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ABSTRACT

Big data can easily be contaminated by outliers or contain variables with heavy-tailed distributions, which
makes many conventional methods inadequate. To address this challenge, we propose the adaptive Huber
regression for robust estimation and inference. The key observation is that the robusti�cation parameter
should adapt to the sample size, dimension andmoments for optimal tradeo�betweenbias and robustness.
Our theoretical framework deals with heavy-tailed distributions with bounded (1 + δ)th moment for any
δ > 0. We establish a sharp phase transition for robust estimation of regression parameters in both low
and high dimensions: when δ ≥ 1, the estimator admits a sub-Gaussian-type deviation bound without
sub-Gaussian assumptions on the data, while only a slower rate is available in the regime 0 < δ < 1 and
the transition is smooth and optimal. In addition, we extend the methodology to allow both heavy-tailed
predictors and observation noise. Simulation studies lend further support to the theory. In a genetic study
of cancer cell lines that exhibit heavy-tailedness, the proposed methods are shown to be more robust and
predictive. Supplementary materials for this article are available online.
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1. Introduction

Modern data acquisitions have facilitated the collection of mas-
sive and high-dimensional data with complex structures. Along
with holding great promises for discovering subtle population
patterns that are less achievable with small-scale data, big data
have introduced a series of new challenges to data analysis
both computationally and statistically (Loh and Wainwright
2015; Fan et al. 2018). During the last two decades, extensive
progress has been made toward extracting useful information
from massive data with high-dimensional features and sub-
Gaussian tails. A random variableZ is said to have sub-Gaussian
tails if there exists constants c1 and c2 such that P(|Z| > t) ≤

c1 exp(−c2t
2) for any t ≥ 0 (Tibshirani 1996; Fan and Li 2001;

Efron et al. 2004; Bickel, Ritov, and Tsybakov 2009). We refer to
themonographs, Bühlmann and van de Geer (2011) andHastie,
Tibshirani, andWainwright (2015), for a systematic coverage of
contemporary statistical methods for high-dimensional data.

The sub-Gaussian tails requirement, albeit being convenient

for theoretical analysis, is not realistic in many practical appli-

cations since modern data are o�en collected with low quality.

For example, a recent study on functional magnetic resonance

imaging (fMRI) (Eklund, Nichols, and Knutsson 2016) shows

that the principal cause of invalid fMRI inferences is that the

data do not follow the assumedGaussian shape, which speaks to

the need of validating the statistical methods being used in the

�eld of neuroimaging. In a microarray data example considered

in Wang, Peng, and Li (2015), it is observed that some gene

expression levels have heavy tails as their kurtosises are much
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larger than 3, despite of the normalization methods used. In

�nance, the power-law nature of the distribution of returns

has been validated as a stylized fact (Cont 2001). Fan et al.

(2016) argued that heavy-tailed distribution is a stylized feature

for high-dimensional data and proposed a shrinkage principle

to attenuate the in�uence of outliers. Standard statistical pro-

cedures that are based on the method of least squares o�en

behave poorly in the presence of heavy-tailed data. We say a

random variable X has heavy tails if P(|X| > t) decays to zero

polynomially in 1/t as t → ∞ (Catoni 2012). It is therefore of

ever-increasing interest to develop new statistical methods that

are robust against heavy-tailed errors and other potential forms

of contamination.

In this article, we �rst revisit the robust regression that was

initiated by Peter Huber in his seminal work Huber (1973).

Asymptotic properties of the Huber estimator have been well

studied in the literature. We refer to Huber (1973), Yohai and

Maronna (1979), Portnoy (1985), Mammen (1989), and He

and Shao (1996, 2000) for an unavoidably incomplete overview.

However, in all of the aforementioned papers, the robusti�cation

parameter is suggested to be set as �xed according to the 95%

asymptotic e�ciency rule. Thus, this procedure cannot estimate

the model-generating parameters consistently when the sample

distribution is asymmetric.

From a nonasymptotic perspective (rather than an asymp-

totic e�ciency rule), we propose to use the Huber regression

with an adaptive robusti�cation parameter, which is referred

to as the adaptive Huber regression, for robust estimation and

© 2019 American Statistical Association
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inference. Our adaptive procedure achieves the nonasymptotic

robustness in the sense that the resulting estimator admits

exponential-type concentration bounds when only low-order

moments exist. Moreover, the resulting estimator is also an

asymptotically unbiased estimate for the parameters of interest.

In particular, we do not impose symmetry and homoscedasticity

conditions on error distributions, so that our problem is

intrinsically di�erent from median/quantile regression models,

which are also of independent interest and serve as important

robust techniques (Koenker 2005).

We made several major contributions toward robust model-

ing in this article. First and foremost, we establish nonasymp-

totic deviation bounds for adaptive Huber regression when the

error variables have only �nite (1+δ)th moments. By providing

a matching lower bound, we observe a sharp phase transition

phenomenon, which is in line with that discovered by Devroye

et al. (2016) for univariate mean estimation. Second, a similar

phase transition for regularized adaptive Huber regression is

established in high dimensions. By de�ning the e�ective dimen-

sion and e�ective sample size, we present nonasymptotic results

under the two di�erent regimes in a uni�ed form. Last, by

exploiting the localized analysis developed in Fan et al. (2018),

we remove the arti�cial bounded parameter constraint imposed

in previous works; see Loh and Wainwright (2015) and Fan, Li,

and Wang (2017). In the supplementary materials, we present a

nonasymptotic Bahadur representation for the adaptive Huber

estimator when δ ≥ 1, which provides a theoretical foundation

for robust �nite-sample inference.

The rest of the article proceeds as follows. The rest of this

section is devoted to related literature. In Section 2, we revisit

the Huber loss and robusti�cation parameter, followed by the

proposal of adaptive Huber regression in both low and high

dimensions. We sharply characterize the nonasymptotic perfor-

mance of the proposed estimators in Section 3. We describe

the algorithm and implementation in Section 5. Section 6 is

devoted to simulation studies and a real data application. In

Section 4, we extend the methodology to allow possibly heavy-

tailed covariates/predictors. All the proofs are collected in the

supplementary materials.

1.1. Related Literature

The terminology “robustness” used in this article describes how
stable the method performs with respect to the tail-behavior of
the data, which can be either sub-Gaussian/subexponential or
Pareto-like (Delaigle, Hall, and Jin 2011; Catoni 2012; Devroye
et al. 2016). This is di�erent from the conventional perspec-
tive of robust statistics under Huber’s ǫ-contamination model
(Huber 1964), for which a number of depth-based procedures
have been developed since the groundbreaking work of Tukey
(1975). Signi�cant contributions have also been made in Liu
(1990), Liu, Parelius, and Singh (1999), Zuo and Ser�ing (2000),
Mizera (2002), andMizera andMüller (2004).We refer to Chen,
Gao, and Ren (2018) for the most recent result and a literature
review concerning this problem.

Our main focus is on the conditional mean regression in the
presence of heavy-tailed and asymmetric errors, which auto-
matically distinguishes our method from quantile-based robust

regressions (Koenker 2005; Belloni and Chernozhukov 2011;
Wang 2013; Fan, Fan, and Barut 2014; Zheng, Peng, and He
2015). In general, quantile regression is biased toward estimat-
ing themean regression coe�cient unless the error distributions
are symmetric around zero. Another recent work that is related
to ours is Alquier, Cottett, and Lecué (2017). They studied a gen-
eral class of regularized empirical risk minimization procedures
with a particular focus on Lipschitz losses, which includes the
quantile, hinge, and logistic losses. Di�erent from all thesework,
our goal is to estimate the mean regression coe�cients robustly.
The robustness is witnessed by a nonasymptotic analysis: the
proposed estimators achieve sub-Gaussian deviation bounds
when the regression errors have only �nite second moments.
Asymptotically, our proposed estimators are fully e�cient: they
achieve the same e�ciency as the ordinary least squares (OLS)
estimators.

An important step toward estimation under heavy-tailedness
has been made by Catoni (2012), whose focus is on estimating
a univariate mean. Let X be a real-valued random variable with
mean μ = E(X) and variance σ 2 = var(X) > 0, and assume
thatX1, . . . ,Xn are independent and identically distributed (iid)
fromX. For any prespeci�ed exception probability t > 0, Catoni
constructs a robust mean estimator μ̂C(t) that deviates from the
true mean μ logarithmically in 1/t, that is,

P
[
|μ̂C(t) − μ| ≤ tσ/n1/2

]
≥ 1 − 2 exp(−ct2), (1)

while the empiricalmeandeviates from the truemean only poly-
nomially in 1/t2, namely sub-Gaussian tails versus Cauchy tail
in terms of t. Further, Devroye et al. (2016) developed adaptive
sub-Gaussian estimators that are independent of the prespeci-
�ed exception probability. Beyondmean estimation, Brownlees,
Joly, and Lugosi (2015) extendedCatoni’s idea to study empirical
risk minimization problems when the losses are unbounded.
Generalizations of the univariate results to those for matrices,
such as the covariance matrices, can be found in Catoni (2016),
Minsker (2018), Giulini (2017), and Fan, Li, and Wang (2017).
Fan, Li, and Wang (2017) modi�ed Huber’s procedure (Huber
1973) to obtain a robust estimator, which is concentrated around
the true mean with exponentially high probability in the sense
of (1), and also proposed a robust procedure for sparse linear
regression with asymmetric and heavy-tailed errors.

Notation. We �x some notations that will be used throughout
this article. For any vector u = (u1, . . . , ud)

T ∈ R
d and

q ≥ 1, ‖u‖q = (
∑d

j=1 |uj|
q)1/q is the ℓq norm. For any vectors

u, v ∈ R
d, we write 〈u, v〉 = u

T
v. Moreover, we let ‖u‖0 =∑d

j=1 1(uj 
=0) denote the number of nonzero entries of u, and
set ‖u‖∞ = max1≤j≤d |uj|. For two sequences of real numbers
{an}n≥1 and {bn}n≥1, an � bn denotes an ≤ Cbn for some
constant C > 0 independent of n, an � bn if bn � an, and
an ≍ bn if an � bn and bn � an. For two scalars, we use
a ∧ b = min{a, b} to denote the minimum of a and b. If A is an
m×nmatrix, we use ‖A‖ to denote its spectral norm, de�ned by
‖A‖ = maxu∈Sn−1 ‖Au‖2, where S

n−1 = {u ∈ R
n : ‖u‖2 = 1}

is the unit sphere inR
n. For an n× nmatrix A, we use λmax(A)

andλmin(A) to denote themaximumandminimumeigenvalues
ofA, respectively. For two n×nmatricesA andB, we writeA 

B if B − A is positive semide�nite. For a function f : Rd → R,
we use ∇f ∈ R

d to denote its gradient vector as long as it exists.
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2. Methodology

We consider iid observations (y1, x1), . . . , (yn, xn) that are gen-
erated from the following heteroscedastic regression model

yi = 〈xi,β
∗〉 + εi, with

E(εi|xi) = 0 and vi,δ = E
(
|εi|

1+δ
)

< ∞. (2)

Assuming that the second moments are bounded (δ = 1), the

standard OLS estimator, denoted by β̂
ols
, admits a suboptimal

polynomial-type deviation bound, and thus does not concen-
trate around β∗ tightly enough for large-scale simultaneous
estimation and inference. The key observation that underpins
this suboptimality of the OLS estimator is the sensitivity of
quadratic loss to outliers (Huber 1973; Catoni 2012), while the
Huber regression with a �xed tuning constant may lead to non-
negligible estimation bias. To overcome this drawback, we pro-
pose to employ the Huber loss with an adaptive robusti�cation
parameter to achieve robustness and (asymptotic) unbiasedness
simultaneously. We begin with the de�nitions of the Huber loss
and the corresponding robusti�cation parameter.

De�nition 1 (Huber loss and robusti�cation parameter). The
Huber loss ℓτ (·) (Huber 1964) is de�ned as

ℓτ (x) =

{
x2/2, if |x| ≤ τ ,
τ |x| − τ 2/2, if |x| > τ ,

where τ > 0 is referred to as the robusti�cation parameter that
balances bias and robustness.

The loss function ℓτ (x) is quadratic for small values of x and
becomes linear when x exceeds τ in magnitude. The parameter
τ therefore controls the blending of quadratic and ℓ1 losses,
which can be regarded as two extremes of the Huber loss with
τ = ∞ and τ → 0, respectively. Comparing with the least
squares, outliers are down weighted in the Huber loss. We will
use the name, adaptive Huber loss, to emphasize the fact that
the parameter τ should adapt to the sample size, dimension
and moments for a better tradeo� between bias and robustness.
This distinguishes our framework from the classical setting. As
τ → ∞ is needed to reduce the bias when the error distribution
is asymmetric, this loss is also called the RA-quadratic (robust
approximation to quadratic) loss in Fan, Li, and Wang (2017).

De�ne the empirical loss function Lτ (β) = n−1
∑n

i=1
ℓτ (yi − 〈xi,β〉) for β ∈ R

d. The Huber estimator is de�ned
through the following convex optimization problem

β̂τ = arg min
β∈Rd

Lτ (β). (3)

In low dimensions, under the condition that vδ = n−1
∑n

i=1

E(|εi|
1+δ) < ∞ for some δ > 0, we will prove that β̂τ with

τ ≍ min{v
1/(1+δ)

δ , v
1/2
1 } nmax{1/(1+δ),1/2} (the �rst factor is kept

Figure 1. Phase transition in terms of ℓ2-error for the adaptive Huber estimator.

With �xed e�ective dimension, ‖β̂τ − β∗‖2 ≍ n
−δ/(1+δ)

e�
, when 0 < δ < 1;

‖β̂τ − β∗‖2 ≍ n
−1/2
e�

, when δ ≥ 1. Here ne� is the e�ective sample size: ne� = n

in low dimensions while ne� = n/ log d in high dimensions.

to show its explicit dependence on the moment) achieves the
tight upper bound d1/2τ−(δ∧1) ≍ d1/2n−min{δ/(1+δ),1/2}. The
phase transition at δ = 1 can be easily observed (see Figure 1).
When higher moments exist (δ ≥ 1), robusti�cation leads to a
sub-Gaussian-type deviation inequality in the sense of (1).

In the high-dimensional regime, we consider the following
regularized adaptive Huber regression with a di�erent choice of
the robusti�cation parameter

β̂τ ,λ ∈ arg min
β∈Rd

{
Lτ (β)+λ‖β‖1

}
, (4)

where τ ≍ νδ{n/(log d)}
max{1/(1+δ),1/2} and λ ≍ νδ

{(log d)/n}min{δ/(1+δ),1/2} with νδ = min{v
1/(1+δ)

δ , v
1/2
1 }. Let

s be the size of the true support S = supp(β∗). We will show
that the regularized Huber estimator achieves an upper bound
that is of the order s1/2{(log d)/n}min{δ/(1+δ),1/2} for estimating
β∗ in ℓ2-error with high probability.

To unify the nonasymptotic upper bounds in the two dif-
ferent regimes, we de�ne the e�ective dimension, de�, to be d
in low dimensions and s in high dimensions. In other words,
de� denotes the number of nonzero parameters of the problem.
The e�ective sample size, ne�, is de�ned as ne� = n and
ne� = n/ log d in low and high dimensions, respectively. We
will establish a phase transition: when δ ≥ 1, the proposed
estimator enjoys a sub-Gaussian concentration, while it only
achieves a slower concentration when 0 < δ < 1. Speci�cally,
we show that, for any δ ∈ (0,∞), the proposed estimators with

τ ≍ min{v
1/(1+δ)

δ , v
1/2
1 } n

max{1/(1+δ),1/2}
e� achieve the following

tight upper bound, up to logarithmic factors

∥∥β̂τ − β∗
∥∥
2
� d

1/2
e� n

−min{δ/(1+δ),1/2}
e� with high probability.

(5)

This �nding is summarized in Figure 1.
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3. Nonasymptotic Theory

3.1. Adaptive Huber RegressionWith Increasing

Dimensions

We begin with the adaptive Huber regression in the low-
dimensional regime. First, we provide an upper bound for the
estimation bias of Huber regression.We then establish the phase
transition by establishing matching upper and lower bounds
on the ℓ2-error. The analysis is carried out under both �xed
and random designs. The results under random designs are
provided in the supplementary materials. We start with the
following regularity condition.

Condition 1. The empirical Gram matrix Sn := n−1
∑n

i=1 xix
T
i

is nonsingular. Moreover, there exist constants cl and cu such
that cl ≤ λmin(Sn) ≤ λmax(Sn) ≤ cu.

For any τ > 0, β̂τ given in (3) is naturalM-estimator of

β∗
τ := arg min

β∈Rd
E{Lτ (β)} = arg min

β∈Rd

1

n

n∑

i=1

E{ℓτ (yi − 〈xi,β〉)},

(6)

where the expectation is taken over the regression errors.We call
β∗

τ the Huber regression coe�cient, which is possibly di�erent
from the vector of true parametersβ∗. The estimation bias,mea-
sured by ‖β∗

τ − β∗‖2, is a direct consequence of robusti�cation
and asymmetric error distributions. Heuristically, choosing a
su�ciently large τ reduces bias at the cost of losing robustness
(the extreme case of τ = ∞ corresponds to the least squares
estimator). Our �rst result shows how themagnitude of τ a�ects
the bias ‖β∗

τ − β∗‖2. Recall that vδ = n−1
∑n

i=1 vi,δ with vi,δ =

E(|εi|
1+δ).

Proposition 1. Assume Condition 1 holds and that vδ is �nite for
some δ > 0. Then, the vectorβ∗

τ ofHuber regression coe�cients
satis�es

‖β∗
τ − β∗‖2 ≤ 2c

−1/2
l vδτ

−δ (7)

provided τ ≥ (4vδM̃
2)1/(1+δ) for 0 < δ < 1 or τ ≥ (2v1)

1/2M̃

for δ ≥ 1, where M̃ = max1≤i≤n ‖S
−1/2
n xi‖2.

The total estimation error ‖β̂τ − β∗‖2 can therefore be
decomposed into two parts

∥∥β̂τ − β∗
∥∥
2︸ ︷︷ ︸

Total error

≤
∥∥β̂τ − β∗

τ

∥∥
2︸ ︷︷ ︸

estimation error

+
∥∥β∗

τ − β∗
∥∥
2︸ ︷︷ ︸

approximation bias

,

where the approximation bias is of order τ−δ . A large τ reduces
the bias but compromises the degree of robustness. Thus, an
optimal estimator is the one with τ diverging at a certain rate
to achieve the optimal tradeo� between estimation error and
approximation bias. Our next result presents nonasymptotic
upper bounds on the ℓ2-error with an exponential-type excep-
tion probability, when τ is properly tuned. Recall that νδ =

min{v
1/(1+δ)

δ , v
1/2
1 } for any δ > 0.

Theorem 1 (Upper bound). Assume Condition 1 holds and vδ <

∞ for some δ > 0. Let L = max1≤i≤n ‖xi‖∞ and assume n ≥

C(L, cl)d
2t for some C(L, cl) > 0 depending only on L and cl.

Then, for any t > 0 and τ0 ≥ νδ , the estimator β̂τ with τ =

τ0(n/t)
max{1/(1+δ),1/2} satis�es the bound

∥∥β̂τ − β∗
∥∥
2

≤ 4c−1
l Lτ0 d

1/2

(
t

n

)min{δ/(1+δ),1/2}

(8)

with probability at least 1 − (2d + 1)e−t .

Remark 1. It is worth mentioning that the proposed robust esti-

mator depends on the unknown parameter v
1/(1+δ)

δ . Adaptation
to the unknown moment is indeed another important problem.
In Section 6, we suggest a simple cross-validation scheme for
choosing τ with desirable numerical performance. A general
adaptive construction of τ can be obtained via Lepski’s method
(Lepski 1991), which is more challenging due to unspeci�ed
constants. In the supplementary materials, we discuss a variant
of Lepski’s method and establish its theoretical guarantee.

Remark 2. We do not assume E(|εi|
1+δ|xi) to be a constant,

and hence the proposedmethod accommodates heteroscedastic
regression models. For example, εi can take the form of σ(xi)vi,
where σ : R

d → (0,∞) is a positive function, and vi are
random variables satisfying E(vi) = 0 and E(|vi|

1+δ) < ∞.

Remark 3. We need the scaling condition to go roughly as n �

d2t under �xed designs.With random designs, we show that the
scaling condition can be relaxed to n � d + t. Details are given
in the supplementary materials.

Theorem 1 indicates that, with only bounded (1 + δ)th
moment, the adaptive Huber estimator achieves the upper
bound d1/2n−min{δ/(1+δ),1/2}, up to a logarithmic factor, by
setting t = log(nd). A natural question is whether the upper
bound in (8) is optimal. To address this, we provide a matching
lower bound up to a logarithmic factor. Let Pvδ

δ be the class of
all distributions onR whose (1+ δ)th absolute central moment
equals vδ . Let X = (x1, . . . , xn)

T = (x1, . . . , xd) ∈ R
n×d be the

design matrix and Un = {u : u ∈ {−1, 1}n}.

Theorem 2 (Lower bound). Assume that the regression errors
εi are iid from a distribution in P

vδ
δ with δ > 0. Suppose

there exists a u ∈ Un such that ‖n−1XT
u‖min ≥ α for some

α > 0. Then, for any t ∈ [0, n/2] and any estimator β̂ =

β̂(y1, . . . , yn, t) possibly depending on t, we have

sup
P∈P

vδ
δ

P

[∥∥β̂ − β∗
∥∥
2

≥ αc−1
u νδ d

1/2

(
t

n

)min{δ/(1+δ),1/2}]

≥
e−2t

2
,

where cu ≥ λmax(Sn).

Theorem 2 reveals that root-n consistency with exponential
concentration is impossible when δ ∈ (0, 1). It widens the
phenomenon observed in Theorem 3.1 in Devroye et al. (2016)
for estimating a mean. In addition to the eigenvalue assump-
tion, we need to assume that there exists a u ∈ Un ⊆ R

n

such that the minimum angle between n−1
u and x

j is non-
vanishing. This assumption comes from the intuition that the
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linear subspace spanned by x
j is at most of rank d and thus

cannot span the whole space R
n. This assumption naturally

holds in the univariate case where X = (1, . . . , 1)T and we can
take u = (1, . . . , 1)T and α = 1.More generally, ‖XT

u/n‖min =

min{|uTx1|/n, . . . , |uTxd|/n}. Taking |uTx1|/n for an example,
since u ∈ {−1,+1}n, we can assume that each coordinate of x1

is positive. In this case, uTx1/n =
∑n

i=1 |x1i |/n ≥ mini |x
1
i |,

which is strictly positive with probability one, assuming x
1 is

drawn from a continuous distribution.
Together, the upper and lower bounds show that the adaptive

Huber estimator achieves near-optimal deviations. Moreover, it
indicates that the Huber estimator with an adaptive τ exhibits a
sharp phase transition: when δ ≥ 1, β̂τ converges to β∗ at the
parametric raten−1/2, while only a slower rate of ordern−δ/(1+δ)

is available when the second moment does not exist.

Remark 4. We provide a parallel analysis under random designs
in the supplementary materials. Beyond the nonasymptotic
deviation bounds, we also prove a nonasymptotic Bahadur
representation, which establishes a linear approximation of the
nonlinear robust estimator. This result paves the way for future
research on conducting statistical inference and constructing
con�dence sets under heavy-tailedness. Additionally, the
proposed estimator achieves full e�ciency: it is as e�cient
as the OLS estimator asymptotically, while the robustness is
characterized via nonasymptotic performance.

3.2. Adaptive Huber Regression in High Dimensions

In this section, we study the regularized adaptive Huber estima-
tor in high dimensions where d is allowed to growwith the sam-
ple size n exponentially. The analysis is carried out under �xed
designs, and results for random designs are again provided in
the supplementary materials. We start with a modi�ed version
of the localized restricted eigenvalue (LRE) introduced by Fan
et al. (2018). LetHτ (β) = ∇2Lτ (β) denote the Hessian matrix.
Recall that S = supp(β∗) ⊆ {1, . . . , d} is the true support set
with |S| = s.

De�nition 2 (LRE). The LRE ofHτ is de�ned as

κ+(m, γ , r) = sup
{
〈u,Hτ (β)u〉 : (u,β) ∈ C(m, γ , r)

}
,

κ−(m, γ , r) = inf
{
〈u,Hτ (β)u〉 : (u,β) ∈ C(m, γ , r)

}
,

where C(m, γ , r) := {(u,β) ∈ S
d−1 × R

d : ∀J ⊆

{1, . . . , d} satisfying S ⊆ J, |J| ≤ m, ‖uJc‖1 ≤ γ ‖uJ‖1, ‖β −

β∗‖1 ≤ r} is a local ℓ1-cone.

The LRE is de�ned in a local neighborhood of β∗ under ℓ1-
norm. This facilitates our proof, while Fan et al. (2018) use the
ℓ2-norm.

Condition 2. Hτ satis�es the LRE condition LRE(k, γ , r), that is,
κl ≤ κ−(k, γ , r) ≤ κ+(k, γ , r) ≤ κu for some constants κu, κl >

0.

The condition above is referred to as the LRE condition (Fan
et al. 2018). It is a uni�ed condition for studying generalized
loss functions, whose Hessians may possibly depend on β . For

Huber loss, Condition 2 also involves the observation noise. The
following de�nition concerns the restricted eigenvalues (REs) of
Sn instead ofHτ .

De�nition 3 (RE). The restricted maximum and minimum
eigenvalues of Sn are de�ned, respectively, as

ρ+(m, γ ) = sup
u

{
〈u, Snu〉 : u ∈ C(m, γ )

}
,

ρ−(m, γ ) = inf
u

{
〈u, Snu〉 : u ∈ C(m, γ )

}
,

where C(m, γ ) := {u ∈ S
d−1 : ∀J ⊆ {1, . . . , d} satisfying S ⊆

J, |J| ≤ m, ‖uJc‖1 ≤ γ ‖uJ‖1}.

Condition 3. Sn satis�es the RE condition RE(k, γ ), that is, κl ≤

ρ−(k, γ ) ≤ ρ+(k, γ ) ≤ κu for some constants κu, κl > 0.

To make Condition 2 on Hτ practically useful, in what fol-
lows, we show that Condition 3 implies Condition 2 with high
probability. As before, we write vδ = n−1

∑n
i=1 vi,δ and L =

max1≤i≤n ‖xi‖∞.

Lemma 1. Condition 3 implies Condition 2 with high proba-
bility: if 0 < κl ≤ ρ−(k, γ ) ≤ ρ+(k, γ ) ≤ κu < ∞ for
some k ≥ 1 and γ > 0, then it holds with probability at least
1 − e−t that, 0 < κl/2 ≤ κ−(k, γ , r) ≤ κ+(k, γ , r) ≤ κu < ∞

provided τ ≥ max{8Lr, c1(L
2kvδ)

1/(1+δ)} and n ≥ c2L
4k2t,

where c1, c2 > 0 are constants depending only on (γ , κl).

With the above preparations in place, we are now ready to
present themain results on the adaptiveHuber estimator in high
dimensions.

Theorem 3 (Upper bound in high dimensions). Assume Condi-
tion 3 holds with (k, γ ) = (2s, 3), vδ < ∞ for some 0 < δ ≤ 1.
For any t > 0 and τ0 ≥ νδ , let τ = τ0(n/t)

max{1/(1+δ),1/2}

and λ ≥ 4Lτ0(t/n)
min{δ/(1+δ),1/2}. Then with probability at least

1−(2s+1)e−t , the ℓ1-regularizedHuber estimator β̂τ ,λ de�ned
in (4) satis�es

∥∥β̂τ ,λ − β∗
∥∥
2

≤ 3κ−1
l s1/2λ, (9)

as long as n ≥ C(L, κl)s
2t for some C(L, κl) depending only on

(L, κl). In particular, with t = (1 + c) log d for c > 0 we have

∥∥β̂τ ,λ − β∗
∥∥
2
� κ−1

l Lτ0 s
1/2

{
(1 + c) log d

n

}min{δ/(1+δ),1/2}

(10)

with probability at least 1 − d−c.

The above result demonstrates that the regularized Huber
estimator with an adaptive robusti�cation parameter converges
at the rate s1/2{(log d)/n}min{δ/(1+δ),1/2} with overwhelming
probability. Provided the observation noise has �nite variance,
the proposed estimator performs as well as the Lasso with sub-
Gaussian errors. We advocate the adaptive Huber regression
method since sub-Gaussian condition o�en fails in practice
(Wang, Peng, andLi 2015; Eklund,Nichols, andKnutsson 2016).

Remark 5. As pointed out by a reviewer, if one pursues a
sparsity-adaptive approach, such as the SLOPE (Bogdan et al.
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2015; Bellec, Lecué, and Tsybakov 2018), the upper bound on
ℓ2-error can be improved from

√
s log(d)/n to

√
s log(ed/s)/n.

With heavy-tailed observation noise, it is interesting to inves-
tigate whether this sharper bound can be achieved by Huber-
type regularized estimator. We leave this to future work as a
signi�cant amount of additional work is still needed. On the
other hand, since log(ed/s) = 1 + log d − log s and s ≤ n,
log(ed/s) scales the same as log d so long as log d > a log n for
some a > 1.

Remark 6. Analogously to the low-dimensional case, here we
impose the sample size scaling n � s2 log d under �xed designs.
In the supplementary materials, we obtainminimax optimal ℓ1-

, ℓ2- and prediction error bounds for β̂τ ,λ with random designs
under the scaling n � s log d.

Finally, we establish a matching lower bound for estimating
β∗. Recall the de�nition of Un in Theorem 2.

Theorem 4 (Lower bound in high dimensions). Assume that εi
are independent from some distribution in P

vδ
δ . Suppose that

Condition 3 holds with k = 2s and γ = 0. Further assume
that there exists a set A with |A| = s and u ∈ Un such that
‖XT

A
u/n‖min ≥ α for some α > 0. Then, for any A > 0 and

s-sparse estimator β̂ = β̂(y1, . . . , yn,A) possibly depending on
A, we have

sup
P∈P

vδ
δ

P

[∥∥β̂ − β∗
∥∥
2

≥ νδ

αs1/2

κu

(
A log d

2n

)min{δ/(1+δ),1/2}]

≥ 2−1d−A,

as long as n ≥ 2(A log d + log 2).

Together, Theorems 3 and 4 show that the regularized adap-
tive Huber estimator achieves the optimal rate of convergence
in ℓ2-error. The proof, which is given in the supplementary
materials, involves constructing a subclass of binomial distribu-
tions for the regression errors. Unifying the results in low and
high dimensions, we arrive at the claim (5) and thus the phase
transition in Figure 1.

4. Extension to Heavy-Tailed Designs

In this section, we extend the idea of adaptive Huber regression
described in Section 2 to the case where both the covariate
vector x and the regression error ε exhibit heavy tails. We focus
on the high-dimensional regime d ≫ n, where β∗ ∈ R

d is
sparse with s = ‖β∗‖0 ≪ n. Observe that, for Huber regression,
the linear part of the Huber loss penalizes the residuals, and
therefore robusti�es the quadratic loss in the sense that out-
liers in the response space (caused by heavy-tailed observation
noise) are down weighted or removed. Since no robusti�cation
is imposed on the covariates, intuitively, the adaptive Huber
estimator may not be robust against heavy-tailed covariates.
In what follows, we modify the adaptive Huber regression to
robustify both the covariates and regression errors.

To begin with, suppose we observe independent data
{(yi, xi)}

n
i=1 from (y, x), which follows the linear model

y = 〈x,β∗〉 + ε. To robustify xi, we de�ne truncated

covariates x̟
i = (ψ̟ (xi1), . . . ,ψ̟ (xid))

T, where ψ̟ (x) :=
min{max(−̟ , x),̟ } and ̟ > 0 is a tuning parameter. Then
we consider the modi�ed adaptive Huber estimator (see Fan
et al. (2016) for a general robusti�cation principle)

β̂τ ,̟ ,λ ∈ arg min
β∈Rd

{
L

̟
τ (β) + λ‖β‖1

}
, (11)

where L̟
τ (β) = n−1

∑n
i=1 ℓτ (yi − 〈x̟

i ,β〉) and λ > 0 is a
regularization parameter.

Let S be the true support of β∗ with sparsity |S| = s,
and denote by H̟

τ (β) = ∇2L̟
τ (β) the Hessian matrix of the

modi�ed Huber loss. To investigate the deviation property of

β̂τ ,̟ ,λ, we impose the following mild moment assumptions.

Condition 4. (i) E(ε) = 0, σ 2 = E(ε2) > 0 and v3 :=
E(ε4) < ∞; (ii) the covariate vector x = (x1, . . . , xd)

T ∈ R
d

is independent of ε and satis�esM4 := max1≤j≤d E(x4j ) < ∞.

We are now in place to state the main result of this section.
Theorem 5 demonstrates that the modi�ed adaptive Huber esti-
mator admits exponentially fast concentration when the conva-
riates only have �nite fourth moments, although at the cost of
stronger scaling conditions.

Theorem 5. Assume Condition 4 holds and let H̟
τ (·) satisfy

Condition 2 with k = 2s, γ = 3 and r > 12κ−1
l λs. Then, the

modi�ed adaptiveHuber estimator β̂τ ,̟ ,λ given in (11) satis�es,
on the event E(τ ,̟ , λ) =

{
‖(∇L̟

τ (β∗))S‖∞ ≤ λ/2
}
, that

∥∥β̂τ ,̟ ,λ − β∗
∥∥
2

≤ 3κ−1
l s1/2λ.

For any t > 0, let the triplet (τ ,̟ , λ) satisfy

λ ≥ 2M4‖β
∗‖2 s

1/2̟−2 + 8
{
v2M

1/2
2 + M4‖β

∗‖32 s
3/2

}
τ−2

+ 2
(
2σ 2M2 + 2M4‖β

∗‖22 s
)1/2

√
t

n
+ ̟τ

t

n
, (12)

where v2 = E(|ε|3) and M2 = max1≤j≤d E(x2j ). Then

P{E(τ ,̟ , λ)} ≥ 1 − 2se−t .

Remark 7. Assume that the quantities v3,M4, and ‖β∗‖2 are all

bounded. Taking t ≍ log d in (12), we see that β̂τ ,̟ ,λ achieves

a near-optimal convergence rate of order s
√

(log d)/n when the
parameters (τ ,̟ , λ) scale as

τ ≍ s1/2
(

n

log d

)1/4

, ̟ ≍

(
n

log d

)1/4

, and λ ≍

√
s log d

n
.

We remark here that the theoretically optimal τ is di�erent from
that in the sub-Gaussian design case. See Theorem B.2 in the
supplementary materials.

5. Algorithm and Implementation

This section is devoted to computational algorithm and numeri-
cal implementation.We focus on the regularized adaptiveHuber
regression in (4), as (3) can be easily solved via the iteratively
reweighted least squares method. To solve the convex optimiza-
tion problem in (4), standard optimization algorithms, such as
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the cutting-plane or interior point method, are not scalable to
large-scale problems.

In what follows, we describe a fast and easily implementable
method using the local adaptive majorize-minimization
(LAMM) principle (Fan et al. 2018). We say that a function
g(β|β(k)) majorizes f (β) at the point β(k) if

g(β|β(k)) ≥ f (β) and g(β(k)|β(k)) = f (β(k)).

To minimize a general function f (β), a majorize-minimization
(MM) algorithm initializes atβ(0), and then iteratively computes
β(k+1) = argminβ∈Rd g(β|β(k)) for k = 0, 1, . . .. The objective
value of such an algorithm decreases in each step, since

f (β(k+1))
major.

≤ g(β(k+1) | β(k))
min.

≤ g(β(k) | β(k))
init.
= f (β(k)).

(13)

As pointed out by Fan et al. (2018), the majorization require-
ment only needs to hold locally at β(k+1) when starting from
β(k). We therefore locally majorize Lτ (β) in (4) at β(k) by an
isotropic quadratic function

gk(β|β(k)) = Lτ (β
(k))+

〈
∇Lτ (β

(k)), β−β(k)
〉
+

φk

2

∥∥β−β(k)
∥∥2
2
,

where φk is a quadratic parameter such that gk(β
(k+1)|β(k)) ≥

Lτ (β
(k+1)). The isotropic form also allows a simple analytic

solution to the subsequent majorized optimization problem

min
β∈Rd

{〈
∇Lτ (β

(k)),β − β(k)
〉
+

φk

2

∥∥β − β(k)
∥∥2
2
+ λ

∥∥β
∥∥
1

}
.

(14)

It can be shown that (14) is minimized at

β(k+1) = Tλ,φk(β
(k)) = S

(
β(k) − φ−1

k ∇Lτ (β
(k)),φ−1

k λ

)
,

where S(x, λ) is the so�-thresholding operator de�ned by
S(x, λ) = sign(xj)max(|xj| − λ, 0). The simplicity of this
updating rule is due to the fact that (14) is an unconstrained
optimization problem.

To �nd the smallest φk such that gk(β
(k+1)|β(k)) ≥

Lτ (β
(k+1)), the basic idea of LAMM is to start from a relatively

small isotropic parameter φk = φ0
k and then successfully in�ate

φk by a factor γu > 1, say γu = 2. If the solution satis�es
gk(β

(k+1)|β(k)) ≥ Lτ (β
(k+1)), we stop and obtain β(k+1),

which makes the target value nonincreasing. We then continue
with the iteration to produce next solution until the solution
sequence {β(k)}∞k=1 converges. A simple stopping criterion is

‖β(k+1) − β(k)‖2 ≤ ǫ for a su�ciently small ǫ, say 10−4. We
refer to Fan et al. (2018) for a detailed complexity analysis of the
LAMM algorithm.

6. Numerical Studies

6.1. Tuning Parameter and Finite Sample Performance

For numerical studies and real data analysis, in the case where
the actual order of moments is unspeci�ed, we presume the
variance is �nite and therefore choose robusti�cation and regu-
larization parameters as follows

τ = cτ × σ̂

(ne�
t

)1/2
and λ = cλ × σ̂

(ne�
t

)1/2
,

Algorithm 1 LAMM algorithm for regularized adaptive Huber
regression.

1: Algorithm: {β(k),φk}
∞
k=1 ← LAMM(λ,β(0),φ0, ǫ )

2: Input: λ,β(0),φ0, ǫ
3: Initialize: φ(ℓ,k) ← max{φ0, γ

−1
u φ(ℓ,k−1)}

4: for k = 0, 1, . . . until ‖β(k+1) − β(k)‖2 ≤ ǫ do

5: Repeat

6: β(k+1) ← Tλ,φk(β
(k))

7: If gk(β
(k+1)|β(k)) < Lτ (β

(k+1)) then φk ← γuφk

8: Until gk(β
(k+1)|β(k)) ≥ Lτ (β

(k+1))

9: Return {β(k+1),φk}

10: end for

11: Output: β̂ = β(k+1)

Table 1. Results for adaptive Huber regression (AHR) and ordinary least squares
(OLS) when n = 100 and d = 5.

Noise AHR OLS

Mean SD Mean SD

Normal 0.566 0.189 0.567 0.191
Student’s t 0.806 0.651 1.355 2.306
Log-normal 3.917 3.740 8.529 13.679

NOTE: The mean and SD of ℓ2-error based on 100 simulations are reported.

where σ̂ 2 = n−1
∑n

i=1(yi − ȳ)2 with ȳ = n−1
∑n

i=1 yi serves as
a crude preliminary estimate of σ 2, and the parameter t controls
the con�dence level. We set t = log n for simplicity except for
the phase transition plot. The constant cτ and cλ are chosen
via 3-fold cross-validation from a small set of constants, say
{0.5, 1, 1.5}.

We generate data from the linear model

yi = 〈xi,β
∗〉 + εi, i=1, . . . , n, (15)

where εi are iid regression errors and
β∗ = (5,−2, 0, 0, 3, 0, . . . , 0︸ ︷︷ ︸

d−5

)T ∈ R
d. Independent of εi,

we generate xi from standard multivariate normal distribution
N (0, Id). In this section, we set (n, d) = (100, 5), and generate
regression errors from three di�erent distributions: the normal
distributionN (0, 4), the t-distribution with degrees of freedom
1.5, and the log-normal distribution logN (0, 4). Both t and log-
normal distributions are heavy-tailed and produce outliers with
high chance.

The results on ℓ2-error for adaptiveHuber regression and the
least squares estimator, averaged over 100 simulations, are sum-
marized in Table 1. In the case of normally distributed noise, the
adaptive Huber estimator performs as well as the least squares.
With heavy-tailed regression errors following Student’s t or log-
normal distribution, the adaptive Huber regression signi�cantly
outperforms the least squares. These empirical results reveal
that adaptiveHuber regression prevails across various scenarios:
not only it provides more reliable estimators in the presence of
heavy-tailed and/or asymmetric errors, but also loses almost no
e�ciency at the normal model.
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Figure 2. Negative log ℓ2-error versus δ in low (left panel) and high (right panel) dimensions.

Figure 3. Comparison between the (regularized) adaptive Huber estimator and the (regularized) least squares estimator under ℓ2-error.

6.2. Phase Transition

In this section, we validate the phase transition behavior of
‖β̂τ − β∗‖2 empirically. We generate continuous responses
according to (15), where β∗ and xi are set the same way as
before. We sample independent errors as εi ∼ tdf, Student’s t-
distribution with df degrees of freedom. Note that tdf has �nite
(1 + δ)th moments provided δ < df − 1 and in�nite dfth
moment. Therefore, we take δ = df − 1 − 0.05 throughout.

In low dimensions, we take (n, d) = (500, 5) and a sequence
of degrees of freedoms (dfs): df ∈ {1.1, 1.2, . . . , 3.0}; in high
dimensions, we take (n, d) = (500, 1000), with the same choice
of dfs. Tuning parameters (τ , λ) are calibrated similarly as
before. Indicated by the main theorems, it holds

1. (Low dimension):

− log
(
‖β̂τ − β∗‖2

)
≍

δ

1 + δ
log(n) −

1

1 + δ
log(vδ),

0 < δ ≤ 1,

2. (High dimension):

− log
(
‖β̂τ − β∗‖2

)
≍

δ

1 + δ
log

( n

log d

)
−

1

1 + δ
log(vδ),

0 < δ ≤ 1,

which are approximately log(n)× δ/(1+ δ) and log(n/ log d)×

δ/(1 + δ), respectively, when n is su�ciently large.
Figure 2 displays the negative log ℓ2-error versus δ in both

low and high dimensions over 200 repetitions for each (n, d)
combination. The empirically �tted curve closely resembles the
theoretical curve displayed in Figure 1. These numerical results
are in line with the theoretical �ndings and empirically validate
the phase transition of the adaptive Huber estimator.

We also compared the ℓ2-error of the adaptiveHuber estima-
tor with that of the OLS estimator for t-distributed errors with
varying degrees of freedoms. As shown in Figure 3, adaptive
Huber exhibits a signi�cant advantage especially when δ is
small. The OLS slowly catches up as δ increases.
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Figure 4. The ℓ2-error versus sample size n (left panel) and the ℓ2-error versus e�ective sample size ne� = n/ log d (right panel).

6.3. E�ective Sample Size

In this section, we verify the scaling behavior of ‖β̂τ − β∗‖2
with respect to the e�ective sample size. The data are generated
in the same way as before except that the errors are drawn
from t1.5. As discussed in the previous subsection, we take δ =

0.45 and then choose the robusti�cation parameter as τ =

cτ v̂δ(n/log d)
1/(1+δ), where v̂δ is the (1 + δ)th sample absolute

central moment. For simplicity, we take cτ = 0.5 here since our
goal is to demonstrate the scaling behavior as n grows, instead
of to achieve the best �nite-sample performance.

The le� panel of Figure 4 plots the ℓ2-error ‖β̂τ ,λ − β∗‖2
versus sample size over 200 repetitions when the dimension
d ∈ {100, 500, 5000}. In all three settings, the ℓ2-error decays as
the sample size grows. As expected, the curves shi� to the right
when the dimension increases. Theorem 3 provides a speci�c
prediction about this scaling behavior: if we plot the ℓ2-error
versus e�ective sample size (n/ log d), the curves should align
roughly with the theoretical curve

‖β̂τ ,λ − β∗‖2 ≍

(
n

log d

)−δ/(1+δ)

for di�erent values of d. This is validated empirically by the right
panel of Figure 4. This near-perfect alignment in Figure 4 is also
observed by Wainwright (2009) for Lasso with sub-Gaussian
errors.

6.4. A Real Data Example: NCI-60 Cancer Cell Lines

We apply the proposed methodologies to the NCI-60, a panel
of 60 diverse human cancel cell lines. The NCI-60 consists of
data on 60 human cancer cell lines and can be downloaded
from http://discover.nci.nih.gov/cellminer/. More details on data
acquisition can be found in Shankavaram et al. (2007). Our aim
is to investigate the e�ects of genes on protein expressions. The
gene expression data were obtained with an A�ymetrix HG-
U133A/B chip, log2 transformed and normalized with the gua-
nine dytosine robust multi-array analysis. We then combined
the same gene expression variables measured by multiple dif-
ferent probes into one by taking their median, resulting in a set
of p = 17,924 predictors. The protein expressions based on 162

antibodies were acquired via reverse-phase protein lysate arrays
in their original scale. One observation had to be removed since
all values weremissing in the gene expression data, reducing the
number of observations to n = 59.

We �rst center all the protein and gene expression variables
to havemean zero, and then plot the histograms of the kurtosises
of all expressions in Figure 5. The le� panel in the �gure shows
that 145 out of 162 protein expressions have kurtosises larger
than 3; and 49 larger than 9. In other words, more than 89.5%
of the protein expression variables have tails heavier than the
normal distribution, and about 30.2% are severely heavy-tailed
with tails �atter than t5, the t-distribution with 5 degrees of
freedom. Similarly, about 36.5%of the gene expression variables,
even a�er the log2-transformation, still exhibit empirical kur-
tosises larger than that of t5. This suggests that, regardless of
the normalization methods used, genomic data can still exhibit
heavy-tailedness, which was also pointed out by Purdom and
Holmes (2005).

We order the protein expression variables according to their
scales, measured by the SD. We show the results for the protein
expressions based on the KRT19 antibody, the protein keratin
19, which constitutes the variable with the largest SD, serving
as one dependent variable. KRT19, a type I keratin, also known
as Cyfra 21-1, is encoded by the KRT19 gene. Due to its high
sensitivity, the KRT19 antibody is the most used marker for the
tumor cells disseminated in lymph nodes, peripheral blood, and
bone marrow of breast cancer patients (Nakata et al. 2004). We
denote the adaptive Huber regression as AHuber, and that with
truncated covariates as TAHuber. We then compare AHuber
and TAHuber with Lasso. Both regularization and robusti�ca-
tion parameters are chosen by the ten-fold cross-validation.

Tomeasure the predictive performance, we consider a robust
prediction loss: the mean absolute error (MAE) de�ned as

MAE
(
β̂
)

=
1

ntest

ntest∑

i=1

∣∣ytesti − 〈xtesti , β̂〉
∣∣,

where ytesti and x
test
i , i = 1, . . . , ntest, denote the observa-

tions of the response and predictor variables in the test data,
respectively. We report the MAE via the leave-one-out cross-
validation. Table 2 reports the MAE, model size, and selected

http://discover.nci.nih.gov/cellminer/
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Figure 5. Histogram of kurtosises for the protein and gene expressions. The dashed red line at 3 is the kurtosis of a normal distribution.

Table 2. We report the mean absolute error (MAE) for protein expressions based on the KRT19 antibody from the NCI-60 cancer cell lines, computed from leave-one-out
cross-validation.

Method MAE Size Selected genes

Lasso 7.64 42 FBLIM1,MT1E, EDN2, F3, FAM102B, S100A14, LAMB3, EPCAM, FN1, TM4SF1, UCHL1, NMU, ANXA3, PLAC8, SPP1, TGFBI,
CD74, GPX3, EDN1, CPVL, NPTX2, TES, AKR1B10, CA2, TSPYL5,MAL2, GDA, BAMBI, CST6, ADAMTS15, DUSP6, BTG1,
LGALS3, IFI27,MEIS2, TOX3, KRT23, BST2, SLPI, PLTP, XIST, NGFRAP1

AHuber 6.74 11 MT1E, ARHGAP29, CPCAM, VAMP8,MALL, ANXA3,MAL2, BAMBI, LGALS3, KRT19, TFF3
TAHuber 5.76 7 MT1E, ARHGAP29,MALL, ANXA3,MAL2, BAMBI, KRT19

NOTE: We also report the model size and selected genes for each method.

genes for the considered methods. TAHuber clearly shows the
smallest MAE, followed by AHuber and Lasso. The Lasso pro-
duces a fairly large model despite the small sample. Now it has
been recognized that Lasso tends to select many noise variables
along with the signi�cant ones, especially when data exhibit
heavy tails.

The Lasso selects a model with 42 genes but excludes the
KRT19 gene, which encodes the protein keratin 19. AHuber
�nds 11 genes including KRT19. TAHuber results in a model
with 7 genes: KRT19, MT1E, ARHGAP29, MALL, ANXA3,
MAL2, BAMBI. First, KRT19 encodes the keratin 19 protein. It
has been reported in Wu et al. (2008) that theMT1E expression
is positively correlated with cancer cell migration and tumor
stage, and theMT1E isoformwas found to be present in estrogen
receptor-negative breast cancer cell lines (Friedline et al. 1998).
ANXA3 is highly expressed in all colon cell lines and all breast-
derived cell lines positive for the oestrogen receptor (Ross et al.
2000). A very recent study in Zhou et al. (2017) suggested
that silencing the ANXA3 expression by RNA interference
inhibits the proliferation and invasion of breast cancer cells.
Moreover, studies in Shangguan et al. (2012) and Kretzschmar
(2000) showed that the BAMBI transduction signi�cantly
inhibited TGF-β/Smad signaling and expression of carcinoma-
associated �broblasts in human bone marrow mesenchymal
stem cells (BM-MSCs), and disrupted the cytokine network
mediating the interaction betweenMSCs and breast cancer cells.
Consequently, the BAMBI transduction abolished protumor
e�ects of BM-MSCs in vitro and in an orthotopic breast cancer

xenogra� model, and instead signi�cantly inhibited growth
and metastasis of coinoculated cancer. MAL2 expressions were
shown to be elevated at both RNA and protein levels in breast
cancer (Shehata et al. 2008). It has also been shown thatMALL
is associated with various forms of cancer (Oh et al. 2005; Landi
et al. 2014). However, the e�ect of ARHGAP29 and MALL on
breast cancer remains unclear and isworth further investigation.

SupplementaryMaterials

In the supplementary materials, we provide theoretical analysis under
random designs, and proofs of all the theoretical results in this article.
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