, define by

(8.7)

Note that

(8.8)

where is defined by

(8.9)

It follows from (8.6), (8.7), and (8.9) that

(8.10)

where is defined by (8.9) with re-

placed by . Hence, if the sequence of ’s is chosen so that

(8.11)

then (8.8) implies that is persistently exciting. The modi-

fied control law is given by

(8.12)
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TABLE I
NOTATION FOR SIMULATED NOISE CANCELLATION IN AN ACOUSTIC DUCT

where is given by (8.7). If the performance is satisfactory

for some , then in (8.7) is set to zero, that is,

for all and, thus, for all .

IX. SIMULATION EXAMPLE: NOISE CANCELLATION

IN AN ACOUSTIC DUCT

The equation of motion for the acoustic duct shown in Fig. 3,

is given by

(9.1)

where the notation is defined in Table I (see [1]).

By separation of variables with modes, is given by

(9.2)

where are modal coordinates. The state space realization

of (9.1) of order is given by

(9.3)

(9.4)

where

and

. . .

...
...

...

...
...

...

...
...

...
...

...

where for all

The acoustic duct is assumed to have two disturbance

speakers and three actuation speakers, which are noncolocated.

The output is measured using two microphones placed at arbi-

trary locations. The disturbance signals consist of harmonics at

100 and 150 Hz. Six modal frequencies are retained, and hence,

the plant is 12th order.

HSS control is simulated for the duct. Fig. 4 shows the output

from microphone 1 with HSS control started at s with

knowledge of . We update every 1 s using (4.3) and,

hence, for all is given by

(9.5)

where rad/s and rad/s, and, for

is the th entry of .

Although the steady-state performance is satisfactory, the

sudden change in the amplitudes of the sinusoids at the

switching instants causes large transients. To reduce the tran-

sients, we introduce the interpolating control law

if

if

(9.6)

where , and is updated by using (4.3). The

interpolated control input is given by (9.5) with replaced

by . Since the change in the amplitude of from to
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Fig. 4. Simulated output of microphone 1 using HSS control for active noise
cancellation. HSS control begins at t = 1 s, resulting in one-step reduction
in the output amplitude. The large transient is due to the sudden change in the
amplitude of the control input.

Fig. 5. Simulated output of microphone 1 using HSS control with the inter-
polating control (9.6). The interpolating control improves the transient perfor-
mance by interpolating the amplitude of the control input between switching
instants.

is gradual, the transient performance improves. The

output of microphone 1 with the interpolating control is shown

in Fig. 5.

Next, at s (see Fig. 6), the microphones are moved to

different locations, resulting in a sudden change in the system

dynamics as given by the matrix . Since the HSS control al-

gorithm has no knowledge of the change in , there is an in-

crease in the output level. Alternatively, at s (indicated

by the vertical dash-dot line), the adaptive HSS control algo-

rithm is used, and the disturbance level is reduced, although not

Fig. 6. Simulated disturbance rejection using adaptive HHS control with per-
sistent excitation. Adaptive HSS control without persistent excitation is started

at t = 1 s with initial estimate T̂ of T. At t = 4 s, adaptive HSS control with
persistent excitation is used, and at t = 12 s, the performance is satisfactory
and, hence, adaptive HSS without persistent excitation is used after 12 s.

in a single control update step. The dashed lines show the di-

verging envelope of the nonadaptive HSS response. During the

time interval within which adaptive HSS is used, we use the in-

terpolating control (9.6), where is updated using (7.9).

To illustrate the performance of the persistently exciting con-

trol law (8.12), the adaptive HSS algorithm without persistent

excitation is started at s with an initial estimate of ,

such that

(9.7)

where is the th column of . Since is not persistently

exciting, the estimate does not converge to and, hence, the

performance is poor (see Fig. 7). At s, adaptive HSS with

persistent excitation is used with for all . The nu-

merical results indicate that approaches , which suggests

that is persistently exciting. Since the performance is sat-

isfactory at s, is set to 0 and adaptive HSS without

persistent excitation is used for all s. Since adaptive HSS

with persistent excitation is used instead of the optimal control

input between s and s, the microphone output level

increases.

X. EXPERIMENTAL EXAMPLE: NOISE CANCELLATION

IN AN ACOUSTIC DRUM

Although the equations of motion for the acoustic drum are

different from those of the acoustic duct, the problem of dis-

turbance rejection is identical from the point of view of HSS

control. In the previous case, sound waves propagate along the

length of the duct, and hence, the duct is essentially a spa-

tially one-dimensional (1-D) system (see [1]). This assumption

is not valid for an acoustic drum which has longitudinal, trans-

verse, and circumferential modes. As with the duct, however, the

input–output response is linear and, hence, HSS control can be

used to reject a disturbance with a known harmonic spectrum.
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Fig. 7. Simulated disturbance rejection using adaptive HHS control. Micro-
phone 1 is moved to a new location at t = 2 s and the HSS response is un-
bounded (shown by the dashed envelope). Alternatively, adaptive HSS control
is applied at t = 7 s, and disturbance rejection is achieved. The interpolating
control (9.6) is used for improved transient performance.

Fig. 8. Top view of the acoustic drum with two end-mounted actuating
speakers, one disturbance speaker, and two internal microphones. Microphone
1 is initially at location A and is moved to location C, while the HSS control
algorithm is operating. Microphone 2 is placed at location B throughout the
experiment.

The acoustic drum (see Fig. 8) has two end-mounted speakers

on both sides, while microphones can be suspended inside the

drum through holes drilled along the top. The dimensions of the

acoustic drum are given in Table II.

A constant-amplitude, single-tone disturbance signal

with frequency 50 Hz ( rad/s) is produced by one

disturbance speaker. The two actuation speakers on the other

end of the drum produce the control for cancelling

the disturbance. The control objective is to reduce the output

measured by microphones 1 and 2 at locations A and

B, respectively. We use HSS control for this MIMO single-tone

disturbance rejection problem.

Let have entries , so that represents

the output from microphone 1 and represents the output

from microphone 2. Measurements of are obtained at times

TABLE II
DIMENSIONS OF THE ACOUSTIC DRUM

. It then follows from (2.5) and (2.8)

that, for all

(10.1)

and, hence, for

...
...

... (10.2)

where . A dSPACE 1003 system is used to

determine the vector from measurements of

by solving the algebraic equation (10.2). The update

is computed by a Simulink implementation of the HSS control

algorithm.

To estimate before system operation, a sinusoidal input

with frequency 50 Hz, amplitude and , and phase angle

and is applied to the system through actuation speakers

1 and 2, respectively, in separate trials. The amplitudes

and , and the phase angles

and are chosen randomly for

each trial. For all , define , and

by

(10.3)

and define by . Let be the

output vector defined in (2.12) corresponding to the input in the

th trial. Next, define and by

(10.4)

The least squares estimate of is given by

(10.5)

and used in the HSS algorithm.

Figs. 9 and 10 show the performance of HSS control when

microphone 1 is at location A, microphone 2 is at location B,

and . Next, we modify the experiment so that

is no longer a useful estimate, that is, is uncertain. To do

this, at s, microphone 2 is moved from location A to

location C, resulting in a change in the system dynamics. Since
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Fig. 9. Experimental disturbance rejection at microphone 1 using nonadaptive
and adaptive HSS control. Microphone 1 is moved from Location A to Location
C at t � 3 s and the output diverges. Adaptive HSS control begins at t � 10 s,
and convergence is achieved. Since the control (7.9) is used, the sudden change
in the amplitude of the control input at switching instants causes huge transients.

Fig. 10. Experimental output of microphone 2 when nonadaptive and adaptive
HSS control are used for disturbance rejection. Microphone 1 is moved from
location A to location C at t � 3 s and the output of microphone 2 also diverges.
Adaptive HSS control begins at t � 10 s, and convergence is achieved. The
location of microphone 2 is fixed during the entire experiment. The transient
performance is poor due to the sudden change in the amplitude of the control
input.

conventional HSS control is unaware of this change, the modi-

fied closed-loop system is unstable and the output diverges. At

s, adaptive HSS control begins, and stability is recov-

ered providing disturbance rejection at the new location. The

location of microphone 2 is unaltered for the entire duration of

the experiment. Furthermore, the amplitude of the control input

is determined by , which is updated every 1 s by using

(7.9). Next, we repeat the above experiment but determine

Fig. 11. Experimental disturbance rejection at microphone 1 using nonadaptive
and adaptive HSS control. Microphone 1 is moved from location A to location C
at t � 3 s and the output diverges. Adaptive HSS control begins at t � 10 s, and
convergence is achieved. By using the interpolating control (9.6), the transient
performance improves without any change in the steady-state performance.

Fig. 12. Experimental output of microphone 2 when nonadaptive and adaptive
HSS control are used for disturbance rejection. Microphone 1 is moved from lo-
cation A to location C at t � 3 s and the output of microphone 2 also diverges.
Adaptive HSS control begins at t � 10 s, and convergence is achieved. The
location of microphone 2 is unaltered during the entire experiment. The inter-
polating control (9.6) is used.

using the interpolating control (9.6). The output from micro-

phone 1 and microphone 2, when the interpolating control is

used, is shown in Figs. 11 and 12. Note that the use of the inter-

polating control reduces the magnitude of the transients.

Next, we compare the performance of adaptive HSS with and

without persistancy. Let in (10.5) have entries

(10.6)
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Fig. 13. Experimental output of microphone 1 when nonadaptive HSS control

is used with an initial estimate. ~T ofT . Although adaptive HSS control begins
at t � 3 s, the performance is poor due to the lack of persistent excitation. At
t = 10 s, adaptive HSS with persistent excitation is turned on. At t = 20 s,
the performance becomes satisfactory and the persistent excitation is turned off.
The locations of the microphones are not altered during this experiment. The
interpolating control (9.6) is used.

Fig. 14. Experimental output of microphone 2 when adaptive HSS with persis-
tent excitation is used for disturbance rejection.

where, for all . Define, by

(10.7)

Figs. 13 and 14 show the performance of HSS control when mi-

crophone 1 and microphone 2 are at location A and location B,

respectively, and is used as an estimate of in the HSS al-

gorithm. At s, adaptive HSS control begins, but since

is not persistent, the estimate does not converge to and the

performance is poor. At s, adaptive HSS with persistant

is turned on and the experimental results indicate that is

persistently exciting. At s, the performance is satisfac-

tory and, hence, adaptive HSS without persistency excitation is

used after s.

XI. CONCLUSION

In this paper, we developed adaptive HSS control for distur-

bance rejection. HSS control extends higher harmonic control

and convergent control developed for helicopter vibration re-

duction and rotor imbalance suppression. HSS control is fully

MIMO and is applicable to stable systems with tonal or multi-

tonal disturbances. The adaptive HSS algorithm is easy to im-

plement and robust in the sense that no modeling information

is required aside from knowledge of the harmonic disturbance

spectrum. The implementation of a pseudo-RLS algorithm al-

leviates the need for offline modeling and, thus, simplifies the

implementation of HSS in practice.

APPENDIX

HSS CONTROL FOR MULTITONE DISTURBANCE

Assume that is harmonic with frequencies ,

and that HSS is attained within the time interval . Then

, and have components

(A1.1)

where are the amplitudes, and , and

are the phase angles of the th harmonic of the th component of

, and , respectively. Define

, and by

(11.1)

Define , and by

(11.2)



1006 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 6, NOVEMBER 2006

Define , and by

(A1.3)

The system dynamics can now be represented by (2.11), with

and defined by

...
...

. . .
. . .

...

...
...

. . .
. . .

...

(11.3)

where and are defined by (2.14),

with replaced by .
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