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Adaptive Human-Aware Robot Navigation
in Close Proximity to Humans
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2 Centre for Robot Technology, Danish Technological Institute, Odense, Denmark
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Abstract For robots to be able coexist with people in future
everyday human environments, they must be able to act in
a safe, natural and comfortable way. This work addresses
the motion of a mobile robot in an environment, where
humans potentially want to interact with it. The designed
system consists of three main components: a Kalman filter-
based algorithm that derives a person's state information
(position, velocity and orientation) relative to the robot;
another algorithm that uses a Case-Based Reasoning
approach to estimate if a person wants to interact with the
robot; and, finally, a navigation system that uses a potential
field to derive motion that respects the person's social
zones and perceived interest in interaction.

The operation of the system is evaluated in a controlled
scenario in an open hall environment. It is demonstrated
that the robot is able to learn to estimate if a person wishes
to interact, and that the system is capable of adapting to
changing behaviours of the humans in the environment.

Keywords Human-Robot Interaction, Robot Motion,
Intention Estimation

1. Introduction

Mobile robots are moving out into open-ended human
environments such as private homes or even public
spaces. The success of this shift relies on the robots'
abilities to be responsive to, and interact with, people in a
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sociable, natural and intuitive Research
addressing these issues is labelled Human-Robot
Interaction (HRI) (Dautenhahn K. , 2007; Breazeal, 2002;
Kanda, 2007). The focus is often on close interaction tasks
like gestures, object recognition, manipulation, face
expressions or speech (Althaus, Ishiguro, Kanda,
Miyashita & Christensen, 2004; Fong, Nourbakhskh &
Dautenhahn, 2003; Stiefelhagen, et al, 2007; Gockley,
Forlizzi & Simmons, 2006; Kahn, Ishiguro, Friedman &
Kanda, 2006). In shared dynamic environments, there is
also a need for motion planning and navigation, which is
another widely studied research topic. However, rather
than just being a question of getting from A to B while
avoiding obstacles, navigation algorithms have to adapt
to people in the environment. As in Althaus, et al. (2004),
HRI and navigation must be addressed simultaneously,

to support the idea of shared environments.

manner.

An example from everyday human interaction could be a
person working with customer service in a shopping
centre. This person will detect other people in the
environment, actively aiming to provide help. The service
person will try to determine their interest or need for help
and adjust actions accordingly. The service person will,
over time, learn from experience and the degree of
success, and thereby determining subsequent behaviour
in similar situations. The service person may start
approaching, while determining if the person being
observed is interested in help. If the person is perceived
as being interested in help, the service person will
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typically aim to reach a position in front of the person to
initiate a closer interaction. If not, the service person will
get out of the way and initiate a new interaction process
by looking for other people.

This may be a simplified process, but enabling a robot to
support such an interaction process is not a simple task.
Detection requires that the robot is able to locate people
in the environment and discriminate them from obstacles.
Observation requires that people can be tracked and
requires an interpretation of the interest in interaction.
The robot must be able to learn from previous interaction
to support this interpretation. Given an interpretation of
the interest to interact, the robot must adapt its
navigation strategy to either approach the person in a
way perceived as comfortable or get out of the way.
Finally, some type of closer interaction must be
supported.

Detection and tracking of people, that is, estimation of the
position and orientation (which combined is denoted as
pose) has been discussed in Sisbot, et al. (2006) and
Jenkins, Serrano & Loper (2007). Several sensors have
been used, including 2D and 3D vision (Dornaika &
Raducanu, 2008; Munoz-Salinas, Aguirre, Garcia-Silvente
& Gonzalez, 2005), thermal tracking (Cielniak, Treptow &
Duckett, 2005) or range scans (Rodgers, Anguelov, Pang
& Koller, 2006; Fod, Howard & Mataric, 2002; Kirby,
Forlizzi & Simmons, 2007). Laser scans are typically used
for person detection, whereas the combination with
cameras also produces pose estimates (Feil-Seifer &
Mataric, 2005; Michalowski, Sabanovic & Simmons, 2006).
Using face detection requires the person to always face
the robot, and the person to be close enough to be able to
obtain a sufficiently high resolution image of the face
(Kleinehagenbrock, Lang, Fritsch, Lomker, Fink &
Sagerer, 2002), limiting the use in environments where
people are moving and turning frequently. The
possibility of using 2D laser range scanners provides
extra long range and lower computational complexity.
The extra range enables the robot to detect the motion of
people further away and thus have enough time to react
to people moving at a higher speed.

Interpreting another person's interest in engaging in
interaction is an important component of the human
cognitive system and social intelligence, but it is such a
complex sensory task that even humans sometimes have
difficulties with it. Research that addresses the ability to
recognise human social signals and behaviour is called
Social Signal Processing (SSP) (Vinciarelli, Pantic &
Bourlard, 2009; Vinciarelli, Pantic, Bourlard & Pentland,
2008; Zeng, Pantic, Roisman & Huang, 2008). In the
example scenario, with the person from the customer
service, learning was used as a way to build on previous
experiences to form an interpretation of interest for a
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given person. Researchers have investigated Case-Based
Reasoning (CBR) (Kolodner, 1993; Ram, Arkin, Moorman
& Clark, 1997). CBR allows recalling and interpreting past
experiences, as well as generating new cases to represent
knowledge from new experiences. To our knowledge,
CBR has not yet been used elsewhere in an HRI context
but has proven successful in solving spatial-temporal
problems in robotics (Likhachev & Arkin, 2001; Ram,
Arkin, Moorman & Clark, 1997; Jurisica & Glasgow,
1995). An advantage of using CBR is the simple
implementation and the simple parameter tuning. Other
methods, like Hidden Markov Models, have (Kelley,
Tavakkoli, King, Nicolescu, Nicolescu & Bebis, 2008) been
used to learn to identify the behaviour of humans (Kelley,
Tavakkoli, King, Nicolescu, Nicolescu & Bebis, 2008).
Bayesian inference algorithms and Hidden Markov
Models have also successfully been applied to modelling
and for predicting spatial user information (Govea, 2007).
To approach a person in a way that is perceived as
natural and comfortable requires human- aware navigation.
Human-aware navigation respects the person's social
spaces is discussed in (Walters M. L. et al, 2005;
Dautenhahn, et al., 2006; Takayama & Pantofaru, 2009).
Several authors have investigated the interest of people to
interact with robots that exhibit different expressions or
follow different spatial behaviour schemes (Bruce,
Nourbakhsh & Simmons, 2001; Christensen &
Pacchierotti, 2005; Dautenhahn, et al., 2006; Hanajima,
Ohta, Hikita & Yamashita, 2005). In Michalowski,
Sabanovic & Simmons (2006) models are reviewed that
engagement based on the spatial
relationships between a robot and a person, with
emphasis on the movement of the person. Although the
robot is not perceived as a human when encountering
people, the hypothesis is that robot behavioural reactions
with respect to motion should resemble human-human
scenarios. This is supported by Dautenhahn, et al. (2006);
Walters M. L., et al. (2005). Hall has investigated the
spatial relationship between humans (proxemics) as
outlined in Hall (1963; 1966), which can be used for
Human-Robot encounters. This was also studied by
Walters M. L, et al. (2005), whose research supports the
use of Hall's proxemics in relation to robotics.

describe social

In this paper the focus is on detection, observation,
navigation, and learning to determine the person interest
in close interaction, which means that psychological
studies of the naturalness and comfortable manner of the
motion is out of the scope of this work. A simplified close
interaction has also been implemented to complete the
interaction process. We present a novel method for
inferring a human's motion state (position, orientation
and velocity) from 2D laser range measurements. The
method relies on a fast algorithm for detecting the legs of
people (Feil-Seifer & Mataric, 2005; Xavier, Pacheco,
Castro, Ruano & Nunes, 2005), and fuses this with
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Figure 1. An overview of how the different components are
connected in the current system.
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odometry data in a Kalman filter to obtain the motion
state. Observation and learning is based on a CBR
algorithm. Based on observed SSP signals, the CBR
algorithm estimates a person's interest in interaction. In
the given implementation, only the observed motion
patterns are used as SSP information. For navigation, an
adaptive human-aware navigation algorithm using a
potential field, based on results from Fajen & Warren
(2003); Sisbot, et al. (2005); Sisbot, Clodic, Urias,
Fontmarty, Brethes & Alami (2006), is presented. The
shape of the potential field is derived from the human-
human spatial relations described by Hall (1963).

The algorithms have been implemented and demonstrated
to work together in an open environment at the university.

2. Methodology

The robotic system is designed for a specific set-up,
where a person encounters a robot in an open space and
starts an interaction process as described above. We
define the part of the interaction process starting from
when the person is detected, until close interaction is
initiated, as a session. In each session the person might, or
might not, wish to engage in close interaction with the
robot. The session is defined to last as long as the robot
and person mutually adapt their motion according to
each other, and is considered over when the person has
either disappeared from the robot’s field of view, or has
initiated close interaction. Close interaction is, in this set-
up, initiated by pressing a simple button on the robot. In
this case the person is perceived by the robot to be
interested in close interaction. Since SSP is difficult
(Vinciarelli, Pantic, Bourlard & Pentland, Social signal
processing: state-of-the-art and future perspectives of an
emerging domain, 2008) and interest cannot be directly
measured as an absolute value, we refer to interest only
as it is perceived by the robot and not as the true internal
state of the person. When the person has disappeared
without pressing the button, they are considered to not be
interested in further interaction. When a session is over,
the system proceeds to detecting new persons, and no
further close interaction is considered.

The structure of the proposed system set-up is outlined in
Figure 1. First, the pose of the person is estimated using a

Kalman filter and an autoregressive filter. This
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information is sent to a person evaluation algorithm,
which provides information to the navigation subsystem.
The loop is closed by the robot, which executes the path
in the real world and thus has an effect on how humans
move in the environment.

2.1 Person Pose Estimation

First, the pose and velocity of the people in the robot’s
vicinity is determined. The method is derived for only
one person, but the same method can be utilised when
several people are present.

We define the pose of a person as the position of the
person given in the robot’s coordinate system, and the
angle towards the robot, as seen from the person (ppers
and 6 in

Figure 2). The orientation 6 is approximately the angle
between ¢ (the angle of the distance vector from the
robot to the person) and vy, (the angle of the person's
velocity vector). It is, however, only an approximation,
since the orientation is not necessarily equal to the
direction of the motion.

The estimation of the person’s pose can be broken down
into three steps:

1. Measure the position of the person;

2. Use the continuous position measurements to
find the state (position and velocity) of the
person;

3. Use the velocity estimate to find the orientation
(6) of the person.

2.1.1 Position Measurements

The position measurements could, in principle, be done
by any instrument, for example, external or on-board
devices such as cameras, laser scanners or heat sensors. In

Figure 2. The state variables p,..s and v, hold the position
and velocity of the person in the robot’s coordinate frame. 6 is
the orientation of the person and ¥ is the rotational velocity of
the robot.
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our case we use an on-board laser range finder to find the
position of the person, which has the advantage that it
supports
Furthermore, processing a laser scan is computationally
very efficient, compared to image processing from on-
board cameras. The laser scans the area just below knee
height, and a typical output from the laser range scanner
is seen in Figure 3. An algorithm detects legs in the output
data, fuses them with previous scans, pairs them and
outputs estimates of where the person is. The algorithm is
described in Feil-Seifer & Mataric (2005); Xavier, Pacheco,
Castro, Ruano & Nunes (2005), and the output is the
position of the person in the robot’s coordinate frame.
Our implementation has been proved robust for tracking
people at speeds of up to 2™/ in a real-world public
space, which is described in Svenstrup, Bak, Maler,
Andersen & Jensen (2008).

autonomy with no external sensors.

2.1.2 Person State Estimation

The next step is to estimate velocity vector of the person
in the robot’s coordinate frame. The velocity of the person
cannot be calculated directly from the person position
measurements since there will be an offset corresponding
to the movement of the robot itself. If, for example, the
person is standing still and the robot is moving, then
different position measurements will be obtained, but the
velocity estimate should still be zero. Therefore, the
position measurements from the laser range finder
algorithm and
combined to obtain a state estimate. The fusion of these

robot odometry measurements are

measurements is done in a Kalman filter, where a
standard discrete state space model formulation for the
system is used:

x(k +1) = dx(k) + Tu(k)

y() = Hx(k) | M

where x is the state, y is the measurements, u is the input
and ®,T, H are the system matrices explained below.

90 5
4

3
S2

270

Figure 3. An image of the ranges from one laser rangefinder
scan. The distance scale on the polar plot is in metres and the
angle is in degrees.
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The state is comprised of the person’s position, person’s
velocity and the robot’s velocity. The measurements are
the estimate of the person’s position and the odometry
measurements.

Ppers
X =|Vpers| , Y=

ﬁpe‘r‘s ] . (2)
Vrob

Vodom ,rob

p denotes a position vector and v denotes velocities, all
given in the robot’s coordinate frame. The p is the
estimate of the person’s position from the person
detection algorithm and v,40m rop the robot’s odometry
measurement vector.

The position of the person in the robot’s coordinate frame
(Ppers), at time k+1, depends both on the person’s velocity,
the robot’s velocity and the rotation of the robot, which
need to be included in the process model. However, the
robot’s rotation causes the vector p,s to rotate, and does
therefore introduce a nonlinear effect on the state. This
nonlinear effect can be overcome while still maintaining
the linear Kalman filter, by introducing a measurement-
driven Kalman filter (Jun, Roumeliotis & Sukhatme, 1999;
Merwe, Julier, Bogdanov, Harvey & Hunt, 2004). The idea
in a measurement-driven Kalman filter is to use sensor
readings, in this case rotational odometry data from the
robot, to drive the process model as an input. This means
that the non-linearity is in the input part T'u(k), and the
rotation can be omitted in the state transition matrix ®. The
advantage is that the input is not a part of the Kalman filter
equations, and the filter remains a linear filter. Omitting
rotation, ®x(k + 1) from Eq. (1) can be written as:

Ppers(k +1)
1717ers(k +1)

Vrob (k + 1) (3)
ppers(k) + T(vpers(k) — Vrob (k))
= Upers )
Vrob (k)

where T is the sampling time. The output matrix H from
Eq. (1) follows directly from the measurement vector in
Eq. (2), and thus ® and H are given as:

I TI -TI
o=lo 1 o ,H=[(I) g (I’] )
0 0 I

where I is the 2x2 identity matrix, and 0 is the 2x2 zero
matrix.

The error in the linear process model, which is introduced
by the rotational velocity, is compensated for by adding it
to the input I'u(k). Looking at

Figure 2, it can be seen that the angle of the vector towards
the person (Ppers) is rotated by YT for each time step,
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which is also the case for the person’s velocity vector
(Vpers)- The effect is derived for a state vector p, but
applies to both ppers and vpeps. To account for the non-
linearity, the input needs to compensate for the error
obtained by the linear model, i.e. the difference between
the rotated state vector and the vector calculated by the
linear model in (3):

Tu(k) = Protated — Plinear » )

where Prorateq i the correct state estimate taking into
account the rotation, and Pjipeqr is the linear state
estimate. Pyorareq Can be calculated by rotating the linear
state by the angle T:

Protated
COS(l,bT) sin(l[}T) ' (6)
—sin(yT) cos(YT) Punear

If the sample time is small compared to the rotational
velocity, then a small angle approximation of the
equations can be used. This means that cos(yT) ~ 1 and
sin(l[)T) ~ T, and Eq. (5) can be rewritten as:

1 YT
T 1
=[5 o

Tu(k) ~ [ ]plinear — Plinear

@)

where p, and p, are the x and y coordinates of the vector
p. Using this result to write out the full input part of the
model in Eq. (1) gives:

Py,pers (k)
—Px,pers (k)
ryu(k) = | Yrwers®) ey, (®)

Ux,pers

0
0

where I,UA is the measured robot rotation from the odometry
data.

If ®(k) is not constant, the Kalman gain does not
converge to a steady state value. Small deviations of ®(k)
will not be a practical problem, but some infrequent long
sampling intervals have been observed. In the practical
implementation ®(k) and corresponding Kalman, gain is
therefore calculated online.

2.1.3 Orientation Estimation

The direction of the velocity vector found above is not
necessarily equal to the orientation of the person.

www.intechweb.org
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Coefficient

00 0,2 0,4 0,6 0,8 1
Velocity [m/s]
Figure 4. The adaptive coefficient B in the first order
autoregressive filter used in the orientation estimation. The faster
the person moves relative to the robot, the lower f is and the
more the filter relies on the measurements.

Consider, for example, a situation where the person is
standing almost still in front of the robot, but is moving
slightly backwards. This means that the velocity vector is
pointing away from the robot, although the person is facing
the robot. To obtain a correct orientation estimate the
velocity estimate is filtered through a first order
autoregressive filter, with adaptive coefficients relative to the
velocity. When the person is moving quickly, the direction of
the velocity vector has a large weight, but if the person is
moving slowly, the old orientation estimate is given a larger
weight. The autoregressive filter is implemented as:

0k +1)
= BO(k) + (1 — B)arctan <M) ,

x,pers

©)

where 8 has been chosen experimentally relative to the
absolute velocity v as:

0.9 if v<0.1 M/
B=11.04—14v if01™M/s<v<06M- (10)
0.2 else

In Figure 4 the parameter is plotted versus the velocity.
2.2 Learning and Evaluation of Interest in Interaction

To represent the person's interest in interaction, a
continuous fuzzy variable, Person Indication (PI), is
introduced, which serves as an indication of whether or
not the person is interested in interaction. PI belongs to
the interval [0,1], where PI=1 represents the case where
the robot believes that the person wishes to interact, and
PI=0 the case where the person is not interested.

To determine the value of PI, an adaptive person evaluator,
based on a CBR system, is designed. The method for
estimating the PI of a person is to observe the behaviour of

Mikael Svenstrup, Segren Tranberg Hansen, Hans Jgrgen Andersen and Thomas Bak:
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Figure 5. Operation of the CBR system. First the robot starts to
look for people. When a person is found, it evaluates whether the
person wants to interact. After a potential interaction, the robot
updates the knowledge library with information about the
interaction session, and starts to look for other people.

the person continuously, find out if something similar has
happened in previous sessions, and set PI according to what
has happened in previous sessions. The implementation of
the CBR system is basically a database system which holds a
number of cases describing each session. There are two
distinct stages of the CBR system operation. The first is the
evaluation of the PI, where the robot estimates the PI during
a session using the experience stored in the database. The
second stage is the learning stage, where the information
from a new experience is used to update the database. The
two stages can be seen in Figure 5 which shows a state
diagram of the operation of the CBR system. Two different
databases are used. The Case Library is the main database
which represents all the knowledge the robot has learned so
far, and is used to evaluate PI during a session. All
information obtained during a session is saved in the
Temporary Cases database. After a session is over, the
information from the Temporary Cases is used to update the
knowledge in the Case Library.

2.2.1 Database Format

Specifying a case is a question of determining a distinct
and representative set of features connected to the event of
a human-robot interaction session. The set of features
could be anything identifying the specific situation, such
as, the person's velocity and direction, position, relative
position and velocity to other people, gestures, time of day,
day of the week, location, height of the person, colour of
their clothes, their facial expression, their apparent age and
gender etc. The selected features depend on available
sensors. For the experimental system considered in this
paper, we consider only the motion behaviour of the
person, and thus the following fields corresponding to each
case will be used in the CBR database:

CaselD, is a reference number for each case
(Px) Py), is the estimated position of the robot
(vx, vy), is the estimated velocity of the robot
0, is the estimated orientation of teh person

International Journal of Advanced Robotic Systems, Vol. 8, No. 2. (2011)

Case x y @8 PI| X

76 0.8 1.2 98 0.2
I 77 0.81.2 80 0.35
78 0.8 1.2 65 0.9

Figure 6. Input variables and the corresponding output PI stored
in the CBR database.

e PI, is the corresponding Person Indication output value.
To be able to compare cases to see if any are identical,
each value is rounded to an implementation specific
resolution. The database parameters are illustrated in
Figure 6.

2.2.2 Evaluation of Person Interest

Initially, when the robot locates a new person in the area,
nothing is known about this person, so PI is assigned to
the default value PI=0.5. After this, the PI of a person is
continuously evaluated using the Case Library. First a
new case is generated by collecting the relevant set of
features described in Section 0. The case is then compared
to existing cases in the Case Library to find matching
cases. When searching for matching cases in the Case
Library, a similarity function must be used to define
when two cases are similar enough to be interpreted as a
match, since in physical system, measurements will
seldom be completely identical. This means that if, for
example, the distance estimates are within 10cm, the
similarity function can define the cases as matching. In
our system, two cases are defined as matching given that
the position and orientation difference are both within a
specified range limit. If a match is found in the Case
Library, the PI is updated towards the value found in the
library according to the formula

PInew - O'ZPIZibTaTy + 0.8P101d ) (11)

where Pl,,,, is the new updated value of PI. This update
is done to continuously adapt PI according to the
observations, but still not trusting one single observation
completely. If the robot continuously observes similar
Pliiprary values, the belief of the value of PI, will converge

www.intechweb.org
www.intechopen.com



towards that value, e.g., if the robot is experiencing a
behaviour, which earlier has resulted in interaction,
lookups in the Case Library will result in Ply;pqr, values
close to 1. This means that the current PI will quickly
approach 1 as well. After this, the case is copied to
Temporary Cases, which holds information about the
current session. If no match is found in the Case Library,
the PI value is updated with Pl = 0.5, which
indicates that the robot is unsure about the intentions of
the person. The case is still inserted into the Temporary
Cases.

2.2.3 Updating the Database

If the session resulted in close interaction, the robot
assumes that the person was actually interested in the
close interaction, and assumes the opposite if no close
interaction occurred. This information, together with the
Temporary Cases is used to revise the Case Library. The
Case Library is updated according to Algorithm 1.

Algorithm 1 Updating the Case Library from the
Temporary Cases

UpdateDatabase()

1: for all TemporaryCases do

2 match = FindMatchingCase()

3 if match == NULL then

4 match = CreateNewCase()

5: SetPI(0.5)

6: end if

7 if Interested then

8: PI(match) = PI(match) + wL
9: if PI(match) > 1 then

10: PI(match) =1

11: end if

12:  else

13: PI(match) = PI(match) - wL
14: if PI(match) < 0 then

15: PI(match) = 0

16: end if

17:  end if

18: end for

For each of the cases in the Temporary Cases the
matching case in the Case Library is found. If there is no
matching case in the Case Library, a new one is created
with default PI=0.5 value. Then the associated PI is

0 ‘ ‘

0 045 12 2 3 3,6
Distance [m]

Figure 7. The weight w as a function of the distance between the

robot and the test person. w is a weight used for updating the
level of interest PI.
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updated by a value of wL, where w is a weight related to
the distance to the person, and L is a learning rate. Events
which happen at close distances will often have more
relevance and be easier to interpret than those at longer
distances. Therefore, an observed case should have a
larger impact the closer the person is, which is taken care
of by w. The weight is implemented utilising the
behavioural zones as designated by Hall (1966) and the
weight as a function of the distance is shown in Eq. (12)
and illustrated in Figure 7.

1 if d < 0.45m
w = 1.36 — 0.8d if 045m <d <1.2m . (12)
0.6 — %d else

The learning rate L controls the temporal update of PI. It
is an adjustable parameter, which determines how fast
the system is adapting to new environments. In a
conservative system L is low, so new observations will
only affect PI to a limited degree. In an aggressive set-up
L is large and, consequently, PI will adapt faster. After the
main Case Library has been updated, the robot is ready to
start over and look for new people for potential
interaction.

2.3 Human-Aware Navigation

As written in the introduction, the human-aware
navigation is inspired by the spatial relation between
humans described by Hall (1963). Hall divides the area
around a person into four zones according to the distance
to the person:

e the public zone, where d > 3.6m

e the social zone, where d > 1.2m

e the personal zone, where, d > 0.45m

e the intimate zone , where d < 0.45m

If it is most likely that the person does not wish to interact
(i.e. PI = 0), the robot should not violate the person’s
personal space, but move towards the social or public zone.
On the other hand, if it is most likely that the person is
willing to interact, or is interested in close interaction with
the robot (i.e. PI = 1), the robot should try to enter the
personal zone in front of the person. Another navigation
issue is that the robot should be visible to the person, since
it is uncomfortable for a person if the robot moves around,
where it cannot be seen.

To allow human-aware navigation, a person-centred
potential field is introduced. The potential field has high
values where the robot is not allowed to go, and low
values where the robot should be, or should try to move
towards.

All navigation is done relative to the person(s), and hence
no global positioning is needed in the proposed model.
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The method is inspired by Sisbot, Clodic, Urias,
Fontmarty, Brethes & Alami (2006) and further described
in Andersen, Bak & Svenstrup (2008). The potential field
landscape is derived as a sum of several different
potential functions with different purpose. The different
functions are:

e Attractor. This is a negative potential used to attract
the robot towards the person;

e Rear. This function ensures that the robot does not
approach a person from behind;

e Parallel. This is an adaptive function, which is used
to control the direction to the person and to keep a
certain distance;

e Perpendicular. This function is also adaptive and
works in cooperation with the parallel potential
function.

All four potential functions are implemented as
normalised bi-variate Gaussian distributions. A Gaussian
distribution is chosen for several purposes. It is smooth
and easy to differentiate to find the gradient, which
becomes smaller and smaller (i.e. has less effect) further
away from the person. Furthermore, it does not grow
towards oo around 0 as, for example, a hyperbola (e.g. %),

which makes it both computational feasible and

intuitively perceivable.

The shapes of the variances of the four Gaussian
distributions are illustrated in Figure 8, and the combined
potential field is:

4

flx) = Z Cy exp (—%[x -0]"z  [x — 0]) (13)

k=1

where k = 1...4 is the different potential functions, cy is a
normalising constant and x is the position relative to the
person, where the potential function is evaluated.

2
T = [Gx Uny ] is the 2x2 covariance matrix of the
Oxy Oy
distribution, which determines the shape and rotation. A
way to obtain a rotated distribution while maintaining
the width, is to take a standard non-rotated distribution,
and rotate the covariance matrix, such that
Zk = RT [Gg,std 20 ]
0 Gy.std

The attractor and rear distribution are both kept constant
for all instances of PI. The parallel and perpendicular
distributions are continuously adapted according to the
PI value and Hall's proximity distances during an
interaction session. Furthermore, the preferred robot-to-
person encounter direction, reported in Dautenhahn, et
al. (2006); Woods, Walters, Koay & Dautenhahn (2006), is
taken into account by changing the width by rotation of
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Attractg

Frontal area

Rear area

Figure 8. The four Gaussian distributions used for the potential
field around the person. The rear area is to the left of the y axis.
The frontal area (to the right of y axis) is divided into two: one in
the interval from [—45°;45°], and the other in the area outside
this interval. The parallel and perpendicular distributions are
rotated by the angle a.
the distributions. The width of the parallel and
perpendicular distributions is adjusted by the value of the
variances 0y g and g} ;4. The rotation @ may be adapted
by adjustment of the rotation matrix R. For the parallel
distribution 0Zg4 =1, and for the perpendicular

distribution a;‘

respective other value of 674 or 6], is illustrated in

sta = 1. The mapping from PI to the

Figure 9, together with the rotation angle a. The variance
cannot be zero, which is why the lowest value is 0.05.

The adaptation of the potential field distributions enables
the robot to continuously adapt its behaviour to the
current interest in interaction of the person in question.

The resulting potential field contour can be seen in Figure
11 for three specific values of PI. With PI=0 the potential
field will look like Figure 11a where the robot will move to
the dark blue area, i.e. the lowest potential approximately
3.6m in front of the person. The other end of the scale for
PI=1 is illustrated in Figure 11c, where the person is

I, 50
\\ ----- Variance

0,8 \\ Rotation 140
\\\\ ED
§ 0,6 \\ 130 =,
2 E
< 0,4 120 8
N\ o
\\ =7

0,2 A 110

e T T O e — 0

PI

Figure 9. Mapping of PI to the width (62,) along the minor axis
of the parallel and perpendicular distributions, together with the
rotation (a) of the two distributions.
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interested in interaction and, as a result, the potential
function is adapted so the robot is allowed to enter the
space right in front of the person. In between, in Figure
11b, is the default configuration of PI=0.5, in which the
robot is forced to approach the person at approximately
45°, while keeping just outside the personal zone.

Instead of just moving towards the lowest point at a fixed
speed, the gradient of the potential field Vf(x), is used to
set a reference velocity for the robot. The gradient is
obtained from (13):

4

1
V@) = ) —[x—0]"3 ' [x - 0] -=[x
kz:; K Cx exp( > "

-0]Tz M x — 0]) .

The reference velocity is then calculated as
Vrep = kVf(x) , (15)

where v, is the reference velocity vector and k is an
adjustable parameter that controls how aggressive the
motion of the robot is. This way of controlling the robot’s
velocity allows the robot to move quickly when the
potential field is steep. On the other hand, the robot has
slow comfortable movements when it is close to where it
is supposed to be, i.e. near a minimum of the field.

3. Experimental Set-up

In Svenstrup, Bak, Maler, Andersen & Jensen (2008) it is
demonstrated that the person detection algorithm is
working in a real-world scenario in a shopping centre.
The person state estimation and human-aware navigation
methods are tested in a laboratory setting in Svenstrup,
Hansen, Andersen & Bak (2009). Therefore, the
experiments here focus on integrating all three of the
methods described above into a combined system, with
the main focus on the operation of learning and
evaluation of interest. The experiments are designed to

(a) PI=0

(b) PI=0.5

Contact

Figure 10. The FESTO Robotino robot used for the experiments.

illustrate the operation and the proof of concept of the
combined methods. It took place in an open hall, with
only one person at a time in the shared environment. This
allowed for easily repeated tests with no interference
from other objects than the test persons. The test persons
were selected randomly from the students on campus.
None had prior knowledge about the implementation of
the system.

3.1 Test Equipment and Implementation

The robot used during the experiments was a FESTO
Robotino platform, which provides omnidirectional
motion. A head, which is capable of showing simple
facial expressions, is mounted on the robot (see Figure 10).
The above described algorithms have been implemented
in the robot control software framework Player/Stage
(Collett, MacDonald & Gerkey, 2005), which is
implemented on the robot. The framework also enables
simulation before experiments. The robot is equipped
with an URG-04LX line scan laser range finder for
detection and tracking of people, and a button to press for

0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3

(d) Scale

() PI=1

Figure 11. Shape of the potential field for (a), a person not interested in interaction, (b) a person considered for interaction, and
(c) a person interested in interaction. The scale for the potential field is plotted to the right and the value of the person

interested indicator PI is noted under each plot.
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Figure 12. The figures show the values stored in the CBR system after completion of the 1st, 3rd and 5th test person. Note that the
robot is located at the origin (0,0), since the measurements are in the robot’s coordinate frame, which follows the robot’s motion. Each
dot represents a position of the test person in the robot’s coordinate frame. The direction of the movement of the test person is
represented by a vector, while the level (PI) is indicated by the colour range.

emulating the transition to close interaction (see Figure
10). If the test persons passed an object to the robot, they
would activate the button, which was perceived as an
interest in close interaction. If the test person did not pass
an object (i.e. the buton was not activated) within 15
seconds or disappeared from the robot’s field of view,
this was recognised as if no close interaction had
occurred.

The CBR database has been implemented using MySQL.
To make the case database tractable, the position (p,,p,)
was sampled using a grid resolution of 40cm, and the
resolution of the orientation of a person has been set to
0.2rad. A learning rate, L =0.3, which is a fairly
conservative learning strategy, has been used for the
experiments.

3.2 Test Specification

For evaluation of the proposed methods, two experiments
with the combined system were performed. During both
experiments the full system, as seen in Figure 1, is used,
i.e. the pose estimation and the human-aware navigation
are running, as well as the interest learning and
evaluation. All output values (PI), and input values (pose
and velocity) were logged for later analysis during both
experiments.

In Experiment 1, the objective was to see if the system
was capable of learning to estimate PI based on
interaction experience from several different people. As
the number of cases increase, the system should be better
able to estimate PI of a person and do it more quickly.
Furthermore, the information in the CBR database should
be generic, such that information obtained with some
people can be used when other people occur. Starting
from a CBR system with no knowledge, i.e. an empty
database, a total of five test persons were asked to
approach or pass the robot 12 times each using different
motion patterns (see Figure 13). The starting and end
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points of each session were selected randomly, while the
specific route was chosen by the test person. The random
selection was designed so the test persons would end up
with close interaction in 50% of the sessions. In the other
sessions, the test persons would pass the robot either to
the left of the right without interacting.

In Experiment 2, the objective was to test the
adaptiveness of the CBR system. The system should be
able to change its estimation of PI over time if behaviour
patterns change. A total of 36 test approaches were
performed with one test person. The test person would
start randomly at P1, P2 or P3 (see Figure 13) and end the
trajectory at P4, P5 or P6. In the first 18 sessions the test
person would indicate interest in close interaction by
handing an object to the robot from P5, while in the last
18 sessions the person did not indicate interest and the
trajectory ended at P4 or P6.

P4 P6

A }

Figure 13. Illustration of possible pathways around the robot
during the experiment. A test person starts from points P1, P2 or
P3 and passes through either P4, P5 or P6. If the trajectory goes
through P5, a close interaction occurs by handing an object to the
robot.
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4. Results

4.1 Experiment 1

As interaction sessions are registered by the robot, the
database is gradually filled with cases. All entries in the
database after different stages of training are illustrated
by four-dimensional plots in Figure 12. The (x,y)
coordinates are the position coordinates (p,py) of the
person in the robot’s coordinate frame, as estimated by
the pose estimation algorithm. The coordinates are the
dots in the 40 x 40cm grid. At each position, the
orientation of the person () is illustrated by a vector. The
colour of the vector denotes the value of PI. Blue indicates
that the person does not wish close interaction, while red
indicates that the person wishes to engage in close
interaction, i.e. PI=0 and PI=1 correspondingly. A green
vector indicates PI=0.5.

Figure 12(a—c) show how information in the database
evolves during the experiment. Figure 12a shows the state
of the database after the first person has completed the 12
sessions. Here, the database is seen to be rather sparsely
populated with PI values mostly around 0.5, which
means that the CBR system is not well trained yet. Figure
12b shows the state after 3 test persons have completed
the 12 sessions and, finally, Figure 12c shows all cases
(around 500) after all 5 test persons have completed the
sessions. Here the database is more densely populated,
and PI values are in the whole range from 0 to 1.

In Figure 15, the PI development for six individual
sessions, are plotted as a function of time. This is done for
test persons 1, 3 and 5. PI is plotted twice for each test
person: once for a randomly selected session where the
test person wishes interaction with the robot; and once
for a randomly selected session where the test person
passes the robot with no interest in interaction. For the
first test person, PI increases to a maximum around 0.65
for a session ending with a close interaction. For the same

1

person 1

0,8+ person 3

— person 5
0,6+ 1

=
0,41 1
0,2 J
0
T Session Time T,

Figure 15. PI as a function of the session time for three different
test persons. For each test person, PI is plotted for a session
where close interaction occurs and for a session where no close
interaction occurs. The x-axis shows the session time. The axis is
scaled such that the plots have equal length.

www.intechweb.org
www.intechopen.com

3 1
2_
s = - 0.75
]'- 3 L ® % & &
— 2 (. S s W W 0.5
|_§. 0 l® . s B |~.§‘- . . - u
O \.;1: ? :}_‘ gy 0.25
-1 . .
;1 0
-3 L L L L
-1 0 1 2 3 4
x [m]

Figure 14. A snapshot of the database after the second
experiment was done. It shows how the mean value for PI is
calculated for three areas: 1) the frontal area; 2) the small area;
and 3) for all cases. The development of the mean values over
time for all three areas is illustrated in Figure 16.

test person, PI drops to a minimum of 0.48 for a session
where no close interaction occurs. For the 3rd test person,
PI ends with a value around 0.9 for a session where close
interaction has occurred, while PI = 0.35 for a session
where no close interaction has occurred. For the last test
person, PI rapidly increases to a value around 1 for a
session where close interaction occurs, and has PI around
0.18 when the person is not interested in interaction.
Generally PI is estimated more quickly and with more
certainty the more the system is trained.

4.2 Experiment 2

Experiment 2 tests the adaptiveness of the CBR system. In
order to see the change in the system over time, the
average PI value in the database after each session is
calculated. The averages have been calculated as an
average for three different areas (see Figure 14), to be able
to compare how the database changes in different areas
relative to the robot. The areas are:
o Area 1: The frontal area just in front of the the robot.
e Area 2: A small area around the robot, which
includes some of the frontal area, and some to the
sides as well.
e Area 3: All cases stored in the database.
[ )
Figure 16 shows the development of the average values of
PI for the 36 interaction sessions for one person.

As can be seen from Figure 16, the average value of PI
increases for the first 18 sessions, where the person is
interested in close interaction. This is especially the case
for areas 1 and 2, which have a maximum value at 0.9 and
0.85 respectively, but less for area 3 (around 0.65). After
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18 sessions, there is a bend on the graph and PI starts to
drop for all areas. Most notably, area 1 drops to a
minimum of 0.39 after 36 sessions.

5. Discussion

As can be seen in Figure 12(a—c), the number of plotted
database entries increases as more interaction sessions
occur. This shows the development of the CBR system,
and clearly illustrates how the CBR system gradually
learns from each person interaction session. The number
of new cases added to the database is highest at the
beginning of the training period where few (or no) case
matches are found. As the training continues, the number
of new cases added to the database is reduced as
matching cases are found. The growth of the database,
when training, depends on the resolution of the selected
case features and the time and complexity of the training
scenario. Based on current experiments there are no
indications that the database will grow towards being
inappropriately large. In Figure 12(a—c), the vectors are
gradually turning from either red or blue to green as
distance increases. This is expected, as the weight, which
determines how much PI is changed for each update, is a
function of the distance between the robot and the test
person (see Figure 7). This is reasonable as it gets more
difficult to assess human interest at long distance.

In all three figures (Figure 12(a—c)), the vectors in the red
colour range (high PI) are dominant when the orientation
of the person is towards the robot, while there is an
excess of vectors not pointing directly towards the robot
in the blue colour range (low PI). This reflects that a
person, who wishes to interact, has a trajectory moving
towards the robot, which is as expected for a normal
human interaction process.

Figure 15 shows the development of PI over time for six
individual sessions with positive and negative interest in

=
g
8
g
0 —
2 ! : 2 small area
I S 3 all cases
0 1 1 I
9 18 27 36

Number of approaches
Figure 16. Graph of how the average of PI evolves for the three
areas indicated in Figure 14. 36 person interaction sessions for
one test person is performed. The red vertical line illustrates
where the behaviour of the person changes from seeking
interaction to not seeking interaction.
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interaction, respectively. It can be seen how maximum
and minimum values for PI increase as more test persons
have been evaluated. After evaluating one test person, the
robot has gathered very little interaction experience, and
has difficulty in determining the correspondence between
motion pattern and end result — hence, PI stays close to
0.5. After the third test person, the robot has gathered
more cases and, therefore, improves in estimating the
outcome of the behaviour. For the last test person, the
robot is clearly capable of determining what will be the
outcome of the interaction session. Each session takes
between 2 and 4 seconds depending on the velocity of the
user. Changes in estimation of PI can be seen in the first
quartile of each session, while maximum (or minimum) is
not reached before the fourth quartile.

Figure 16 shows the development of the average PI value
over time. It can be seen that PI changes more for areas 1
and 2 close to the robot, than for area 3. This is because
most cases will be close to 0.5 at large distances owing to
the distance weight function in Eq. (12). Furthermore, in
most sessions the person’s trajectory goes through the
frontal area, thereby having the highest number of
updates of PI. Figure 16 illustrates that the database
quickly starts to adapt to the new environment, when the
test person changes the behaviour to no interaction after
the first 18 sessions.

In short, the experiments show that:

e  Determination of PI improves as the number of
CBR case entries increases, which means that the
system is able to learn from experience.

o The CBR system is independent of the specific
person, such that experience based on motion
patterns of some people, can be used to
determine the PI of other people.

e The algorithm is adaptive, when the general
behaviour of the people changes.

5.1 General Discussion on Reasoning System
and Adaptive Behaviour

Generally, the conducted experiments show that CBR can
be applied advantageously to a robot, which needs to
evaluate the behaviour of a person. The method for
assessment of the person’s interest in interaction with the
robot is based on very limited sensor input. This is
encouraging as the method may easily be extended with
support from other sensors, such as computer vision,
acoustics etc.

The results demonstrate how, by fairly simple training, a
robot can learn to estimate the interaction interest of a
person. Such training may be used to give the robot an
initial database that may later be refined to the specific
situation in which it operates.
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The proposed method for human-aware navigation
demonstrates how Hall's zones, together with more
recent results about the preferred robot encounter, may
be used for the design of an adaptive motion strategy.
The three methods — person pose estimation, learning
and evaluation of interest in interaction, and human-
aware navigation — are decoupled in the sense that they
only have a simple interface with each other. This opens a
way of using the methods separately with other control,
navigation or interaction strategies.

This work shows that by coupling the CBR system with
human-aware navigation, the result is an adaptive robot
behaviour respecting the personal zones depending on
the person's interest to interact — a step forward from
previous studies (Sisbot, et al., 2005; Sisbot, Clodic, Urias,
Fontmarty, Brethes & Alami, 2006).

6. Conclusions

In this work, we have described an adaptive system for
natural motion interaction between mobile robots and
humans. The system forms a basis for human-aware
navigation respecting a person's social spaces. The system
consists of three independent components:
¢ A new method for pose estimation of a human
by using laser rangefinder measurements.
e Learning human behaviour
patterns and Case-Based Reasoning (CBR).
¢ A human-aware navigation algorithm based on
a potential field.

using motion

Pose estimates are used in a CBR system to estimate the
person's interest in interaction, and the spatial behaviour
strategies of the robot are adapted accordingly using
adaptive potential functions.

The evaluation of the system has been conducted through
two experiments in an open environment. The first of the
two experiments of the combined system shows that the
CBR system gradually learns from interaction experience.
The experiment also shows how motion patterns from
different people can be stored and generalised in order to
predict the outcome of an interaction session with a new
person.

The second experiment shows how the estimated interest
in interaction adapts to changes in behaviour of a test
person. It is illustrated how the same motion pattern can
be interpreted differently after a period of training.

The presented system is a step forward in creating
socially intelligent robots, capable of navigating in an
everyday environment and interacting with human
beings by understanding their interest and intention. In
the long-term perspective, the results could be applied to
service or assistive robots in e.g. health-care systems.
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In this paper, the potential field is used to steer the robot
around one person, who might or might not be interested
in interaction. But the potential field could also be used
for navigation in populated areas with more people
present. This could, for example, be in a pedestrianised
street, where the robot has to move around.
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