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Abstract: In this study, the tuned liquid damper (TLD) device was optimized by the harmony search
(HS) and adaptive harmony search algorithms (AHS). Using the harmony search algorithm, seismic
excitations were directed at single and ten-story structures, and TLD parameters were optimized to
minimize building movement. To improve design parameters, the optimization process was repeated
by adapting the design factors of the harmony search algorithm. For this purpose, both the harmony
memory consideration ratio (HMCR) and fret width (FW) were gradually reduced by providing an
initial value, and optimum algorithm parameters were obtained. As a result of both optimizations, in
a critical seismic analysis, the displacements of the adaptive harmony search showed smaller means
and standard deviations than those of the classical harmony search.

Keywords: harmony search; adaptive harmony search; tuned liquid damper; structural control;
optimization

1. Introduction

Passive dampers are the preferred systems for vibration control of structures because
of their low cost, ability to be added to existing buildings, and ease of maintenance and
repair. A tuned liquid damper (TLD) is a passive control device that absorbs the movement
of the building without any external energy. It has sloshing energy provided by the
viscosity and density of the liquid it contains. In terms of basic operating principles, it is
similar to tuned mass dampers (TMD), which consist of a spring and mass model. A TLD
aims to minimize damage to the structure caused by dynamic effects by connecting the
structure with spring and liquid mass. The type of fluid chosen for damping affects the
damping performance significantly. The density of the liquid, or its kinematic viscosity,
affects the damping performance, and, thus, the sloshing. When evaluated in terms of the
characteristic features of the design of TLDs, there are studies in which the use of water, and
mixtures including water, as the liquid, has shown good results in terms of performance
in various vibration control, easy accessibility, and cost [1,2]. Another feature that affects
damping is the geometrical characteristics of the damper tank. TLD tanks can be designed
in rectangular prism, cylindrical, or conical shapes. The effects of tank shapes on vibration
control have been investigated in various studies. It has been determined that they have
remarkable effects on damping. Chang and Gu found that rectangular-based TLDs have
remarkable effects in preventing eddy vibrations in their study [3]. Casciati et al. showed
that the truncated conical TLD tank model can be an alternative to the cylindrical TLD
tank [4]. Love and Tait worked on the constraints of the rectangular shape in tank designs
and developed a TLD tank design method [5]. Zhang took tank geometry in another
direction with his research, and observed that curved-bottom TLDs could be better than
flat-bottom TLDs, with less liquid [6]. Cavalagli et al. conducted an experimental study

Appl. Sci. 2022, 12, 2645. https://doi.org/10.3390/app12052645 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12052645
https://doi.org/10.3390/app12052645
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2236-7834
https://orcid.org/0000-0002-7327-9810
https://orcid.org/0000-0002-1423-6116
https://orcid.org/0000-0002-0370-5562
https://doi.org/10.3390/app12052645
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12052645?type=check_update&version=2


Appl. Sci. 2022, 12, 2645 2 of 15

with round, rectangular, and inclined TLD tanks, and concluded that the inclined tank
can provide more efficient results, but is less durable [7]. Effective liquid length and tank
height are the main parameters in the damping effect of the tank geometry. The effective
liquid length is the base size, which denotes the long side, where agitation is easily directed.
Fujino et al. (1992) suggested a ratio between this length and the tank height in a study [8].
Another parameter that affects TLD performance is mass. The recommended 5% mass ratio
for TMDs can be applied to TLDs as well, and it is recommended in the literature that TLD
mass should be between 1% and 4% [9–12].

The importance of the design parameters of TLDs in vibration control has necessitated
the optimization process. For this purpose, optimization is carried out using various algo-
rithms. Metaheuristic algorithms take their inspiration from spontaneous events in nature,
and the instinctive behavior of living things. These algorithms transform a mathematical
model of the instinctive behavior of living things, such as the magnificent order in the flight
of the birds, the path of the bees to their colony in search of food, bats’ detection of objects
by echolocation, or the bubble road map created by humpback whales while hunting, into
a metaheuristic algorithm, and ensure that the best solutions are obtained. The minimum
energy that living things expend to survive, processed by order based on maximum gain,
in the algorithms, makes optimum efficiency possible. The systematic order in mathemat-
ical models distinguishes metaheuristic algorithms from other optimization algorithms.
The harmony search algorithm (HS) is a type of metaheuristic algorithm developed by
Geem et al. [13]. This algorithm, which aims to achieve the best harmony, can search for a
favorite harmony in the memory bank during the search process, create a melody similar to
this harmony, or improvise for optimum harmony by creating an unheard harmony from
scratch [14]. The effect of the harmony search algorithm on design optimization has been
supported by various studies [15–21]. In recent years, it has become a preferred algorithm
in damper optimization by being applied in the design of mass and liquid dampers [2,22,23].
The harmony search algorithm includes design factors such as memory consideration ratio
(HMCR) and fret width (FW). The correct selection of these algorithm-specific factors is of
great importance for the efficiency of the optimization. It is possible to start a progressively
decreasing search process within a certain range by giving initial values to the HMCR
and FW parameters. This process has developed the adaptive harmony search algorithm
(AHS). Optimizing the design factors makes the algorithm more efficient. Thanks to the
adjustments made to the parameters of the classical HS algorithm, positive results were
obtained in the design optimization of engineering structures. Zhang and Zhang used the
improved harmony search algorithm (IHS), produced by adjusting the fret width (FW) and
bandwidth (BW) of the HS algorithm, in the optimization of mass dampers used in the
design of a water intake tower. IHS provided optimum frequency, damping, and mass
ratio calculations, and obtained better results than the optimization method of Den Hartog,
Warburton, Sadek, et al., Leung, and Zhang [24–28]. In engineering, optimization of tuned
mass dampers, steel-framed structures, nonlinear plane strain systems, reinforced concrete
shear walls, etc., are studied with the optimization of AHS and its hybrids. The classical
HS algorithm, with adaptation of algorithm parameters, showed better results than some
metaheuristic algorithms [29–33]. Since the HS algorithm has been successfully applied to
many structural engineering problems, including control applications, it has been recently
proven that the performance of the algorithm can be increased by improving the algorithm
with adaptive methods; adaptive HS has been applied in TLDs, which are a different
passive structural control problem. The best knowledge of this algorithm is another reason
for choosing this algorithm.

In this study, by adding a cylindrical TLD to single and ten-story building models,
the damper parameters were optimized with the HS algorithm to obtain the minimum
displacement under seismic excitation. A TLD based on water was applied to both single-
story structures with a natural period of 0.5 s, 1 s, and 1.5 s, and a ten-story structure.
Optimization was obtained by applying various seismic excitations using a simulation
prepared on MATLAB [34,35]. The classical HS algorithm parameters were adjusted, the
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optimization process was repeated with the AHS algorithm, and the results of the two
algorithms were analyzed for critical earthquake recording. In light of the results obtained,
the classical HS and adapted AHS algorithms were compared. For a single case study, two
other modified HS algorithms were also compared to show the efficiency of the AHS.

2. Materials and Methods
2.1. Design of TLDs and Equations of Motion

In practice, many TLDs have been included in structures. The British Airways i360
tower is shown as an example (Figure 1). Other examples include the Nagasaki Airport
Tower, Tokyo Sofitel Hotel, Yokohoma Marine Tower, Shin Yokohoma Prince Hotel, Saki-
tama Bridge, Narita Airport Control Tower, and Emley Moor Tower.

Figure 1. The British Airways i360 tower.

While designing tuned liquid dampers, the most important design variables are the
geometrical characteristics of the tank, its mass, the damper period, and the damping
ratio. The effect of tank geometry on sloshing has been demonstrated by various studies,
and a design ratio

(
h

2R > 0.15
)

between tank height and effective liquid length has been
proposed [8]. The recommended 5% mass ratio for mass dampers is also used as a suitable
ratio for liquid dampers. The selection of the damper period is another factor that should
be considered in terms of the performance of the TLD. Since the tank period expresses the
circulation time of the liquid in the system, it directly affects the sloshing, and thus, the
damping. These parameters, which are interconnected, form the basic motion equations of
the system.

In this study, a regulated liquid damper with a cylindrical tank was used. In Figure 2a, a
3D scheme of the building plus the TLD is shown. This scheme is also provided as a 2D figure,
in Figure 2b, that shows the dimensions and parameters of the TLD. Finally, an idealized
figure representing the single-story structure model plus the TLD is provided in Figure 2c.
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Figure 2. Structure plus TLD models: (a) 3D; (b) 2D; (c) Idealised model.
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The information used in the creation of the equations of motion of the cylindrical TLD
device is provided below.

The TLD mass ratio (µ) is shown in Equation (1). Here, m denotes the mass of the
structure and mTLD denotes the mass of the damper.

µ =
mTLD

m
(1)

It is known that, in the basic liquid sloshing principle, liquids are not completely
shaken, and some liquids remain passive and are not included in the sloshing. The passive
liquid that remains dormant in the TLD and the active liquid that is sloshing should be
considered separately. Together with the passive liquid TLD tank, this acts as a two-degree-
of-freedom system independent of the active liquid tank. Equations (2) and (3) show the
calculation of the mass of the sloshing liquid and passive liquid plus the empty tank. Here,
ms is the sloshing liquid, mst is the total liquid, mTLD is the TLD mass, and md is the mass of
the empty tank plus the mass of the passive liquid. The radius and height of the cylindrical
tank are indicated by h and R.

ms = mst × R×
tanh

(
1.84h

R

)
2.2h

(2)

md = mmTLD −ms (3)

The Bessel function is a function used in solving problems related to the wave propa-
gation of cylindrical bodies. The roots of this function form the damping rate parameter
(ξmn), which specifies the indices of vibration modes in the tangential (m) and radial (n)
directions [36]. Damping rate parameter was found to be 1.84 in the first vibration mode
in the tangential and radial directions, which accounted for the fundamental mode of the
liquid [36,37]. With the help of this value, the natural frequency of the sloshing liquid can
be calculated, as well as the lateral force acting on the walls of the tank, calculated according
to the linearized hydrodynamic theory of sloshing [36,38]. In this way, the sloshing liquid
mass (Equation (2)) and sloshing liquid stiffness are derived.

Equations (4) and (5) show the TLD stiffness (kd) and sloshing fluid stiffness (ks)
calculations, while Equations (6) and (7) show the TLD damping coefficient (cd) and
sloshing fluid damping coefficient (cs) calculations. The damper period is expressed as
Td. The damping ration of the sloshing liquid was obtained from experimental study data
in the literature [36,39,40]. g represents gravity. ζs is formulated as in Equation (8). The
kinematic viscosity of the fluid is shown as υ.

kd = md ×
(

2π

Td

)2
(4)

ks = mst ×
g
{

tanh
(

1.84h
R

)}2

1.19h
(5)

cd = 2× ζd ×
√

md × kd (6)

cs = ζs × 2
√

msks (7)

ζs = 4.98v
1
2 R−

3
4 g−

1
4

1 +
0.318

sinh
(

1.84h
R

) 1− h
R

cosh
(

1.84h
R

)
 (8)

In Equation (9), the damping ratio calculation of the damper is shown. The damping
ratio is denoted by ζd.

ζd =
cd

2md

√
kd
md

(9)
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The mass, stiffness, and damping coefficient matrices of the structure plus TLD model
are shown in Equations (10)–(12), respectively, and the basic equation of motion is provided
in Equation (13). In the equations, terms with the “s” index belong to the sloshing liquid,
those with the “d” index belong to TLD, and terms without an index belong to the structure. m 0 0

0 md 0
0 0 ms

 (10)

 K + Kd −Kd 0
−Kd Kd + Ks −Ks

0 −Ks Ks

 (11)

 C + Cd −Cd 0
−Cd Cd + Cs −Cs

0 −Cs Cs

 (12)

[M]
{ ..

X
}
+ [C]

{ .
X
}
+ [K]{X} = −[M]1

{ ..
Xg

}
(13)

2.2. Harmony Search and Adaptive Harmony Search Algorithm

The harmony search algorithm is a metaheuristic algorithm inspired by the best har-
mony search process developed by Geem et al. Memory consideration, used in classical HS,
was eliminated to adapt the problem optimization, to increase the convergence capacity. In
this case, a parameter called pitch adjusting rate (PAR) was not used, and the formulations
of HS were simplified. In addition, the adaptive version of HS was used to actively change
two parameters of HS. Due to the use of adaptive parameters and the elimination of PAR,
the algorithm used in this study is less parameter-dependent than the classical version. In
the algorithm operation, design limit values, iteration number, algorithm-specific harmony
memory consideration rate (HMCR), fret width (FW), and harmony memory size (HMS)
were defined. A random number between 0 and 1 is shown as rand. In AHS, the initial
values for the parameters were defined. These initial parameters (Xinitial) were defined
according to Equation (14) by using the whole solution range. The maximum and minimum
ranges of design variables are shown as Xmin and Xmax, respectively.

Xinitial = Xmin + rand (Xmax – Xmin) for Td, ζd, R and h (14)

Xnew defines a candidate value of a design variable. Then, a harmony is memorized. A
new harmony vector is generated, as shown in Equation (15) or (16), keeping the design
within the lower and upper limit values. The results obtained by writing the harmony
vector values in the objective function are stored in the memory. This process is repeated
for the amount of HMS, and each harmony vector created is stored in a solution matrix.

Xnew = Xmin + rand (Xmax − Xmin) i f HMCR > rand (15)

Another way to obtain the harmony vector is calculations based on the FW value,
as shown in Equation (15). An existing candidate solution is chosen and is shown as Xn.
Which equation will be used to create the harmony vector is decided by the HMCR value.
If a randomly selected value between zero and one is less than HMCR, Equation (14) is
chosen. If it is larger, Equation (15) is selected to create a new harmony vector.

Xnew = Xn + rand FW (Xmax − Xmin) i f HMCR ≤ rand (16)

The design variables of the TLD optimization problem are Td, ζd, R, and h. After
assigning candidate values to these variables, the mass, stiffness, and damping coefficient
values of the TLD can be calculated via the formulations presented in Section 2.1. Then, the
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coupled equation of motion, Equation (13), can be solved via dynamic analysis performed
with MATLAB and Simulink [35].

The newly created harmony vectors are compared with the previously stored old
harmony vectors. If the new solutions are better than the old solution, the old solutions
are updated; otherwise, the old solution remains as it is. These operations are repeated for
the amount of iteration by controlling the boundary conditions, and the solution vector
takes its final form. The objective function (f(X)) is the minimization of maximum top story
displacement (dis(tm)) that occurs as maximum for various earthquake records in time (tm)
domain analyses. It is formulated as Equation (17).

f (X) = minimize(max(|dis(tm)|)) (17)

To obtain the adaptive harmony search algorithm, an initial value is assigned to
the classical HS algorithm parameters (HMCR and FW), and these values are written in
decreasing order. Thus, the optimum solution is sought for all values, from the initial value
to the smallest value. Equations (18) and (19) show the HMCR and FW calculations.

HMCR = HMCRin

(
1− t

mt

)
(18)

FW = FWin

(
1− t

mt

)
(19)

Here, the HMCRin and FWin values represent the initial values of the algorithm
parameter. In the equations, t represents the iteration number and mt represents the
maximum number of iterations.

3. Numerical Examples

In this study, a model was created by placing a water-based TLD device based on
single-story and ten-story structures. Twenty-two earthquake records, defined as far-field
records in FEMA P-695 [34], were directed in simulations. The list of FEMA earthquake
records applied to single and ten-story structure models are provided in Table 1.

Table 1. FEMA earthquake records list.

Earthquake
Number Date Earthquake Name Component 1 Component 2

1 1994 Northridge NORTHR/MUL009 NORTHR/MUL279
2 1994 Northridge NORTHR/LOS000 NORTHR/LA270
3 1999 Duzce, Turkey DUZCE/BOL0000 DUZCE/BOL090
4 1999 Hector Mine HECTOR/HEC000 HECTOR/HEC090
5 1979 Imperial Valley IMPVALL/H-DLT262 IMPVALL/H-DLT352
6 1979 Imperial Valley IMPVALL/H-E11140 IMPVALL/H-E11230
7 1995 Kobe, Japan KOBE/NIS000 KOBE/NIS090
8 1995 Kobe, Japan KOBE/SHI000 KOBE/SHI090
9 1999 Kocaeli, Turkey KOCAELI/DZC180 KOCAELI/DZC270
10 1999 Kocaeli, Turkey KOCAELI/ARC000 KOCAELI/ARC090
11 1992 Landers LANDERS/PLACE270 LANDERS/YER360
12 1992 Landers LANDERS/CLW-LN LANDERS/CLW-TR
13 1989 Loma Prieta LOMAP/CAP000 LOMAP/CAP090
14 1989 Loma Prieta LOMAP/G03000 LOMAP/G03090
15 1990 Manjil, Iran MANJIL/ABBAR–L MANJIL/ABBAR–T
16 1987 Superstition Hills SUPERST/B-ICC000 SUPERST/B-ICC090
17 1987 Superstition Hills SUPERST/B-POE270 SUPERST/B-POE360
18 1992 Cape Mendocino CAPEMEND/RIO270 CAPEMEND/RIO360
19 1999 Chi-Chi, Taiwan CHICHI/CHY101-E CHICHI/CHY101-N
20 1999 Chi-Chi, Taiwan CHICHI/TCU045-E CHICHI/TCU045-N
21 1971 San Fernando SFERN/PEL090 SFERN/PEL180
22 1976 Friuli, Italy FRIULI/A-TMZ000 FRIULI/A-TMZ270
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The cylindrical tank geometry used in the model was optimized, considering a mass
ratio of 5%. The TLD tank radius and height were optimized between 0.1m and 10m, with
a damper period of 0.5 to 1.5 times the uncontrolled structure period, and a damping ratio
between 1% and 50%.

In the optimization process on MATLAB, the number of iterations was 1000, and the
pn value was 10. Algorithm parameters are shown in Table 2.

Table 2. The algorithm parameters.

Symbol Definition Value

HMCR Harmony Memory
Considering Rate 0−0.5

HMCRin
Initial Harmony Memory

Considering Rate 0.5

FW Fret Width 0−0.05
FWin Initial Fret Width 0.05

mt Maximum iteration number 1000
t Iteration number 1−1000

pn Population number 10

3.1. Single-Story Structures

By selecting a mass of 100t for all single-story structures, a three-degrees-of-freedom
(3DOF) model was created with the sloshing liquid, the structure, and the TLD plus non-
sloshing liquid moving together. The stiffness values obtained were 15.8 MN/m, 3.95 MN/m,
and 1.75 MN/m, respectively, and the damping coefficients were 0.13 MN s/m, 0.06 MN s/m,
and 0.04 MN s/m, respectively; the structure period values were between 0.5 s and 1.5 s. The
TLD was optimized to withstand structure period values between 0.5 and 1.5.

After the height and radius values of the cylindrical TLD tank were added to the single-
story structure model, the TLD period and damping ratio were optimized. The results obtained
from optimization with the classical harmony search algorithm (HS), adaptive harmony search
algorithms (AHS), and two improved harmony search algorithms (IHS [24] and a modified
variant of HS (LHS) [41]) are shown in Table 3, for the structure with a 1 s period.

Table 3. Optimum results for TLD–Water plus single-story structure model (T=1.0 s).

Variables
Optimized Values

HS IHS LHS AHS

Td (s) 1.0398 1.0291 1.0072 1.0597
ζd 0.2329 0.2217 0.2062 0.2077

R (m) 0.3938 0.3074 0.2929 0.2165
h (m) 0.8160 6.3230 6.1140 8.2789

Maximum displacement and total acceleration values were calculated as a result of the
analysis performed under FEMA earthquake warnings, with TLD parameters optimized
for the 1 s period of the structure. Table 4 shows the values obtained from the critical
earthquake analysis. A critical earthquake record for a single-story structure was recorded
in 1999 in Duzce (BOL090) for the 1 s period. Based on the results, AHS is the best method
for minimization of the objective function, taken as displacement of the top story. After
the verification of AHS as the best modified algorithm, the other optimization cases were
performed for only AHS and classical HS.

HS and AHS optimized values are shown in Table 5 for single-story models with
structure periods of 0.5 s and 1.5 s. For the 0.5 s and 1.5 s structure period, the critical earth-
quake records were 1994 Northridge (MUL279) and 1999 Kocaeli (DZC270) earthquakes,
respectively. Tables 6 and 7 show the maximum displacement and total acceleration values
obtained from the critical earthquake analysis at the 0.5 s and 1.5 s structural periods.
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Table 4. TLD plus single-story building model; critical earthquake analysis results (T = 1.0 s).

Algorithm Without TLD
Structure with TLD

HS IHS LHS AHS

Displacement (m) 0.2873419 0.2473086 0.2460654 0.2450165 0.2446071

Total Acceleration (m/s2) 11.4077630 9.6358656 9.5542167 9.4776471 9.5648807

Table 5. Optimum results for TLD–water plus single-story structure model (T=0.5 s and T=1.5 s).

Variables

Optimized Values

T = 0.5 s T = 1.5 s

HS AHS HS AHS

Td (s) 0.6555 0.6519 1.3721 1.3873
ζd 0.2189 0.2182 0.1795 0.1705

R (m) 0.2341 0.2214 0.7725 0.7636
h (m) 5.8274 1.5643 1.4396 1.6813

Table 6. TLD plus single-story building model; critical earthquake analysis results (T = 0.5s).

Algorithm
Structure

Without TLD
Structure with TLD

HS AHS

Displacement (m) 0.1774455 0.1273578 0.1268410

Total Acceleration (m/s2) 28.0477691 20.4824088 20.3932509

Table 7. TLD plus single-story building model; critical earthquake analysis results (T = 1.5s).

Algorithm
Structure

Without TLD
Structure with TLD

HS AHS

Displacement (m) 0.2927541 0.2574074 0.2567679

Total Acceleration (m/s2) 5.2223281 4.5565000 4.5520700

The displacement–time and total acceleration–time graphs obtained from the critical
seismic analysis, as a result of HS optimization, are shown in Figures 3–5 for 0.5 s, 1.0 s,
and 1.5 s, respectively, and in Figures 6–8 for AHS optimization in a single-story structure.

Figure 3. HS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a single-story structure (T = 0.5 s).
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Figure 4. AHS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a single-story structure (T = 0.5 s).

Figure 5. HS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a single-story structure (T = 1.0 s).

Figure 6. AHS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a single-story structure (T = 1.0 s).

Figure 7. HS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a single-story structure (T = 1.5 s).
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Figure 8. AHS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a single-story structure (T = 1.5 s).

3.2. Ten-Story Structure

The ten-story structure had the same mass (360 t), damping coefficient (6.2 MN s/m),
and stiffness (650 MN/m) for all stories [42]. The twelve-degree-of-freedom system (12DOF)
model, created by adding values together over the ten-story structure, is shown in Figure 9.
Optimum TLD parameters, obtained by optimization of the HS and AHS algorithms, are
shown in Table 8 for the ten-story structure.

Figure 9. TLD plus ten-story structure model.
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Table 8. Optimum results for TLD–water plus ten-story structure model.

Variables
Optimized Values

HS AHS

Td (s) 0.9956 0.9612
ζd 0.1835 0.1507

R (m) 1.0744 1.4378
h (m) 0.7534 4.9640

The critical earthquake record used for the ten-story structure was the 1999 Duzce
(BOL090) earthquake. The displacement and total acceleration values of the critical earthquake
obtained in the ten-story structure model, as a result of the optimization, are shown in Table 9.

Table 9. TLD plus ten-story building model; critical earthquake analysis results.

Algorithm
Structure

Without TLD
Structure with TLD

HS AHS

Displacement (m) 0.4101091 0.2968907 0.2943832

Total Acceleration (m/s2) 19.283306 14.3064378 14.0530882

The displacement–time and total acceleration–time graphs obtained from the critical
earthquake analysis of the ten-story structure are shown in Figures 10 and 11, respectively,
using the the HS and AHS algorithms.

Figure 10. HS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a ten-story structure.

Figure 11. AHS optimization, displacement-time, and total acceleration-time graphs of critical seismic
analysis in a ten-story structure.
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4. Discussion

In this study, the contribution of adaptive algorithm parameters, in the HS algorithm,
to the optimization process, in single and multi-story buildings, in different periods, ex-
posed to earthquake loads, was investigated. Classical HS and adaptively obtained AHS
algorithm performances were compared in three different construction periods for a single-
story structure and a ten-story structure. As a single case, AHS was compared with the
other two variants of HS. AHS was found to be more effective than IHS and LHS in the
reduction of displacement.

Concerning the displacement and total acceleration values obtained as a result of the
optimization, the reduction percentages, compared to the structure without a TLD, are
shown in Table 10. The mean and standard deviation values of the 10 optimizations are
provided in Table 11 for the HS and AHS algorithms.

Table 10. Structure displacement and total acceleration reduction percentages for structures with a TLD.

Variable

Single-Storey Structure
Ten-Storey Structure

T = 0.5 s T = 1.0 s T = 1.5 s

HS AHS HS AHS HS AHS HS AHS

Displacement (m) 28.23% 28.52% 13.93% 14.87% 12.07% 12.29% 27.61% 28.22%

Total Acceleration (m/s2) 26.97% 27.29% 15.53% 16.15% 12.75% 12.83% 25.81% 27.12%

Table 11. Means and standard deviations of ten optimizations of maximum displacement in critical
earthquake analysis.

Structure
HS AHS

Mean (m) Standard
Deviation Mean (m) Standard

Deviation

Single-Storey
Structure

T = 0.5 s 0.1275797 0.0001412 0.1268766 0.0000020

T = 1.0 s 0.2473938 0.0000460 0.2446044 0.0000005

T = 1.5 s 0.2577560 0.0001492 0.2567763 0.0000051

Ten-Storey Structure 0.2973825 0.0001058 0.2943965 0.0000034

The standard deviations of the maximum displacement values of the critical seismic
analysis, obtained as a result of 10 optimizations, were small in both algorithms, and these
values were almost zero for the AHS algorithm. While optimum results were obtained
from the HS algorithm for the ten-story structure and 0.5s, 1s, and 1.5s in the single-story
structure, in 17, 925, 942, and 871 iterations, respectively, in the AHS algorithm, optimum
results were obtained in 640, 969, 995, and 403 iterations, respectively. In this case, it
cannot be said that one is more advantageous than the other in terms of computation
time, concerning the HS and AHS algorithms; however, it shall be noted that AHS has
lower structural responses. From this, the importance of adapting algorithm parameters
for optimum selection is understood.

5. Conclusions

The optimization of tuned liquid dampers is important in terms of control performance.
Considering the maximum displacement reduction percentages of the critical earthquake
analysis obtained from this study, it can be seen that the effect on the control performance
increases as the structure period decreases.

In the model where the natural period of the structure was 0.5 s, the maximum
displacement reduction of 28.52% was achieved, while a decrease of 28.22% was achieved
in the ten-story structure. In the light of these data, it is understood that optimizing
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TLD devices, which are generally used in the control of wind vibrations, can show good
damping performance in seismic excitations. When the harmony search algorithm and the
optimization results of the adaptive harmony search algorithm, obtained by its adaptation,
are examined, it can be determined that the AHS algorithm provides better displacement
reduction than the classical HS algorithm. Considering the total acceleration values, it is
seen that the single-story structure provides a 27.29% decrease in the 0.5 s period, and the
ten-story structure provides a 27.12% decrease. It is understood that TLD optimization is
very effective in reducing the total acceleration, as well as the displacement. It has been
determined that the HMCR and FW values can be very different from the values provided
without adjusting the optimum values. Adapting the parameters to include the correct
values of these parameters increased damping performance. Considering all these results, it
can be said that adapting the algorithm parameters makes the optimization more efficient.
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