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ABSTRACT

In this paper, Kalman filtering (KF) and hidden Markov
model (HMM) signal processing techniques are coupled to
demodulate signals transmitted through noisy fading chan-
nels. The demodulation scheme presented can be applied to
both digital M-ary differential phase shift keyed (MDPSK)
and analog frequency modulated (FM) signals. Adap-
tive state and parameter estimation algorithms are devised
based on the assumption that the transmission channel in-
troduces time-varying gain and phase changes, modelled by
a stochastic linear system, and has additive Gaussian noise.
Our technique is to use an HMM filter, for signal estimation,
coupled with a KF, for channel parameter tracking. The ap-
proach taken can easily be generalised for other transmis-
sion schemes, such as continuous phase modulated (CPM)
signals. '

1. INTRODUCTION

The capacity of communications systems is often limited
by fading in the transmission channel. In this paper we
address the problem of demodulating frequency modulated
signals in multi-path Rayleigh fading channels. The task is
twofold, involving both state (or message) estimation and
parameter (or channel) tracking. In the case of digital dif-
ferential phase shift keyed (DPSK) signals, the matched
filter (MF) is known to be the optimal state estimator, as-
suming the message is an independent data sequence [1]
(p.267). For analog frequency modulated (FM) signals, a
phase locked loop (PLL) is commonly used for state esti-
mation. In both cases, the parameters to be tracked are
the amplitude gain and the phase shift of the transmission
channel. The traditional scheme employs a PLL for channel
phase shift tracking, and an automatic gain control (AGC)
for channel amplitude tracking. Such schemes are discussed
in [2])(Ch.5,6).

In this paper we formulate the M-ary DPSK (MDPSK)
and FM signal models into a hidden Markov model (HMM)
framework. We then apply a finite-dimensional HMM fil-
ter for the signal state estimate, coupled with a contin-
uous state Kalman filter (KF) for the channel parameter
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estimate. We term these filters conditional coupled filters.
Recently schemes have been developed for demodulation of
continuous phase modulated (CPM) signals in Rayleigh fad-
ing channels [3]. These techniques couple Kalman filtering
with maximum likelihood (ML) sequence estimation, how-
ever they do not accommodate phase shifts in the channel.
The technique presented in this paper can be applied to
CPM transmission schemes (in particular, minimum shift
keyed (MSK) signals) to allow for complex valued channels.
In addition, frequency shift keyed (FSK) and phase shift
keyed (PSK) signals can seer as a special case of the sig-
nal model presented in this paper. In fact the PSK model
has the same form as the quadrature amplitude modulation
(QAM) model, which was the subject of earlier work [4].

An important aspect of the HMM approach is thas, unlike
the MF, it does not require the assumption (in the digital
case) that the signal be an independent data sequence. We
use the term independent to signify that no dependence
exists from one sample to the next. By removing the inde-
pendence assumption we allow for signal coding, which can
introduce dependences between the message bits. In fact
the HMM specialises to the MF in the particular case of an

independent sequence.

The HMM filter is a finite-dimensional optimal filter
where the HMM has states which belong to a finite-discrete
set. The term finite-discrete implies that the elements of
the set are discrete (for example discrete frequency values)
and there are a finite number of them. To date, such filters
have been widely applied in areas such as speech process-
ing and biological signal processing [5],(6]. In this paper we
make use of the fact that the non-linear finite-discrete na-
ture of the HMM approach can be applied to the MDPSK
and FM demodulation problem. A key to this approach is
the use of the optimal HMM on-line filter, as used in [7].
This is a new approach to HMM signal processing which
enables sequential algorithms to be developed.

The algorithms presented in this paper are indeed more
computationally intensive than standard MF/AGC/PLL
schemes. However the advantages come from being able
to allow for dependences in the message signal, and also
the fact that the cartesian coordinate representation of the
channel parameter, allows for a linear KF in place of the
non-linear PLL.
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2. PROBLEM FORMULATION

In order to implement a demodulation scheme taking advan-
tage of an adaptive HMM approach, it is necessary to have
a discrete frequency space. In the case of digital MDPSK,
the discretization is given by the set of allowable discrete
frequency shifts. For analog FM, the frequency space must
be quantised. We term this quantised signal QFM. The
quantisation and digital sampling rate are design param-
eters which introduce sub-optimality to the FM receiver,
however, if the quantisation is fine enough, and the sampling
rate fast enough, then the loss in performance due to digi-
tisation will be outweighed by the performance gain (over
more standard schemes) from the demodulation scheme pre-
sented here.

2.1. Signal Model
We will present the algorithm by formulating the signal
in a state space form. The signal state (in this case the
frequency) belongs to a finite-discrete set.

Let fix be a real valued discrete-state discrete-time pro-
cess, where for each k,

frezy={£0, Ay A= G/ryreR

where Ly € Z* and Z% is the set of positive integers.
We also denote the vector of discrete frequencies zy =
(szl), ceey z(L"))' e RYs.

For MD}‘QSK/QFM, the transmitted signal can be repre-
sented in base band by

sk =Acexp[ifi] , 0x = (8x1 + fr)on (1)

where the carrier amplitude, A., is a known constant and
(.)2= denotes modulo 2x addition.

2.2. Channel Model

The signal is passed through a channel which can cause
amplitude attenuation and phase shifts, as for example in
fading channels due to multiple transmission paths. The
channel can be modelled by a multiplicative disturbance,
gk, which introduces time-varying gain and phase changes
to the signal.

9x = xxexpliéx] = gi° +igk

Unlike the standard polar co-ordinate approach, we work
with the vector zx associated with the real and imaginary
parts of the channel gx«.

_ [ KEkcoséx \ _ gF

- (n2h)-(0) o

This representation allows the obeervations to be written

bi-linearly in the state and the channel parameter, as will

be seen later, so that conditional coupled Kalman filters

can be applied. The cartesian channel representation is of

most benefit under conditions of rapid channel phase shifts.

"In such situations the non-linear PLL, used in standard

schemes, often fails to track the phase, while the linear KF

is able to track the real and imaginary components effec-
tively.

Assumption on Channel Fading Characteristics : Con-
sider that the dynamics of zx, from (2), are given by the
following linear time invariant stochastic system.

v = N[0, Q&) (3)

for some known F, {usually with A(F) < 1, where A in-
dicates eigen-values, to avoid unbounded zx, and typically
with F' = fI for some scalar 0 << f < 1). The amplitude
and phase of the channel are assumed to vary independently,
therefore Q& (the covariance matrix) contains terms which
couple the real and imaginary parts of zx (see [4]).

2.3. Observation Model

The baseband output of the channel, corrupted by additive
noise wg, is given in discrete-time, by

Thyr = Fazp+ v,

Yk = gk Sk + Wk (4)

Assume that wy € € has 1.i.d. real and imaginary parts,
wf and w] respectively, with zero mean and Gaussian, so

that wft,w] ~ N[0,02]. We also define the vector Y 2

(vo,..-,ux)-
In vector notation the observations have the form

R _f Accos@x —Acsinbx gf + wf'
i )\ Acsin€r  Accosfx 9 wi

2.4. State Space Signal Model

We now formulate the signal model of Section 2.1 into a

state space form in order to represent the channel in a way

that will allow the application of coupled conditional filters.

To do this it is necessary to make the following assumption.
Assumption on Message Signal

fx is a first order homogeneous Markov process (6)

Remark : In the case of MDPSK signals, the assump-
tion is valid, given that error correcting coding has been
employed in transmission. Coding techniques such as con-
volutional coding [1] (p.441), produce signals which are not
independent and as such display Markov properties. Of
course independent signals can be considered in this frame-
work too, since a Markov chain with a transition probabil-
ity matrix which has all elements the same, gives rise to an
independent process. Assumption (6) also holds for other
digital transmission schemes, for example the Markov prop-
erties of MSK signals are discussed in [8] (p.438). For the
case of QFM, the assumption is valid if the Markov tran-
sition probability matrix used, is a diagonally dominated-
Toeplitz-circulant matrix. This implies that the sampling
rate is such that the frequency does not change too much
from one sample to the next. o]

Let us now associate a discrete state indicator vector, X ,{ ,
with the signal state fi. X ,{ belongs to a finite-discrete
set of unit vectors. That is, X € {e],¢],.. .,cij} where
el =(0,...,0,1,0,...,0) € R* with 1 in the i** posi-
tion. Therefore fx = z,X| ,{ . In other words, X kj = c{ when
fr = z(!'). It is assnmed that the message sequence has a
known transition probability matrix A’, and known state
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values, Zy. Writing the message in terms of indicator vec-
tors allows us to formulate state space models involving a
mixture of the states X and z». We now have the following
equation based on assumption (6).

X1 = ANYX] + My W)

where My is a Martingale increment. In addition, we define
an indicator vector associated with the phase, by X? €
{ef,... ,e%,} and the vector of discrete phase values z¢ =

(zgl), ceey sz‘))' where zgi) = 2xi/L¢. It can be shown that
if Ly=2nL;, n€ Z, then 8y € {zg‘)}.

Now given (1), X2, is a “rotation” on X} by an amount
determined from X +1- In particular,

Xin = %X XE (8)
where A%(.) is a transition probability matrix given by
AC(XL) =S™ =12 LaX{  (9)

and S is the rotation operator

00 01
10 0 0

s=] 01 00 (10)
0 0 ... 10

The observation process (5) can now be expressed in
terms of the state X 7.

W _ (AccoslstX) —AcsnlzXE\ (oF) , (o

i Acsin[z)XE]  Accos[z5XE]) \ai wi
(11)

or equivalently with the appropriate definition of he(.),

he(Xz) Tk +wWrx , Wi= N[0, Ri]
[hg(ef)zk , ho(evg)xk yeses ho(ei. )zk]X,f + Wi
Ho(IL, ® x"]X: + Wk

Yk

(12
where the augmented matrix H; = [ho(e?), ..., ho(eZ, )])
Here we see that the cartesian co-ordinates for the channel
model allow the observations to be written in a form which
is bi-linear in X? and z.

In summary, we now have the following signal model

Xl{+1 = (A)YX] + M
Xin = A1 XE (13)
Tht1 = Fzp4vrp

Yo = Hylli, ® ze) X2+ wi

3. ADAPTIVE FILTER ALGORITHM

To develope an adaptive filter algorithm for the signal model
(13) it is necessary to estimate X/ and X§, for each k, and
use these estimates to track the channel parameter varia-
tions zx. In section 3.1 we present HMM information state
filters which have linear recursive update equations (we de-
note ax to be the information state representing a discrete

un-normalised conditional probability density for the state
[9] (p.79)). We then use ax to generate normalised state es-
timates of X ,{ and X}. In section 3.2 we apply conditional

% Kalman filtering to track si. The resulting adaptive HMM

algorithms appear as conditional coupled KF and HMM fil-
ters.

3.1. Conditional HMM Information States

Let X)):lx,x' and X:w,x! denote the conditional filtered
normalised state estimates of X/ and X} respectively.
Here, Xx = {zo,...,z&}, ¥f = {X&... . X8}, ¥ =
{x{,...,X!} and Yx = {50, ...,yx}. By definition

il

X s E[XL | Yo, X, XLy (14)

o

X:Lx,x! E[X} lyk,Xk,X,{] (15)

Let us define 1 to be the column vector containing all ones.
We also let the information states, ai and aj, be such that
their #* elements are given respectively by

el(i) & PV X{=¢l X, X))  (16)

() = P(Ya,XP=el| X, X]) amn
Observe that

Xfpwe = (@D af (18)

Xiewr = {(a Dok (19)

for which we have the following “forward” recursions based
on algorithms presented in (5].

af,, = B (yrsr, zre1, X2) (A7) of (20)

0’24-1 = Be(yk+lvzk+l)Ao[X;{+1 ®-’L.]a§

Here, A® = [[Ae(e{)]'...[Aa(e{! )1]. Also B and B?
are observation symbol probability distribution matrices
(8] BY (yr+1, zh41, XX) = diag[df,; (1), ., 5{,;(Ls)] and
Bo(yk+1,2k+1) = dia.g[bﬁ,,,l(l), e ,b,’;_,_l(La)] where

N
bi{+1(‘) = Plyr+1 |X;{+1 = e{,fkﬂ,Xg]

N A
bi+1(‘) = Plyr+1 | X£+1 = e?,2k+1]

We now have recursive filters for the state indicator vec-
tor estimates, conditioned on each other and the channel
parameter sequence. Each of the filters in (20) would be
optimal if the information on which they are conditioned
was known precisely.

3.2. Conditional KF Channel Estimate

Due to the fact that the observations are bi-linear in the
indicator vector X and the channel parameter, zy, it is
possible to use a conditional linear KF for estimation of the
time-varying channel.

The Kalman filter equation for the channel parameter,
zk, conditioned on the indicator vectors, X ,{ and X}, is

Erpe = Firp—1 + Kilyx — Hitupp—1] (21)
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where the gain, Kx, and covariance, Zx, are defined in [10]
(p.44). Also, Hi = he(Xf) as defined in (12).

We now have a recursive filter for the channel parameter,
zx, conditioned on the signal indicator states. If the true
indicator state sequences were known, then this filter would
be optimal.

3.3. The Coupled Algorithm

The practical conditional coupled algorithm which is ulti-
mately implemented, is generated by implementing the fil-
ters of equations (20) and (21), and conditioning each filter
on the estimates generated by the others.

4. SIMULATION STUDIES

Simulation studies demonstrate the ability to estimate an
MDPSK signal, and track time-varying channel parameters.
The deterministic channel shown, has a very high ratio of
channel parameter variation, to information bit rate. These
HMM /KF schemes compare favourably to previous schemes
presented, especially in the case where dependencies exist in
the signal, as discussed previously. The simulation shown is
for an MDPSK system with M=16 (ie. 16 allowable phase
shifts in the transmitted signal). The figures show that in
these conditions of rapidly changing channels and low signal
to noise ratio (SNR), the HMM/KF scheme effectivly tracks
the channel gain, while the phase can experience clicking.
More practical channels produce better results, this simu-
lation is presented to show an extreme case.

5. CONCLUSIONS

In this paper we have presented a conditionally coupled
HMM/KF algorithm for demodulation of MDPSK and
QFM signals in noisy fading channels. The technique makes
use of information states, and is particularly suited to cases
where dependences exist in the message signal.

Time k

Figure 1. 1, for SNR = 2.4dB
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