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ABSTRACT

In this paper, Kalman filtering (KF) and hidden ,Markov
model (HMM) signal processing techniques are coupled to
demodulate signals transmitted through noisy fading chan-
nels. The demodulation scheme presented can be applied to
both digital M-ary differential phase shift keyed (MDPSK)
and anslog frequency modulated (FM) signals. Adap
tive state and parameter estimation algorithms are devised
baaed on the assumption that the transmission channel in-
troduces time-varying gain and phase changes, modelled by
a stochastic linear system, and has additive Gaussian noise.
Our technique is to use an HMM filter, for signal estimation,
coupled with a KF, for channel parameter tracking. The ap
preach taken can easily be generalised for other transmiss-
ion schemes, such as continuous phase modulated (CPM)
signals.

1. INTRODUCTION

The capacity of communications systems is often limited
by fading in the transmission channel. In this paper we
address the problem of demodulating frequency modulated
signaIs in multi-path Rayleigh fading channels. The task is
twofold, involving both state (or message) estimation and
parameter (or chamd) tracking. In the case of digital dif-
ferential phase shift keyed (DPSK) signals, the matched
filter (MF) is known to be the optimal state estimator, as-
suming the message is an independent data sequence [I]
(p.267). For analog frequency modulated (FM) signals, a
phase locked loop (PLL) is commonly used for state esti-
mation. In both cases, the parameters to be tracked are
the amplitude gain and the phase shift of the transmission
channel. The traditional scheme employs a PLL for channel
phase shift tracking, and an automatic gain control (AGC)
for channel amplitude tracking. Such schemes are discuwed
in [2](Ch.5,6).

In this paper we formulate the M-ary DPSK (MDPSK)
and FM signal models into a hidden Markov model (HMM)
framework. We then apply a finit~dimensional HMM !ii-
ter for the signal state estimate, coupled with a contin-
uous state Kaiman iilter (KF) for the channel parameter
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estimate. tVe term these filters conditional coupled jilters.
Recently schemes have been developed for demodulation of
continuous phase modulated (CPM) signals in Rayleigh fad-
ing channels [3]. These techniques couple Kalman filtering
with maximum likelihood (ML) sequence estimation, how-
ever they do not accommodate phase shifts in the channel.
The technique presented in this paper can be applied to
CPM transmission schemes (in particular, minimum shift
keyed (MSK) signals) to allow for complex valued channels.
In addition, frequency shift keyed (FSK) and phase shift
keyed (PSK) signals can seen as a special case of the sig-
nal model presented in this paper. In fact the PSK model
has the same form as the quadrature amplitude modulation
(QAM) model,whichWM the subject of earlier work [4].

An important aspect of the HMM approach is that, unlike
the MF, it doa not require the assumption (in the digital
case) that the signal be an independent data sequence. We
use the term independent to signify that no dependence
existi from one sample to the next. By removing the inde-
pendence assumption we allow for signal coding, which can
introduce dependence between the message bits. In fact
the HMM specialises to the MF in the particular case of an
independent sequence.

The HMM iilter is a finite-dimensional optimal filter
where the HMM has stat= which belong to a finitAiscrete
set. The term finite-discrete implies that the elements of
the set are discrete (for example discrete frequency values)
and there are a finite number of them. To date, such filters
have been widely applied in are= such as speech process-
ing and biological signal processing [5],[6]. In this paper we
make use of the fact that the non-linear finite-discrete nw
ture of the HMM approach can be applied to the MDPSK
and FM demodulation problem. A key to this approach is
the use of the optimal HMM on-line filter, as used in [7].
This is a new approach to HMM signal processing which
enables sequential algorithms to be developed.

The aIgonthms presented in this paper are indeed more
computationaily intensive than standard MF/AGC/PLL
schemes. However the advantages come from being able
to allow for dependence in the message signal, and also
the fact that the cartesian coordinate representation of the
channel parameter, allows for a linear KF in place of the
non-linear PLL.
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2. PROBLEM FORMULATION

Inorder to implement a demodulation scheme taking advan-
tage of an adaptive HMMapproach, it is necessary to have
a discrete frequency space. In the case of digital MDPSK,
the discretization is given by the set of allowable discrete
frequency shifts. For analog FM, the frequency space must
be quantised. We term this quantised signal QFM. The
quantisation and digital sampling rate are design param-
eters whicl introduce sub-optimality to the FM receiver,
however, if the quantisation is fine enough, and the sampling
rate fast ‘enough, then the loss in performance due to digi-
tisation will be outweighed by the performance gain (over
more standard schemes) from the demodulation scheme pre-
sented here.

2.1. Signal Model

We will present the algorithm by formulating the signal
in a state space form. The signal state (in this case the
frequency) belongs to a finite-discrete set.

Let -fk be a red vrdued d.iscretestate discrete-time pro-
cess, where for each k,

jk c Zf = {.(1)f ‘“””’z~)} , z~) = (i/Lf)~ E Et

where L, E Z+ and Z+ is the set of positive integers.
We also denote the vector of discrete frequencies Zj =

~!; “; ;~;;~d~;; “
For MD#SK/QFM, the transmitted signal can be repr~

sk = Ac C3Xp~ 6k] , Ok = (ok.-] + fk)zn (1)

where the carrier amplitude, Ac, is a known constant and
(.)2= denotea modulo 27 addition.

2.2. Channel Model

The signal is passed through a channel which can cause
amplitude attenuation and phase shifts, as for example in
fading channels due to multiple transmission paths. The
channel can be modelled by a multiplicative disturbance,
gk, which introduces time-varying gain and phase changea
to the signal.

gk = Xk exp~ f#’k] = 9; + jg~

Unlike the standard polar c~ordinate approach, we work
with the vector ~k associated with the real and imaginary
parts of the channel gk.

‘k=(:=::)=($) (2)

This representation allows the observations to be written
hi-linearly in the state and the channel parameter, as will
be seen later, so that conditional coupled Kalruan filters
can be applied. The carted8a channel representation is of
mat benefitunder conditiam okpid channel phaae ahiftu.
In such situation the rum-linear PLL, wed in standard
acheme8, often fails to track the phaae, while the 3inem KF

is able to track the real and imaginary components e-
tidy.

Assumption on Channel Fading Chamcteristica : Con-
sider that the dynamics of z k, from (2), are given by the
following linear time invariant stochastic system.

zk+l = Fzk +vk+l , Vk = NIIJ, Qk] (3)

for some known 1’, (usually with A(F) < 1, where A in-
dicates @en-values, to avoid unbounded ‘k, and typically
with F = fl for some scalar O << ~ < 1). The amplitude
and phase of the channel are aasnmed to vary independently,
therefore Qk (the covariance matrix) contains terms which
couple the real and imsginary parts of ~k (see [4]).

2.3. Observation Model

The baseband output of the channel, corrupted by additive
noise U)k,is given in discrete-time, by

Yk=llkSk+Wk (4)

Assume that wk E C has i.i.d. real and imaginary parts,
W$ and w: respectively, with zero mean and Gaussian, so

that w:, w; x NIO, a~]. We also define the vector Y,, ~

(w ,..., !/k).

In vector notation the observations have the form

($)=(::=:: ‘~:~~~: )($ )+&)
(5)

2.4. State Space Signal Model

We now formulate the signal model of Section 2.1 into a
state space form in order to represent the channel in a way
that will allow the application of coupled conditional filters.
To do this it is necessary to make the following assumption.

Assumption on Me.wage Signal

~k is a first order homogeneous Markov process (6)

Remark : In the case of MDPSK signals, the assnmp
tion is valid, given that error correcting coding has been
employed in transmission. Coding techniques such as con-
volutional coding [1] (p.441 ), produce signals which are not
independent and as such display Markov properties. Of
course independent signals can be considered in this frame-
work too, since a Markov chain with a transition probabil-
ity matrix which has all elements the same, gives rise to an
independent process. Assumption (6) also holds for other
digital transmission schemes, for example the Markov prop
erties of MSK signals are discussed in [8] (P.438). For the
case of QFM, the assumption is valid if the Markov tran-
sition probability matrix used, is a diagonally dominated-
Toeplitz-circuhnt matrix. This implies that the sampling
rate is such that the frequency does not change too much
from one sample to the next. D

Let w now associate a discrete state indicator vector, X:,

with the signal state ~k. X: belongs to a finite-discrete

set of unit vectors. That is, X[ c {e~, e~, . . ..e~ ,} where

e{=(O,..., 0,1, O, . . . . O)’ c IRLj with 1 in the ith poai-

tion. Therefore jk = z~X~. In other worda, Xi = ef when

fk = 2$! It is assumed that the message sequence has a

known transition probability matrix Af, and known state



.- . .. . .. . . . . . .. .
un-normalised conditional probability density for the statevalues, 22f. Wrltmg the meassge in terms 01 I.ncllcator vec-

tors allows us to formulate state space models involving a
mixture of the states Xl and zb. We now have the following
equation based on assumption (6).

X:+l=(A’)’X; + Mk+l (7)

where ~k is a Martingale increment. h addition, we define
an indicator vector associated with the phase, by X: G
{ef’, . . . . e~c } and the vector of discrete phase values ze =

‘i) – 2~i/Le It can be shown that

::;’ : ;:::: ~h~t~n ;k E {2$)
Now given (1), X~+l is a “rotation” on X! by an amount

determined from X~+l. In particular,

(8)

where A“ (.) is a transition probability matrix given by

Ae(X(+l)’ = S’k+’ , rk = [1, 2, . . . . Lf]X{ (9)

and S is the rotation operator

[ )
00...01
10...00

S= O1””” OO (lo). . . .. . . .
00... ;0

The observation process (5) can now be expressed in
terms of the state X:.

my: _Ac cos[zjx:]

V: – Ac si.n[z:x:] -1:%%0 @)+@)
(11)

or equivalently with the appropriate definition of he(.),

Yk = ho(X:)Zk + Wk , Wk = N[o, Rk]

= [h@(t?f)Zk , hf?(t?~)Zk ,..., hf3(I?~a)Zk]~~ + W’k

= H: [~~, @ Zk]x: + Wk

(12)
where the augmented matrix H: = [he(e~), . . . . he(e~, )].
Here we see that the cartesian c~ordinates for the channel
model allow the observations to be written in a form which
is bi-li.near in X: and Zk.

In summary, we now have the following signal model

m ’13)
3. ADAPTIVE FILTER ALGORITHM

To develope an adaptive filter algorithm for the signal model
(13) it is necessary to estimate Xi and X:, for each k, and
use these estimates to traclr the channel parameter varia-
tions z~. In section 3.I we present HMM information state
fltera which have linear recursive update equations (we de-
note ~k to be the information state representing a discrete

[9] (P.?9)). we then use c?k-to gena~te normti state es-

timates of X{ and Xi.Insection 3.2 we apply conditional
‘: i@nan _ to track s&. The resulting adaptive HMM

algorithms appear as conditional coupled KF and HMM fii-
ters.

3.1. Conditional HMM Inf&rrmtion States

Let I:lx,m and ~~lx,xf denote the conditional filtered

normalised state estimates of Xi and X: respectively.
Here, r%’k= {zo,... f=

,Zk], X = {X$,....X.},Xk
{x;,...,x~} andYk= {!/C!,..., Yk}. By definition

X:, X,9 : E[Xi IYk, ~k, %-1] (14)

-e
x klA’, Xf : J5[X:\Yk, ~k, ~{] (15)

Let us define ~ to be the column vector containing all ones.
We also let the information states, a; and a:, be such that
their i’h elements are given respectively by

a~(i) $ p(yii,x~ =e{ I &,X~_~) (16)

a!(i) ~ P(yk, xf = e! I %k,~~) (17)

Observe that

~~lx,~, = (a~, lJ-’ aj (18)

-e
x kl~,~f = (a~,lJ-’ a: (19)

for which we have the following ‘forwardn recursions baaed
on algorithms presented in [5].

‘d+l = Bf(yk+l, zk+l,X~)(Af)’a{
(20)

a!+l = Be(yk+l, zk+l)de[x{+l @ ~L,]af

Here, de = [[Ae(e{)]’ . . . [Ae(e~, )] ’l. Also Bf and Be

are observation symbol probability distribution matrices
[5]. B’ (yk+l, zk+l, x:) = diag[~{+l(l), . . . ,b{+l(Lt)] and

Be(yk+l, zk+l) = dhg[b~+l( l), . . . . b~+l(Le)] where

b{+,(i) ~ ~[yk+l IX;+l = C/, Zk+l, x:]

b:+ ~(i) ~ P[yk+l I x~+~ = f?!, Zk+l]

We now have recursive tilters for the state indicator vec-
tor estimates, conditioned on each other and the channel
parameter sequence. Each of the filters in (2o) would be
optimal if the information on which they are conditioned
was known precisely.

3.2. Conditional KF Channel Estimate

Due to the fact that the observations are hi-linear in the
indicator vector Xl and the channel parameter, ~k, it is
possible to use a conditional linear KF for estimation of the
tim~varying channel.

The Kalman filter equation for the channel parameter,
Zk, conditioned on the indicator vectors, X: and X:,is

?klk= ~iklk-1+ ~k[yk – H:~klk-i] (21)
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where the gain, h’k, and covariance, ~k, are defined in [10]
(p.44). Also, If:= he(X~) as defined in (12).

We now have a recursive filter for the channel parameter,
z k, conditioned on the signal indicator states. If the true
indicator state sequences were known, then this filter would
be optimal.

3.3. The Coupled Algorithm

The practical conditional coupled algorithm which is ulti-
mately implemented, is generated by implementing the fil-
ters of equations (2o) and (21), and conditioning each filter
on the estimates generated by the others.

4. SIMULATION STUDIES

Simulation studies demonstrate the ability to estimate an
MDPSK signal, and track time-varying channel parameters.
The deterministic channel shown. has a very high ratio of
channel parameter variation, to information bit rate. These
HMM/KF schemes compare favorably to previous schemes
presented, especially in the case where dependencies exist in
the signal, as discussed previously. The simulation shown is
for am MDPSK system with M=16 (ie. 16 allowable phase
shifts in the transmitted signal). The figures show that in
these conditions of rapidly changing channels and low signal
to noise ratio (SNR), the HMM/KF scheme effectivelytracks
the channel gain, while the phase can experience clicking.
More practical channels produce better results, this simul-
ation is presented to show an extreme case.

5. CONCLUSIONS

In this paper we have presented a conditionally coupled
HMM/KF algorithm for demodulation of MDPSK and
QFM signals in noisy fading channels. The technique makes
use of information states, and is particularly suited to cases
where dependence exist in the message signal.

o 200400600 800 lCOO
T-k

Figure 1. ?& for SIiR = 2.4dB

IU3FERENCES

[]] J. G. Proakia, Digital communicat]oru McGraw-Hill,
second cd.. 1983.

. o~
1000

-rim:%’

Figure 2. kk = ltkl

3 I I

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

., ~~
1000

Tirnc k

Figure 3. & = ~g(ik)

J. A, C. Bingham, The theory and practice oj modem
design. Wiley, 1988.

J. H. Lodge and M. L. Moher, “Maximum likeli-
hood sequence estimation of CPM signals transmitted
over Rayleigh flat-fading channels,” LEEE Trans. on
Comms., vol. 38, no. 6, pp. 787-794, 1990.

L B. Conings and J. B. Moore, “Adaptive demodula-
tion of QAM signals in noisy fading Channels,fi in Proc.
oj the .2nd Int. Workshop on Intelligent Sig. Processing
and Comm. Sys. : LSPA CS 93, Sendai, Japan, pp. 99–

104, Oct. 1993.

L. R. Rabiner, “A tutorial on hidden Markov models
and selected applications in speech recognition,n Proc.
IEEE, vol. 77, no. 2, pp. 257-285, 1989.

S. H. Chung, V. Krishnarnurthy, and J. B. Moore,
‘Adaptive processing techniques based on hidden
Markov models for characterizing very small channel
currents buried in noise and deterministic interfer-
ences,” Philosophical Transactions of the Royal Soci-
ety, Lend. 1?, vol. 334, pp. 357–384, 1991.

I. B. Conings, V. Krishnamurthy, and J. B. Moore,
“Recursive prediction error techniques for adaptive es-

timation of hidden Markov models,’ in Proc. of the
12th World Congress IFA C, Sydney, Australia, pp. V
:423-426, Jtiy 1993.

E. A. Lee and D. G. Messerschmitt, Digital communi-
cation. Boston: Kluwer Academic Publishers, 1988.

P. R. Kumar and P. Varaiya, Stochastic s@ema. New
Jersey: Prentice-Hall, 1986.

B. D. O. Anderson and J. B. Moore,
New Jersey: Prentice-Hall, 1979.

Optimal filtering.

In-ma


