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Abstract—Hysteresis hinders the effective use of smart materials
in sensors and actuators. This paper addresses recursive identifi-
cation and adaptive inverse control of hysteresis in smart material
actuators, where hysteresis is modeled by a Preisach operator with
a piecewise uniform density function. Two classes of identification
schemes are proposed and compared, one based on the hysteresis
output, the other based on the time-difference of the output. Con-
ditions for parameter convergence are presented in terms of the
input to the Preisach operator. An adaptive inverse control scheme
is developed by updating the Preisach operator (and thus its in-
verse) with the output-based identification method. The asymptotic
tracking property of this scheme is established, and for periodic
reference trajectories, the parameter convergence behavior is char-
acterized. Practical issues in the implementation of the adaptive
identification and inverse control methods are also investigated.
Simulation and experimental results based on a magnetostrictive
actuator are provided to illustrate the proposed approach.

Index Terms—Adaptive control, hysteresis, identification, inver-
sion, Preisach operator, smart materials.

I. INTRODUCTION

S
MART materials, e.g., magnetostrictives, piezoelectrics,

and shape memory alloys (SMAs), show the coupling of

mechanical properties with applied electromagnetic/thermal

fields and hence have built-in sensing/actuation capabilities.

However, strong hysteresis existing in these materials hinders

their effective use in sensors and actuators [1]. The hysteresis

behavior often varies slowly with time, which makes the hys-

teresis control problem even more challenging. To address this

issue, recursive identification and adaptive control algorithms

are developed in this paper based on a special class of Preisach

hysteresis operators.

Hysteresis models can be roughly classified into physics-

based models and phenomenological models. An example

of a physics-based model is the Jiles–Atherton model of fer-

romagnetic hysteresis [2], where hysteresis is considered to

arise from pinning of domain walls on defect sites. The most

popular phenomenological hysteresis model used for smart

materials has been the Preisach operator [3]–[10], where the
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hysteresis is modeled as a (weighted) aggregate effect of all

possible delayed relay elements, which are parameterized by

a pair of threshold variables [11]. A similar type of operator,

called Krasnosel’skii–Pokrovskii (KP) operator [12], [13], has

also been used for modeling hysteresis in smart materials [14],

[15]. The difference between the Preisach operator and the

KP operator is that delayed relay elements in the latter have

finite slopes. Another phenomenological hysteresis model is

the Prandtl–Ishlinskii (PI) operator [16]. The PI model is a

superposition of elementary play or stop operators, which are

parameterized by a single threshold variable [13].

A fundamental approach in coping with hysteresis is inverse

compensation, where one aims to cancel out the hysteresis

effect by constructing a right inverse of the hysteresis model

(see, e.g., [4], [8]–[10], [15], and [17]–[19]). It has been widely

observed that hysteretic behaviors of smart materials vary with

time, temperature and some other ambient conditions. Hence

the performance of open-loop inverse compensation based on a

fixed model is susceptible to model uncertainties. To combat this

problem, a robust control framework was proposedby combining

inverse compensation with control theory [20]. An alternative

approach is adaptive inverse control [16], [17], [21], where the

inverse model is updated adaptively. Tao and Kokotović devel-

oped an adaptive inverse control scheme for a class of hysteresis

models with piecewise linear characteristics cascaded with

known or unknown linear dynamics [17]. Adaptive identification

and inverse control were studied for a discretized KP operator

and applied to an SMA actuator by Webb et al. [21]. Kuhnen and

Janocha examined an adaptive inverse scheme for piezoelectric

actuators, where the PI hysteresis operator was used [16].

What distinguish this paper from [16], [17], and [21] are: 1)

the Preisach operator is used to model the hysteresis nonlinearity;

2) the persistent excitation (PE) conditions for parameter conver-

gencearepresentedin termsof theinput tothehysteresisoperator;

and 3) the asymptotic tracking property of the adaptive inverse

control algorithm is proved, and for periodic reference trajecto-

ries, the parameter convergence behavior is characterized.

For the Preisach operator, the model “parameter” is the

Preisach density function. A classical method to identify the

density function is to twice differentiate the Everett surface ob-

tained with first order reversal inputs [11]. Researchers adopted

functions of specific forms to fit the Everett surface based

on the least-squares method [4], [7] or fuzzy/neural network

approximators [10]. Another identification method is to devise

the input carefully and derive the Preisach weighting masses

(on a discretization grid) directly from the output measurements

(solving for unknowns from equations) [22]. This scheme

is very sensitive to measurement noises as one can easily see.
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A third approach is to identify the Preisach weighting masses

or the weights for basis functions based on the least-squares

method [8], [14], [15], [23]. The aforementioned identification

methods were all used offline, nonrecursively. In this paper,

hysteresis is modeled by a Preisach operator with a density

function that is constant within each cell of the discretization

grid, and the density values are identified recursively. Two

recursive identification algorithms are proposed and compared,

one based on the hysteresis output and the other based on the

time-difference of the output.

A necessary condition and a sufficient condition for param-

eter convergence are given in terms of the input to the Preisach

operator. In contrast to persistent excitation conditions for

identification of linear systems, which are centered around

the number of frequency components of the input signal, the

conditions here involve the reversal behavior of the input.

For ease of presentation, the analysis is done primarily for a

Preisach operator with discrete weighting masses (obtained by

assuming the density function within each cell is concentrated

as a mass at the cell center). The extension to the case of a

piecewise constant density is then briefly outlined.

An adaptive inverse control scheme is developed by updating

the Preisach model (and thus its inverse) with the output-based

identification algorithm. It is shown in this paper that, with the

adaptive inverse scheme, the tracking error approaches zero

asymptotically. Furthermore, for periodic reference trajectories,

the parameter convergence behavior under this scheme can be

characterized if the reference trajectory visits the positive or

negative saturation value. On the other hand, it is shown that

adaptive inverse control using the difference-based algorithm

for parameter update cannot achieve asymptotic tracking.

These results are illustrated and verified through experiments

of controlling a magnetostrictive actuator.

Identification and inversion of a Preisach operator with piece-

wise uniform density, were also involved in the authors’ prior

work [20]. However, there the identification was done offline

without looking into the identifiability issue, and the inversion

algorithm was developed for models with known densities. Al-

though the inversion scheme in [20] will be used in this paper,

establishing the convergence of the adaptive control algorithm is

new. Preliminary versions of some results reported in this paper

were presented at ACC’04 and NOLCOS’04 [24], [25].

The remainder of this paper is organized as follows. For the

convenience of the reader, the Preisach operator is briefly re-

viewed in Section II. Recursive identification of the hysteresis

model is studied in Section III, and adaptive inverse control is

discussed in Section IV. Finally, some concluding remarks are

provided in Section V.

II. PREISACH OPERATOR AND A DISCRETIZATION SCHEME

A. The Preisach Operator

Detailed treatment on the Preisach operator can be found in

[11], [13], and [26]. For a pair of thresholds with ,

consider a simple hysteretic element , as illustrated in

Fig. 1. Let denote the space of continuous functions on

. For (the space of continuous functions on

Fig. 1. Elementary Preisach hysteron 
̂ [�; �].

) and an initial configuration ,

is defined as, for

if

if

if

where and .

This operator is sometimes referred to as an elementary

Preisach hysteron (called hysteron hereafter in this paper),

since it is a building block of the Preisach operator. Define

is called the Preisach plane, and each is iden-

tified with the hysteron . For and a Borel

measurable initial configuration of all hysterons,

, the output of the Preisach operator is defined as [13]

(1)

where the weighting function is often referred to as the

Preisach function [11] or the density function [26]. Throughout

this paper it is assumed that . Furthermore, to simplify

the discussion, assume that has a compact support, i.e.,

if or for some , . In this case,

it suffices to consider a finite triangular area in the Preisach

plane (see Fig. 2(a)).

The memory effect of the Preisach operator can be captured

by the memory curves in . At time , can be divided into two

regions

output of at is

output of at is

Now, assume that at some initial time , the input

. Then, the output of every hysteron is . There-

fore, , and this corresponds to the

“negative saturation” [Fig. 2(b)]. Next, assume that the input

is monotonically increased to some maximum value at with

. The output of is switched to as the input

increases past . Thus, at time , the boundary between

and is the horizontal line [Fig. 2(c)].

Next assume that the input starts to decrease monotonically until

it stops at with . It is easy to see that the output

of becomes as sweeps past , and correspond-

ingly, a vertical line segment is generated as part of the
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Fig. 2. Illustration of memory curves on the Preisach plane.

boundary [Fig. 2(d)]. Further input reversals generate additional

horizontal or vertical boundary segments.

Fromtheprvious illustration,eachof and isaconnected

set[11],andtheoutputof isdeterminedbytheboundarybetween

and .Thisboundaryiscalledthememorycurvesinceitchar-

acterizes the states of all hysterons. The memory curve has a stair-

case structure and its intersection with the line gives the

current inputvalue.Thesetofallmemorycurves isdenoted .The

memory curve at is called the initial memory curve and it

represents the initialconditionof thePreisachoperator.Hereafter,

the initial memory curve will be put as the second argument of the

Preisach operator.

Rate-independence is one of the fundamental properties of

the Preisach operator.

Theorem 2.1 (Rate-Independence [13]): If

is an increasing continuous function satisfying

and , then for ,

, where “ ” denotes composition

of functions.

B. Discretization of the Preisach Operator

In practice, the Preisach operator needs to be discretized in

one way or another during the identification process. A natural

way to approximate a Preisach operator is to assume that within

each cell of the discretized Preisach plane, the Preisach density

function is constant. This approximation has nice convergence

(to the true Preisach operator) properties under mild assump-

tions [22].

Let be the practical input range to the hysteresis

operator, which is often a strict subset of . For the hys-

teretic behavior one can focus on the triangle bounded by

and in the Preisach plane, since the contribution to the

output from hysterons outside this triangle is constant [8]. Dis-

cretize uniformly into levels (called dis-

cretization of level in this paper), where the discrete input

levels , , are defined as

Fig. 3. Illustration of the discretization scheme (L = 4). (a) Labeling of the
disretization cells. (b) Weighting masses sitting at the centers of cells.

with . The cells in the discretization

grid are labeled, as illustrated in Fig. 3(a) for the case of .

In this paper, by a piecewise uniform density function, we will

specifically mean one that is constant within each discretization

cell. Note that a Preisach operator with such a density function

is still an infinite-dimensional operator. If one assumes that the

Preisach density function inside each cell is concentrated at the

centerasaweightingmass[Fig.3(b)], thecorrespondingPreisach

operator becomes a weighted combination of a finite number of

hysterons, which is a hysteretic, finite automaton [27].

III. RECURSIVE IDENTIFICATION OF HYSTERESIS

A. Recursive Identification Schemes

A Preisach operator with discrete weighting masses can only

take input in a finite set and its set of memory curves is

finite. These properties make it easier to analyze than a Preisach

operator with piecewise uniform density. On the other hand,

these two types of operators bear much similarity and essential

results for one can be easily translated into those for the other.

Hence, recursive identification of Preisach weighting masses is

first studied, and then the extension needed for identifying the

piecewise uniform density is briefly pointed out.

In the interest of digital control, the discrete-time setting is

considered in this paper. To avoid ambiguity one should under-

stand that the input to the Preisach operator is monotonically

changed from to . Two classes of identification al-

gorithms are examined, one based on the hysteresis output, and

the other based on the time difference of the output (called dif-

ference-based hereafter).

Output-Based Identification: The output of the dis-

cretized Preisach operator [corresponding to the case illustrated

in Fig. 3(b)] at time instant can be expressed as

(2)

where denotes the state (1 or ) of the hysteron in

cell at time , and denotes the hysteron’s Preisach

weighting mass. Stacking and into two vectors,

and , where

is the number of cells, one rewrites (2) as

(3)
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Let be the estimate of at time

, and let

(4)

be the predicted output based on . The gradient algorithm

[28] to update the estimate is

(5)

where is the adaptation constant. To ensure that

the weighting masses are nonnegative, we let

if the th component of the right hand side of (5) is negative.

Since this parameter projection step brings the parameter esti-

mate closer to the true values, it does not invalidate convergence

results obtained without consideration of this step [28]. Hence,

it will not be explicitly used during convergence analysis in this

paper (in particular, in the proof of Theorem 4.1).

Difference-Based Identification: An alternative way to iden-

tify is using the time difference of the output , where

(6)

Let and be the output predictions at time and

based on , respectively, i.e.,

Define

(7)

Let be the time difference of hysteron states,

. Then we can obtain the following identi-

fication scheme based on :

if

if .
(8)

As in theoutput-basedscheme,anadditionalparameterprojec-

tion step will be applied if any component of is negative.

Having discussed the methods for recursive identification

of weighting masses for a Preisach operator, we now explain

how to change the previous algorithms for identification of the

(piecewise uniform) Preisach density. In this case, the input is

no longer limited to a finite set of values; instead it can take any

value in . The output can still be expressed as

(2) or (3), but with different interpretations for and .

no longer represents the state ( or ) of the hysteron

at the center of the cell ; instead, it represents the signed

area of the cell

area of area of

where cell

the output of at time is . Each compo-

nent of now represents the true density value on the

cell . Similarly, is now the vector of density values

estimated at time . Define .

Define , , and as in (4), (6), and (7), respectively.

Based on these definitions, the output-based algorithm (5)

and the difference-based algorithm (8) can be applied without

modification to identify the vector of density values .

B. Parameter Convergence and Persistent Excitation

Define the parameter error . Then, for the

output-based algorithm (5) (letting without loss of gen-

erality)

(9)

where , and rep-

resents the identity matrix of dimension . It is well-known

[28] that the convergence of the algorithm (5) depends on persis-

tent excitation (PE) of the sequence . The sequence

is persistently exciting if, there exist an integer and

, , such that for any

(10)

Due to the preservation of uniform complete observability under

output injection [28], [29], from (10), there exist ,

such that for any

(11)

where is the observability grammian of (9) defined as

and is the state transition matrix,

. It can be shown [28] that when (11) is satis-

fied

(12)

from which exponential convergence to can be concluded.

Similarly, one can write down the error dynamics equation, the

PE condition on , and the convergence rate estimate corre-

sponding to the difference-based scheme (8).

The sequences and are almost equivalent in the

sense that, for any , can be constructed from

, and conversely, can be constructed

from and . However, there are motivations to

introduce the difference-based scheme (8). Again let us first

consider identification of weighting masses for ease of discus-

sion. In this case, while has components , the compo-

nents of are or 0. Often times most components of

are 0 since only if the -th hysteron changed its state

at time . This has two consequences: 1) The PE condition of

is easier to analyze than that of ; 2) the convergence

of the difference-based scheme (assuming that PE is satisfied) is

expected to be faster than that of the output-based scheme since

carries more specific information about .
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It is of practical interest to express the PE conditions in terms

of the input to the hysteresis operator. In the analysis that

follows, it is assumed that the input does not change more than

one level during one sampling time. The assumption is not re-

strictive considering the rate-independence of the Preisach op-

erator.

Theorem 3.1 (Necessary Condition for PE): If is PE,

then there exists , such that for any , for any

, achieves a local maximum at or a local

minimum at during the time period .

Proof: The PE condition for the difference-based algo-

rithm is equivalent to that spans . Let us call

a hysteron active at time if it changes state at time . Since the

input changes at most one level each time, if , the

set of active hysterons must have the form

for some , with and [refer

to the labeling scheme in Fig. 3(a)], and the components of

corresponding to elements of are 2 and other components

equal 0. Similarly, if , the set of active hysterons

has the form for some , ,

and the components of corresponding to elements of

are and other components equal 0.

If, for some , is not a local maximum and is not a

local minimum, or will not become the set of active

hysterons during . In particular, when the hys-

teron changes state from to 1, so does the hysteron

; and when the hysteron changes state from 1

to , so does the hysteron . This implies that the

contribution to the output from the hysteron cannot be

isolated and, hence, does not span .

Remark 3.1: From Theorem 3.1, for a Preisach operator with

discrete weighting masses, it is necessary that the input has

certain number of reversals for parameter convergence. This is

in analogy to (but remarkably different from) the result for linear

systems, where the input is required to have at least frequency

components for identification of parameters [28], [29].

Theorem 3.1 implies that the input levels and must be

visited for PE to hold. When the input hits , all hysterons have

output and the Preisach operator is in negative saturation;

similarly, when the input hits , the Preisach operator is in

positive saturation. For either case all the previous memory is

“erased” and the operator is “reset.” Starting from these reset

points, one can keep track of the memory curve (the state

of the Preisach operator) according to the input . Consider

an input sequence , . If there exist ,

, , and with such that

the memory curve and , we can

obtain another input sequence by swapping the

section with the section . We write

(called equivalent in terms of

PE) since the two sequences carry same excitation information

for the purpose of parameter identification. The set of all

input sequences obtained from as explained above

(with possibly zero or more than one swappings) form the

PE equivalence class of , denoted as .

Note that in particular, . We are

now ready to present a sufficient condition for PE in terms

of the input .

Theorem 3.2 (Sufficient Condition for PE): If there exists

, such that for any , one can find

satisfying the following: There exist time in-

dices

or

, such

that is a local maximum and is a local minimum

of for each , these local maxima and minima in-

clude all input levels , , and either

a) is nonincreasing, for

, differs from by no more than

, and is nondecreasing,

for , differs from by no

more than ; or

b) is nondecreasing, for

, differs from by no more than

, and is nonincreasing,

for , differs from by no

more than

then corresponding to is PE.

Proof: Construct a new input sequence (for

some ) which achieves the local maxima and the

local minima with the same order as in , but

varies monotonically from a maximum to the next minimum or

from a minimum to the next maximum. For such an input, it can

be seen through memory curve analysis on the Preisach plane

that the corresponding spans . From the way

is constructed and the conditions given in the theorem, any

vector in must also be present in

corresponding to . Hence, is PE. Finally, PE of

follows since belongs to the PE equiv-

alence class of .

Theorem 3.2 is not conservative, and it covers a wide class of

PE inputs. For example, it can be easily verified that a (periodic)

first order reversal input (see Fig. 4(a) for case ), which

has been widely used for identification of Preisach density func-

tion [11], and a (periodic) oscillating input with decreasing am-

plitude (Fig. 4(b) for case ) both satisfy the conditions

in Theorem 3.2, and are thus PE. In these two cases, itself

satisfies the conditions imposed for in the theorem. Fig. 5

shows an example where one can conclude the PE of a periodic

by inspecting a PE equivalent input . Note that The-

orem 3.2 does not require to be periodic, although periodic

examples are chosen here for easy illustration.

The PE conditions (Theorems 3.1 and 3.2) can be extended

with some modifications to the case of identifying a piecewise

uniform density function. In the latter case, the input may

take any value in and is not restricted to the finite

set . Another difference is that the triangular shape of

diagonal cells now helps in isolating contributions from these

cells (see the simulation results in Fig. 12 and the explanation

in Section IV-B).

To be specific, one can show that a necessary condition for

PE is that: There exists and an integer , such that

for each , for any , one can find between

and , with ; furthermore,

for , there are at least input reversals in the block
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Fig. 4. Examples of PE inputs (L = 4, showing one period). (a) First-order
reversal input. (b) Oscillating input with decaying amplitude.

Fig. 5. Example of PE input (L = 4, showing one period). The input u [n],
PE equivalent to u[n], is obtained by swapping two sectionsA�B andA �B
of u[n].

with each local minimum and

each local maximum for some , . The proof

will be analogous to that of Theorem 3.1 except that one should

focus on isolation of contributions from inner cells instead of

diagonal ones.

To adapt the sufficient condition Theorem 3.2, one changes

“include all input levels ” to “visit all input bands,” “no more

than ” to “within neighboring input bands,” and requires each

local minimum and each local maximum

for some , . Here by input bands, we mean input

ranges for . The proof will be nearly

identical to that of Theorem 3.2.

C. Comparison of the Output-Based Scheme and the

Difference-Based Scheme

In this section, the output-based scheme is compared with the

difference-based one through simulation, where the goal is to

identify the Preisach weighting masses. As shown in (12), the

minimum eigenvalue of the observability grammian [i.e., in

(11)] is directly related to the convergence rate of the output-

based scheme. The same statement holds for the difference-

based scheme provided that is replaced with in the

related equations. In Table I, we list the corresponding

(the bound on parameter error drop over one period) under the

two gradient schemes (with ) for different discretiza-

tion levels with the (periodic) first order reversal input. From

Table I, the difference-based scheme converges faster as ex-

pected. Note that although for each , the difference in

between the two methods appear to be small, it can have signifi-

cant impact since the error drops as with the period

number . Simulation has been conducted for the case .

Fig. 6(a) compares the decrease of parameter error over periods

for the two algorithms when there is no measurement noise, and

the conclusion is consistent with Table I.

Despite the apparent advantage of faster convergence, the

difference-based scheme is more sensitive to the measurement

noise: The noise gets magnified when one takes the output dif-

ference (analogous to taking the derivative of a noisy contin-

uous-time signal), and the disturbance is shared only among the

Fig. 6. Comparison of parameter convergence for the output based algorithm
and the difference-based algorithm. (a) Case I: Noiseless measurement. (b) Case
II: Noisy measurement.

TABLE I
COMPARISON OF CONVERGENCE RATES FOR THE OUTPUT-BASED ALGORITHM

AND THE DIFFERENCE-BASED ALGORITHM

active hysterons. Simulation in Fig. 6(a) is reconducted where

a noise is added to the output, the noise magnitude being 4% of

the saturation output of the Preisach operator. From Fig. 6(b), in

this case, the parameter error will not converge to zero under ei-

ther of the two algorithms. However, the ultimate identification

error of the output-based algorithm is much lower than that of

the difference-based scheme. For this reason, it is recommended

that the output-based algorithm be used when the measurement

noise is not negligible.
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Fig. 7. Preisach density function identified for different levels of discretization
L. (a) L = 5. (b) L = 10. (c) L = 15. (d) L = 25.

D. Experimental Results Based on a Magnetostrictive Actuator

Experiments have been conducted on a magnetostrictive (Ter-

fenol-D) actuator to examine the identification schemes. Refer

to [20] for a description of the experimental setup. The displace-

ment output of the actuator is controlled by the magnetic field

Fig. 8. CPU time used in the recursive gradient algorithm and the offline
least-squares algorithm.

generated through the current in a coil. When operated in a

low frequency range (typically below 5 Hz), the displacement

can be related to the bulk magnetization by a square law

for some constant , and the current can

be related to the magnetic field along the rod direction by

, where is the coil factor [30]. Then, the magne-

tostrictive hysteresis between and is fully captured by the

ferromagnetic hysteresis between and , which is modeled

by the Preisach operator.

In the experiment a periodic first-order reversal input (with

sufficiently dense distribution of turning points) is applied. The

choice of the discretization level is of practical importance.

Fig. 7 shows the identified density distribution for different dis-

cretization levels after eight periods. The output-based gradient

algorithm is used with .

Although it is expected that the higher discretization level ,

the higher model accuracy, there are two factors supporting a

moderate value of in practice: The computational complexity

and the sensor accuracy level. Since the number of cells on a

discretization grid scales as , so is the computational com-

plexity of the recursive identification algorithm. It should also

be noted that, from Table I, the convergence rate de-

creases as increases. Fig. 8 shows the CPU time used in re-

cursive identification for different discretization levels. To ob-

tain the CPU time, the recursive algorithm is carried out again

using the collected data (the current and the displacement )

of eight periods on a Dell laptop Inspiron 4150. Also, shown in

Fig. 8 is the CPU time it takes to compute the Preisach density

function using an offline, constrained least squares algorithm

[8], where the data of one period were used. From Fig. 8, the

square law for the recursive algorithm is evident. The offline al-

gorithm becomes prohibitively time-consuming as gets large,

due to the increasing complexity of solving a constrained opti-

mization problem of many variables.

In the presence of the sensor noise and unmodeled dynamics,

higher discretization level may not necessarily lead to improved

performance. Fig. 9 compares the measured hysteresis loops

against the predicted loops based on the identified parameters

for different . Although the scheme with achieves
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Fig. 9. Comparison of measured hysteresis loops with predicted loops based
on the identified Preisach density function. (a) L = 5. (b)L = 10. (c)L = 15.

much better match than the scheme with , there is little im-

provement when is increased to 15. Hence for the Terfenol-D

actuator (and theLVDTsensorused), it isdetermined that

is an appropriate discretization level for the Preisach operator.

Fig. 10. Schematic of adaptive inverse control.

IV. ADAPTIVE INVERSE CONTROL

A. Adaptive Inverse Control Scheme

Fig. 10 shows a schematic of adaptive inverse control, where

represents a Preisach operator with a piecewise uniform den-

sity function, and represents the Preisach operator with the

current density estimate. The input to is obtained through in-

version of . The error between the reference trajectory

and the achieved trajectory is then used to update the pa-

rameter estimate and thus the inverse model , where

the output-based identification scheme (5) is used. Later on we

shall also discuss the performance of adaptive inverse compen-

sation using the difference-based parameter update (8), which

typically fails to achieve asymptotic tracking.

The inversion scheme for is now briefly discussed. Let

be the memory curve of (and of ) at time ,

and be the saturation output corresponding to . The

input to is generated through the following inversion al-

gorithm.

A. If , ;

B. If , ;

C. Otherwise , where

is the (right) inverse of con-

structed as in [20].

Let be the predicted output of . When

, there exists no such that

. Item A (item B, respectively) makes sure that

equals ( , respectively) and, hence, is closest to

. On the other hand, when , can

be inverted exactly [20] and, therefore, .

Theorem 4.1: Assume that the true Preisach operator has a

piecewise uniform density function. Denote by the -dimen-

sional vector of true densities, and by the saturation output

corresponding to . Let the output-based gradient algorithm be

used for the parameter update. Then, the following hold.

1) For any reference trajectory with

, the parameter estimate

for some , and the tracking error

as .

2) Assume that the density of the cell is pos-

itive. Let be periodic of period that visits

, and without loss of generality .

Define with the

memory curve corresponding to the negative satura-

tion, where is as constructed in [20]. Then,

is also periodic with period , and . Let

the vector of signed areas of cells corresponding to

be (which is also periodic), and the null
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space of be . Then, the param-

eter estimate .

In particular, if spans , .

Analogous results hold if and visits

.

Proof:

1) Define , and . From

the output-based gradient algorithm (letting

without loss of generality)

(13)

Since , as .

This immediately results in

for some . Summing (13) over leads to

, which implies

. Since for some constant ,

as (14)

The Preisach operator based on can be exactly

inverted (hence ) except for the fol-

lowing two cases: a) , and

b) , where denotes

the saturation output corresponding to . For case

a), the input under the inversion algorithm is

with , , and hence

. The same conclusion

holds for the case b). It then follows from (14) that the

tracking error approaches 0 as .

2) Since for each and

, and the state of the Preisach

operator is reset at time . The periodicity of

then follows from that of and the inverse

algorithm. From the first part of the theorem,

and hence as .

Again, from , the input approaches

as , and for

. As a consequence, .

Since as

for

we conclude ,

, i.e., . When spans

, and hence . Analogous

arguments can be used for the case where

and visits .

Remark 4.1: Note that for the Preisach operator to have a

unique (right) inverse, it is in general required that all diagonal

cells have strictly positive density values [13]. However, when

a particular inversion algorithm (e.g., the one in [20]) is used,

the inverse trajectory can be made unique even if some diag-

onal density values are zero. Therefore, in the statement of

Theorem 4.1 is well defined.

What happens if the difference-based algorithm (8) is used for

parameter update in Fig. 10? Following the similar arguments as

in the proof of Theorem 4.1, one can show for some

, and , where and are as defined

in (6) and (7), respectively. This implies

(15)

From , . Even with a strong as-

sumption as , one can only con-

clude for some constant . Therefore,

one cannot expect to achieve asymptotic tracking if the differ-

ence-based scheme is adopted.

B. Simulation and Experimental Results

Simulation and experiments have been conducted to illustrate

Theorem 4.1. Fig. 11(a) shows the simulation results of tracking

a sinusoidal signal with amplitude using the output-based

adaptive inverse scheme. One can see that the tracking error

goes to zero. Fig. 11(b) shows the simulation results of tracking

where density parameters experience random changes of up to

20% of their original values at , and the adaptive scheme

is seen to suppress the tracking error quickly.

The simulation in Fig. 11(a) is continued for 160 periods, and

Fig. 12 compares the parameter estimates with the true param-

eter values at the end of simulation. Note that the individual

density values do not converge [Fig. 12(a)]. For this particular

reference trajectory, the asymptotic input will be periodic

varying between and without other reversals. Hence,

when is increasing, for each fixed , the components of

corresponding to cells are equal; when

is decreasing, for each fixed , the components of corre-

sponding to cells are equal. What separates

a diagonal cell from other cells of the row (or the column) is its

triangular shape. As a result, one expect that the densities of di-

agonal cells will be correctly identified, and the sum of densities

of cells in each row (or column) excluding the diagonal element

will also be correctly identified. This is verified in Fig. 12(b),

where by “aggregate cell density values,” we mean the quanti-

ties , , and with , .

To further verify Part 2 of Theorem 4.1, simulation is also

conducted for tracking an oscillating signal with decaying am-

plitude for 128 periods (Fig. 13). The corresponding input to the

desired signal is PE, and indeed Fig. 14 shows the convergence

of individual cell density values.

Experimental results for tracking a sinusoidal signal are

shown in Fig. 15 with two different adaptation constants . In

these experiments and other experiments reported hereafter, the

discretization level . The current input applied to the

magnetostrictive actuator is also displayed in addition to the

reference trajectory, the achieved trajectory, and the tracking

error. It can be seen that when is smaller, the trajectory con-

verges to the steady state slower but with smaller tracking error

due to lower sensitivity to the noise. Fig. 16 plots the achieved

displacement versus the desired one at the steady-state (after 10

s) for . The plot would overlap well with the 45 line

except for a small segment in the region , where

the error is about . Considering the sensor precision,

almost perfect tracking is achieved for the full operational
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Fig. 11. (a) Simulation results of tracking a sinusoidal signal with amplitude
y (L = 10). (b) Simulation results of tracking a sinusoidal signal with
sudden parameter change at t = 5 s. (L = 10).

range (60 ) of the actuator. Note that error was

also achieved by Natale et al. [10], however, there the tracking

range was 25 —about half of the range reported here.

If the reference trajectory does not cover , Theorem 4.1

says that the tracking error still goes to zero, but one cannot say

more about the parameter convergence. In this case, there is no

reset mechanisms during the adaptation, and depending on the

initial conditions of the system and the adaptation process, the

final steady-state input trajectories can be different (while the

output trajectories are all consistent with the reference trajec-

tory). Essentially, there may exist multiple minor loops that sat-

isfy the output requirement. To confirm this, two experiments

Fig. 12. Comparison of identified parameter values with true values after
tracking a sinusoidal signal for 160 periods (L = 10) for (a) individual cell
density values and (b) aggregate cell density values.

are conducted to track a sinusoidal trajectory of amplitude 15

(and a dc offset of 30 ), one starting from the nega-

tive saturation and the other from the positive saturation. The

steady-state current inputs obtained through adaptive inverse

control are different, yet they are both able to track the desired

trajectory. Fig. 17 plots the achieved displacement versus the

current for the two cases, and one can see that the ranges of cur-

rent input differ by about 5%, but the displacement ranges are

consistent.

Finally, an experiment is performed to verify the analysis at

the end of Section IV-A. Here, the difference-based scheme (8)

is used to update the density estimate during adaptation. Fig. 18

shows the comparison of the desired trajectory and the achieved

one, which clearly indicates that this scheme cannot achieve

asymptotic tracking.

V. CONCLUSION AND DISCUSSIONS

This paper has been focused on recursive identification and

adaptive inverse control of hysteresis in smart materials. A
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Fig. 13. Simulation results of tracking an oscillating signal with decaying
amplitude (L = 10, showing the first period).

Fig. 14. Comparison of identified density values of individual cells with true
values after tracking an oscillating signal with decaying amplitude for 128
periods (L = 10).

Preisach operator with piecewise uniform density function was

used to approximate smart material hysteresis. To facilitate

analysis and presentation, a Preisach operator with discrete

weighting masses was also treated. A necessary condition

and a sufficient condition for the parameter convergence were

presented in terms of the hysteresis input. In contrast to the

results for linear systems, the conditions here are centered

around the local maxima/minima (hence, reversals) of the

input. Asymptotic tracking under the output-based algorithm

was established, and the behavior of parameter convergence

was discussed for periodic reference trajectories. Although uni-

form discretization of the Preisach plane was considered, the

results are applicable to the case of nonuniform discretization,

as one can easily verify. Nonuniform discretization could be

Fig. 15. Experimental results of tracking a sinusoidal reference trajectory. (a)

 = 0:5. (b) 
 = 0:2.

useful when the actual density function varies a lot in certain

region while changes little elsewhere.

Two types of adaptive gradient identification algorithms

were compared. Although the difference-based scheme cannot

be used for adaptive tracking, it can be a viable choice for

recursive parameter identification when the measurement noise
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Fig. 16. Achieved displacement versus desired displacement (over the full
operational range of the actuator) after 10 sec. of adaptation.

Fig. 17. Two minor loops corresponding to tracking a sinusoidal signal with
amplitude less than y (at steady state).

is low. The introduction of a difference-based algorithm also

helped in analyzing the PE conditions.

Computational complexity is one of the primary concerns

when it comes to real-time implementation. The inversion algo-

rithm used in this paper was specifically developed for Preisach

operators with piecewise uniform densities. For each desired

output value, the algorithm finds its (exact) inverse in a finite

number of iterations and thus is very efficient [20]. The level

of discretization determines the computational cost in both

inversion and adaptation. should be chosen based on avail-

able computational resources, the sensor noise level, and the

control requirement. In particular, for our experimental setup,

Fig. 18. Experimental result showing that the difference-based adaptive
scheme cannot achieve asymptotic tracking.

with the adaptive inversion scheme was able to virtu-

ally cancel out the hysteresis effect in the actuator.

The asymptotic tracking result was based on the assumption

of time-invariant models. However, simulation indicated that the

proposed scheme could adapt quickly should model parameters

change. It is expected that the scheme will work well in practice

as long as the hysteresis behavior changes at a relatively slow

time scale.

For future work, it will be of interest to extend the results

reported here to the cases where the hysteresis output is not

directly measurable. Such cases happen if, e.g., the high-fre-

quency dynamics of the smart material actuator is not negligible

and hence a rate-independent hysteresis operator alone is inade-

quate to capture the dynamic and hysteretic behavior [20], [31],

or the actuator is used to control some other plant.
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