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The science and management of infectious disease are entering
a new stage. Increasingly public policy to manage epidemics
focuses on motivating people, through social distancing policies,
to alter their behavior to reduce contacts and reduce public disease
risk. Person-to-person contacts drive human disease dynamics.
People value such contacts and are willing to accept some disease
risk to gain contact-related benefits. The cost–benefit trade-offs
that shape contact behavior, and hence the course of epidemics,
are often only implicitly incorporated in epidemiological models. This
approach creates difficulty in parsing out the effects of adaptive
behavior. We use an epidemiological–economic model of disease
dynamics to explicitly model the trade-offs that drive person-to-
person contact decisions. Results indicate that including adaptive
human behavior significantly changes the predicted course of epi-
demics and that this inclusion has implications for parameter estima-
tion and interpretation and for the development of social distancing
policies. Acknowledging adaptive behavior requires a shift in think-
ing about epidemiological processes and parameters.

susceptible–infected–recovered model | R0 | reproductive number |
bioeconomics

The science and management of infectious disease is entering
a new stage. The increasing focus on incentive structures to

motivate people to engage in social distancing—reducing in-
terpersonal contacts and hence public disease risk (1)—changes
what health authorities need from epidemiological models. So-
cial distancing is not new—for centuries humans quarantined
infected individuals and shunned the obviously ill, but new
approaches are being used to deal with modern social inter-
actions. Scientific development of social distancing public poli-
cies requires that epidemiological models explicitly address be-
havioral responses to disease risk and other incentives affecting
contact behavior. This paper models the role of adaptive be-
havior in an epidemiological system. Recognizing adaptive be-
havior means explicitly incorporating behavioral responses to
disease risk and other incentives into epidemiological models (2,
3). The workhorse of modern epidemiology, the compartmental
epidemiological model (4, 5), does not explicitly include behav-
ioral responses to disease risk. The transmission factors in these
models combine and confound human behavior and biological
processes. We develop a simple compartmental model that ex-
plicitly incorporates adaptive behavior and show that this mod-
ification alters understanding of standard epidemiological metrics.
For example, the basic reproductive number, R0, is a function of
biological processes and human behavior, but R0 lacks a behav-
ioral interpretation in the existing literature. Biological and be-
havioral feedbacks muddle R0’s biological interpretation and
confound its estimation.
Prior approaches that incorporate behavior into epidemiolog-

ical models generally fall into three categories: specification of
nonlinear contact rate functions, expanded epidemiological com-

partments or agent-basedmodels, and epidemiological–economic
(epi-economic) models. Classical epidemiological models assume
contact rates are constant (frequency dependent) or proportional
to density (density dependent), although many extensions exist
(6). A common extension is to specify a contact rate that is non-
linear in the state variables—generally in the density of infected
individuals (e.g., refs. 6–8). Such extensions are a reduced-form
approach to modeling behavioral responses to disease risks. This
approach is limited in that it does not model the underlying de-
cision process and does not readily help decision makers design
incentives for socially desirable behaviors during an epidemic.
A second approach is to include behaviorally related compart-
ments in addition to health status compartments. This approach
involves developing behavioral rules for types of individuals in
different compartments, such as hospitalization and fear com-
partments (9, 10) or spatial compartments joined as a network
(11). Individuals in these compartments experience different
disease incidence. Extending this approach, so that all individuals
have unique behavioral rules, yields an agent-based model (e.g.,
ref. 12). This approach often requires the analyst to specify ex
ante how changing incentives alters behavior and thus is restricted
in its ability to aid in designing social distancing incentives.
Epi-economic models merge economics and epidemiology

by explicitly analyzing individual behavioral choices in response
to disease risk (13–18). People are assumed to make decisions
to maximize utility, an index of well-being. People weigh the
expected utility associated with decisions that include the pos-
sibility of future infection when choosing between behaviors such
as vaccination choices (17) or different levels of interpersonal
contact (12–15). Disease risks simultaneously affect and are af-
fected by agents’ decisions, creating a risk feedback—infection
levels drive behaviors and contact rate decisions shape disease
spread. The epi-economics literature is largely built on top of
classical epidemiology, so that the impact of economic behaviors
on epidemiological processes and metrics generally is not ex-
plored. In this paper, we explore how economic feedbacks alter
the underlying epidemiology and can fundamentally shift inter-
pretation of epidemiological processes and metrics.
The approach to modeling behavior has implications for

public health policy design. Nonlinear contact rate models and
models involving increasing compartmentalization generally fo-
cus on estimating the basic reproductive number of the disease,
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R0, defined as the number of secondary infections in a naive
population that result from the initial introduction of a patho-
gen. Most of the literature recommends adopting public health
policies to reduce R0. Roberts and Heesterbeek (ref. 19, p. 1359)
state that R0 is “the most pervasive and useful concept in
mathematical epidemiology” due to its perceived role in guiding
disease management. However, R0 implicitly includes disease-
free behavior and should be thought of as a reduced-form
function. Estimates of R0 confound biological aspects of the
pathogen with social aspects of adaptive human responses to
disease risk. More-
over, R0 represents past events that may not be informative of
future events when behavior is adaptive.
The epi-economic literature on health policy focuses on the

trade-offs associated with adopting management goals not based
explicitly on R0 (20–23), as R0 may not reliably guide postout-
break disease management (23, 24). Most epi-economic litera-
ture assumes managers completely control behavior, e.g., require
vaccination (20). But contact behavior, which is particularly im-
portant for contagious emerging diseases that have limited
treatment options (e.g., novel influenza viruses and Severe Acute
Respiratory Syndrome), is not easily controlled. Individuals
commonly respond to disease risks by limiting contacts (25, 26),
but may face insufficient private incentives to alter contacts to
achieve broader public health goals. Thus, understanding contact
decisions and the linkages between social distancing policies and
the incentives for contacts is crucial for policy.

Methods and Models
We explore the impact of contact behavior on epidemiological
processes and metrics by combining a classical compartmental
epidemiological model and an economic behavioral model based
on a forward-looking, representative agent. Both components are
abstracted from, but have key features found in, realistic settings.
Even in this simple setting behavior impacts understanding of
epidemiological processes and metrics, suggesting that behavior
plays an important role in complex realistic settings.
Consider a communicable disease that causes significant utility

loss, but not mortality, to infected individuals within a pop-
ulation, N, in a given area. We divide N into three compart-
ments: susceptible, S; infected and infectious (which we use
interchangeably), I; and recovered with immunity, Z. The epi-
demiological model is

_S ¼ −Cð·ÞβSI=N [1]

_I ¼ ðCð·ÞβSI=NÞ− vI [2]

_Z ¼ vI: [3]

C(·) is the rate that susceptibles contact others, and C(·)I/N is
the rate that susceptibles contact infectious individuals. Param-
eter β represents the likelihood that contact with an infectious
individual yields infection, i.e., the conditional “infectiveness” of
a pathogen. The rate of recovery and acquired immunity is v, and
there is no loss of immunity. The model is constructed so that N
is fixed and that any outbreak is temporary. Therefore, we focus
on dynamics as opposed to steady states, which exist in this
model only when I = 0. Health status is the only source of
heterogeneity within N; individuals within a particular com-
partment are homogeneous with respect to behavior. Additional
compartments are required to model heterogeneous behaviors
(and hence heterogeneous infection risks) within a health class.
The model can be extended to incorporate population turnover
(SI Text S2: Sensitivity Analysis), changes in N, additional sources
of agent heterogeneity, loss of resistance, or additional health

management choices (e.g., vaccination and treatment). Ab-
stracting from these features facilitates clear illustration of how
adaptive contact behavior affects epidemiological dynamics
and metrics.
System Eqs. 1–3 imply R0 = βC(·)N/v|lim S→N, lim I→0, lim Z→0

(27); ergo this metric depends on contact behavior, as do system
dynamics. In classical epidemiological models, C(·) is assumed
the same for all individuals regardless of health status, and mixing
is assumed to be homogeneous. It is common to assume either
contacts are proportional to N, i.e., C(·) = cN, so that βC(·)I/N =
cβI, or contacts are constant, i.e., C(·) = c, so βC(·)I/N= cβI/N (6).
In each case, c is a fixed parameter, implying fixed (nonadaptive)
contact behavior and relegating behavior to a term that is indis-
tinguishable from β. These common assumptions hide behavior
crucial to spreading infection. The critical feature that is lost
through this simplification is that C(·) is determined by indi-
viduals’ aggregate behavioral choices.
The assumption that individuals of each health class are

equally likely to come in contact (homogeneous mixing) is vio-
lated if individuals in different compartments behave differently.
Heterogeneity in preferences (e.g., contacting family over strang-
ers), exogenous conditions (e.g., age), and income lead to het-
erogeneous behavior. Even if the population is homogeneous in
social and economic attributes, which we assume for simplicity,
then individuals of different health types still face different be-
havioral incentives and adapt to the epidemic differently. The
reason is that the expected benefits and costs of contact vary by
health status. For instance, susceptible individuals have incentives
to consider infected individuals’ contact behaviors, as this con-
sideration affects the likelihood of contacting an infected in-
dividual and becoming infected.
To relax the assumption of homogeneous behavior, first index

individuals by health type, denoting Y = {s, i, z} to be the set of
possible health types (corresponding to S, I, and Z). Next, define
contacts betweenm-type and n-type individuals, withm, n ∈ Y, as

Cmnð·Þ ¼ CmC nN=ðSC s þ IC i þ ZC zÞ: [4]

Cmis the expected number of contacts made by a type-m in-
dividual. When m = s and n = i, Cmnð·Þ ¼ C sið·Þ corresponds to
C(·) in Eqs. 1 and 2. We emphasize that Cm is a choice made by
a type-m individual. Cm may be chosen directly or by engaging in
certain activities (e.g., taking public transportation). We assume
individuals know their own type, but not the health status of
others (additional compartments could be developed for indi-
viduals who are unaware of being infected or for cases where
others have signaled their status). Accordingly, Eq. 4 implies
conditional proportional mixing. Mixing is proportional, but also
conditional on the behaviors and the distribution of individuals
of different health types. In what follows, we simplify notation by
scaling N to unity so that S, I, and Z are proportions.
If all types choose the same number of contacts and choices

are constant over time (C h ¼ c ∀h∈Y ; ∀t), then Cmnð·Þ ¼ c.
Accordingly, transmission takes the classic form βcSI and R0
takes the classic form Rc

0 ¼ β c=v. More generally, individuals of
different health types choose different contact levels on the basis
of infection risk, so that transmission is based on Eq. 4 and R0 is
defined as R i

0 ¼ βC i=vjlim S→N;lim I→0;Z¼0: The calculation of R0
depends on how infected individuals alter behavior in response
to disease.
Consider why people make contacts. Individuals derive utility

from making contacts, but incur costs from infection (i.e., re-
duced utility, which persists during the illness). Contact choices
are made to maximize the expected net present value of utility,
with the choice influencing current utility and the probability of
infection and therefore expected utility in future periods. We
assume individuals consider the future, have some understanding
of how choices impact disease risks, and take these risks into
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account when making decisions. To model this dynamic maxi-
mization problem, we define utility within a period and define
the probability of transitioning across health classes. We switch
to a discrete-time formulation, with time incremented in days
and transition probabilities reformulated below on the basis
of Eqs. 1–3.
We model a representative agent whose current-period utility

depends on his current health state, h ∈ Y, and current-period
contacts with others. Specifically, a type-h individual’s utility at
time t is utðht;Ch

t Þ. Utility is concave and single peaked in con-
tacts, and infection reduces utility. In our simulations, we adopt
uht ¼ ðbhCh

t −Ch2
t Þγ− ah, where γ, bh, and ah are fixed parameters

with bs = bz ≥ bi ≥ 0, as = az = 0, γ > 0, and ai > 0. These
parameter assumptions imply that infection reduces the marginal
utility of contacts and impose a lump sum cost during the
infection period.
If an individual does not expect that his contact choices in-

fluence his probability of transitioning to another health state,
then his optimization problem is static and the optimality con-
dition is ∂uh

t =∂Ch
t ¼ 0. The utility-maximizing number of con-

tacts in our example is Ch�
t ¼ 0:5bh. This is the optimal choice

for i- and z-type individuals, although Ci�
t <Cz�

t when bi < bz, as
neither type is at risk for becoming infected. The probability of
recovery, denoted Pz ¼ 1− e− v, is independent of contacts. The
probability takes this form even if infected individuals optimally
choose a treatment regime, so long as the optimal treatment
regime is independent of the state of the population. Without
loss of generality, we scale ai so that that utility-maximizing in-
fected individuals receive zero utility.
Only susceptible individuals face a risk of transitioning to

an alternative health state, thereby influencing their expected
future utility. According to model Eqs. 1–3, the probability that
an s-type individual becomes infected at time t is

P i
t ðCs

t ;C
s�
t ;Ci�

t ;C
z�
t ; St; It;ZtÞ ¼ 1− e− βItCs

t C
i�
t =ðStCs�

t þItCi�
t þZtCz�

t Þ:
[5]

In Eq. 5, others’ behaviors are denoted by Cs�
t ;C

i�
t , and Cz�

t ,
where the superscript * indicates contact choices are set at their
optimized values. We distinguish between Cs

t , which is the choice
of the susceptible individual under consideration, and Cs�

t , which
is the optimal choice of other susceptible individuals that the
present susceptible individual may contact. An optimizing in-
dividual takes the choices of all other susceptible individuals as
given when making his contact decision. Mathematically, opti-
mality conditions (shown below) are derived holding Cs�

t con-
stant, as this value is outside the control of the individual. After
deriving the optimality conditions, Cs

t is set equal to Cs�
t as all

susceptible individuals behave identically.
The key feature of Eq. 5 is that the probability of becoming

infected depends on the s-type individual’s behavior, Cs
t , the

distribution of types within N (i.e., the current values of St, It, and
Zt), and the behavior of others (which, in the case of other
susceptible individuals, implicitly depends on the distribution of
types). We assume an s-type individual has statistically complete
information about the risk he currently faces, with his in-
formation set including St, It, and Zt and knowledge of how
others make decisions so that he can accurately predict others’
choices. The result is that the individual’s expectation of be-
coming infected equals Eq. 5. Assuming individuals know the
true infection probability simplifies exposition, but is not re-
quired for our qualitative results.
A susceptible individual decides about contacts on the basis of

his single-period utility function and expected future utility,
which depend on infection expectations. The susceptible indi-
vidual’s decision solves the dynamic programming problem via
the Bellman equation

VtðsÞ ¼ max
Cs∈XðsÞ

�
utðs;Cs

t Þ þ δ
��
1−PiÞVtþ1ðsÞ þ PiVtþ1ðiÞ

��
: [6]

In Eq. 6, Vt(s) is the value function associated with being sus-
ceptible at time t, X is the range of possible contacts, e.g., X= [0,
0.5bs], and δ is the discount factor. Expected future utility, the
term in brackets, depends on expectations about future infection
levels. Vt+1(s) is the present value of expected future utility if the
individual remains susceptible. Vt+1(i) is the present value of
expected future utility if the individual becomes infected.
An individual’s decision about Ct

s depends on his information
set at time t (already described above) and how information
enters into expectations about future values of S, I, and Z.
Expectations can be modeled in multiple ways (3, 16). A rea-
sonable assumption is that individuals learn and adapt their
“forecasts” on the basis of the current information set. The
simplest forecast the individual can make, and the one we adopt,
is that current values of St, It, and Zt persist. The individual could
form more complex forecasts on the basis of past and current
values of S, I, and Z, but this would not change the fundamental
insights that behavior matters. More complex individual fore-
casting would only enhance the complexity of behavioral re-
sponses and hence the behavioral effects from our model.
At time t = 0, the individual chooses Cs

0 to solve the problem
formalized by Eq. 6, given the adaptive expectations described
above and given a planning horizon of length τ. In period t = 1,
the individual updates knowledge about the state of the world
and uses Eq. 6 to optimize anew over the next τ planning peri-
ods. The process continues in this manner. For instance, if τ =
14, then on May 1 the individual’s horizon is through May 15, but
on May 2 the horizon extends to May 16, and so on.
The first-order necessary condition for the problem formalized

in Eq. 6 implies

∂ut=∂Cs
t ¼ δðVtþ1ðsÞ−Vtþ1ðiÞÞð∂Pi=∂Cs

t Þ: [7]

The left term in Eq. 7 represents current period benefits of in-
creasing contacts. The right term in Eq. 7 represents the
expected marginal damage costs of increasing current contacts,
in terms of discounted expected reductions in future utility due
to infection. Eq. 7 implies that a susceptible individual chooses
CS
t to equate marginal benefits and expected marginal costs (i.e.,

disease risk). The contact level decision influences the proba-
bility of becoming infected and the magnitude of future utility.
Solving Eq. 7 requires knowledge of Vt+1(s) and Vt+1(i).

Infected individuals face a static problem. For all t < τ − 1,
Vt+1(i) is defined for an infected individual by the series

Vtþ1ðiÞ ¼ uðz;Cz�Þ
Xτ
j¼1

n
δ j
�
1− ð1−PzÞj

�o

¼ uðz;Cz�Þ
"	

1− δτþ1

1− δ



−

 
1− ðδð1−PzÞÞτþ1

1− δð1−PzÞ

!#
: [8]

For period t = τ − 1, Vt+1(i) = Vτ(i) = uτ(i) because the in-
dividual becomes infected in the terminal time period. For pe-
riod t = τ, Vt+1(i) = Vτ+1(i) = 0 because τ + 1 exceeds the
individual’s planning horizon.
The closed-form solution for Vt+1(i) illustrates one role of

expectations for making contact choices and hence for deter-
mining disease outcomes. ∂Vt+1(i)/∂τ > 0 because increases in τ
extend the period over which an individual expects to be im-
mune. Expectations also influence Vt+1(s). Intuitively, a larger τ
increases Vt+1(s), as there is more time to gain benefits either by
remaining healthy or from having more time to recover. The net
effect of a larger τ on the contact decision depends on the re-
sponse of Vt+1(s) – Vt+1(i) to a larger τ.
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Given Vt+1(i), it is possible to solve Eq. 7 for Vt+1(s) and for
each choice C S

t over the planning period [0, τ] using backward
induction. The nonlinearities in the model prevent an analytical
solution, so numerical methods are used below to gain insight
into the implications of adaptive behavior for the course of the
disease and for the broader study of epidemics. Two analytical
results are possible, however. First, Cs� ≠Ci�≠Cz� because Eq. 7
differs from the corresponding optimality conditions for infected
and recovered individuals. Second, whereas Ci� and Cz� are time
invariant, Eq. 7 is a state-dependent condition whose solution,
Cs�, is state dependent: Cs� adapts to the state of the world.

Results
We simulate a disease outbreak using the epi-economic model to
show the effect of adaptive behavior (Mathematica 7.0; Wol-
fram). In the absence of appropriate behavioral data, we cali-
brate the baseline epi-economic model to be consistent with
a flu-like pathogen (bh = 10 when h ≠ i, bi = 6.67, ai = 1.826,
γh = 0.25, δ = 0.99986 corresponding to a 5% annual discount
rate, β = 0.0925, v = 0.1823, τ = 12). These baseline parameters
generate an estimated or apparent R0 = 1.8 (28) and an expected
per-individual infection period of 6 d (29). The apparent R0
is the estimated value of R0 (SI Text S1) from outbreak data
assuming a classical epidemiological model, but where the data-
generating mechanism (DGM) is actually the epi-economic model.
The dotted curve in Fig. 1A presents results of the model as-

suming individuals do not react to disease risks or to infection;
i.e., Ch

t ¼ c ¼ 0:5bs ∀h∈Y, ∀t. For susceptible and infected
individuals these behavioral assumptions likely hold only before
disease introduction. We call this the ex ante classic susceptible–
infected–recovered (SIR) model. This simulation results in 90%
of the population becoming infected. The projected course of the
disease for the baseline adaptive epi-economic model, where
behavior responds to changes in disease states, is illustrated by
the solid curve in Fig. 1A. This simulation results in 64% of the
population becoming infected. Comparing the solid and dotted
curves indicates behavioral responses can substantially alter the
disease course. Adaptive changes in Ci�

t and Cs�
t in the epi-

economic model reduce the peak prevalence level, in addition to
the reduction in cumulative cases. Reductions in Ci�

t also delay
new infections.

Fig. 1B illustrates results when infected individuals find it
optimal not to respond to disease; bi ¼ bz ¼ 10 so that Ci

t ¼ Cz
t .

The nonresponse by infected individuals increases risk to sus-
ceptible individuals, and susceptible individuals respond more
strongly. The minimum number of contacts that susceptible
individuals make is 2.49 when bi ¼ bz (as in Fig. 1B), vs. 3.65
when bi ¼ 2bz=3 (as in Fig. 1A). Peak prevalence and cumulative
cases are greater in Fig. 1B, even with a stronger susceptible
response. The result is that the disease course with adaptive
behavior is closer to the ex ante results, but still differs sub-
stantially.
Eq. 8 suggests that behavior is sensitive to the individual’s

planning horizon, τ (Fig. 2). However, the impact of longer
horizons is not monotonic. A small increase in τ causes Vt+1(s) to
increase faster than Vt+1(i), which increases the expected mar-
ginal damages of disease in Eq. 7. Therefore, susceptibles make
fewer contacts, resulting in reduced peak prevalence. Greater
increases in τ can have the opposite effect, reducing expected
marginal damages and increasing contacts and peak prevalence.
See SI Text S2 for additional sensitivity analysis.
We simulate how behavior responds to a public policy in-

tervention that changes the payoff structure of contacts. Con-
sider the baseline adaptive behavior case (Fig. 1A). Assume a
social distancing policy reduces the payoff to making contacts
(e.g., increases the cost of accessing public transportation). Fig. 3
shows two policy interventions that proportionally reduce bh ∀h
∈ Y for 2 wk starting on day 35 of the epidemic (e.g., following
outbreak detection). The two interventions differ by the magni-
tude of the proportional reduction. The first intervention, a 7%
reduction in bh, maximizes societal utility (SI Text S3). In the
second intervention bh is reduced by 30% to further reduce
infections. Policies that change the payoffs to contacts alter be-
havior and can cause multiple epidemic peaks, even in a fixed
population. This result is consistent with conclusions in ref. 30.
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Fig. 1. (A and B) The disease courses for the adaptive epi-economic model
(solid line), the classic ex ante model using the baseline parameters (dotted
line), and the classic ex post model, based on the apparent R0 (dashed line).
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(bh reduced by 30%).
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Relative to the baseline case, the first intervention (7% reduc-
tions) reduces cumulative infections by 1.7% and improve soci-
etal utility by 0.005%. The second intervention (30% reduction)
reduces cumulative infections by 5.8% and reduces societal
utility by 0.078%. A fully developed economic behavioral model
could directly assess the trade-offs involved in such social dis-
tancing interventions through price changes. Analysis of social
distancing often recommends reducing contacts, but the classical
epidemiological approach does not provide mechanisms to as-
sess trade-offs associated with such reductions. Moreover, re-
ducing infections does not necessarily enhance societal utility.
Adaptive behavior has implications for estimating disease

parameters and projecting disease courses. It might be possible to
estimate contact rates ex ante, before a disease outbreak. How-
ever, we have shown that the ex antemodel does not yield accurate
predictions. Commonly, estimation of disease parameters occurs
after an outbreak. Suppose the adaptive epi-economic model is
theDGMunderlying the outbreak. A standard approach is to take
data from the early stages of the outbreak and estimate R0 on the
basis of the assumptions of the classical SIRmodel (Ch

t ¼ c ∀h, ∀t)
(SI Text S1). This is the apparent R0. Next, the apparent R0 is used
to construct an ex post model of disease transmission on the basis
of classical SIR assumptions. The dashed curve in Fig. 1 presents
results of the estimated ex post model.
For the baseline case in Fig. 1A the apparent R0 = 1.8,

whereas R i
0 ¼ 1:67. The apparent R0 is closer to R i

0 than to the
ex ante value Rc

0 ¼ 2:5. Thus, the ex post model is a better fit
than the ex ante model. However, the ex post model still yields
biased and inconsistent estimates of epidemiological parameters
because it ignores behavioral responses and does not estimate
behavioral and biological parameters jointly (31). Unless be-
havior is explicitly accounted for, an important omitted variables
bias persists. Consistent estimates require simultaneous estima-
tion of epidemiological and economic parameters (e.g., ref. 32 in
other coupled systems; ref. 30 gives an uncoupled, but joint,
estimation of disease and reduced-form behavioral parameters).
The interpretation of apparent R0 is unclear, but it is not the
number of secondary infections caused by the index case.
At the instant R0 is revealed, only the adaptive behavior of

infected individuals affects disease dynamics, as is reflected by
R i

0. If individuals maintain preinfection behaviors postinfection
(Fig. 1B), then Ri

0 ¼ Rc
0 ¼ 2:5 (shown in Fig. 1B by the overlap of

the solid and dotted curves in the initial period). In this case, the
apparent R0 = 2.6 is closer to Ri

0 than in the baseline case. Still
the differences in peak prevalence between the estimated model
and the DGM are greater in Fig. 1B than in Fig. 1A. This result
implies that a closer estimate of R0 does not necessarily lead to
better prediction; behavior matters. The “true” value of R0 and
the implications for forecasting are increasingly muddled if
multiple stages of infection or increased behavioral variability
related to population heterogeneity are modeled.

Discussion
Individuals acting in their own self-interest are expected to re-
spond to disease risks by forgoing valuable contacts to protect
themselves from infection. Individuals are unlikely to stop making

contacts altogether, but rather balance the expected incremental
benefits and costs of additional contacts. These behavioral
responses feed back into the disease transmission process and
alter epidemiology dynamics and future disease risks.
Acknowledging adaptive behavior requires a shift in thinking

about epidemiological processes and parameters. Adaptive be-
havior implies disease transmission rates change as disease risks
and the private payoffs of alternative behaviors change. Epide-
miological and behavioral parameters need to be estimated
jointly, and traditional metrics such as R0 may provide little policy
insight once a disease has emerged. Future research is needed to
determine how to recover structural parameters of a joint be-
havioral epi-economic model.
Jointly analyzing behavior and disease dynamics facilitates

analysis of social distancing incentives. Social distancing is about
changing person-to-person contact rates. Models that inform
social distancing must explicitly consider the determinants of the
contact rate. Most traditional epidemiological models can devise
a target C(·), but provide insufficient guidance for reducing
contacts. Extreme measures, e.g., public shutdowns that attain
C(·) = 0, can quickly end an epidemic and reduce peak preva-
lence, but come at a cost of forgone benefits from contacts.
Reductions in the contact rate to control an epidemic can result
in greater economic losses than those from the epidemic itself
(33). Our policy simulation suggests that the greatest case re-
duction does not lead to the greatest social well-being. Our
modeling framework is able to simultaneously project the epi-
demiological and economic effects of a social distancing policy.
Public health officials must have information about both effects
to evaluate whether a given strategy is worth the cost.
Understanding the incentives for contacts is critical to forming

effective social distancing policies. Epidemiological models will
be most useful if the contact functions they use reflect the trade-
offs that people make. Mechanistic understanding of contact
functions and tradeoffs can improve the cost effectiveness of
disease control and help health authorities avoid unintended
consequences (e.g., a school closure that results in infected
children mixing in other public places where they interact with
and infect more people). A mechanistic argument for the nature
of the contact function allows a full analysis of the actual policy
choices and provides a framework for making trade-offs so that
the cure is not worse than the disease.
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