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SUMMARY

In this paper we consider a problem of on-line parameter identification of parabolic partial differential
equations (PDEs). In the previous study, on the actuation side, both distributed (SIAM J. Optim. Control
1997; 35:678-713; IEEE Trans. Autom. Control 2000; 45:203-216) and boundary (/EEE Trans. Autom.
Control 2000; 45:203-216) actuations were considered in the open loop, whereas for the closed loop
(unstable plants) only distributed one was addressed. On the sensing side, only distributed sensing was
considered. The present study goes beyond the identification framework of (SIAM J. Optim. Control 1997,
35:678-713; IEEE Trans. Autom. Control 2000; 45:203-216) by considering boundary actuation for the
unstable plants, resulting in the closed-loop identification, and also introducing boundary sensing. This
makes the proposed technique applicable to a much broader range of practical problems. As a first step
towards the identification of general reaction—advection—diffusion systems, we consider two benchmark
plants: one with an uncertain parameter in the domain and the other with an uncertain parameter on the
boundary. We design the adaptive identifier that consists of standard gradient/least-squares estimators and
backstepping adaptive controllers. The parameter estimates are shown to converge to the true parameters
when the closed-loop system is excited by an additional constant input at the boundary. The results are
illustrated with simulations. Copyright © 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In distributed parameter systems with thermal, fluid, or chemical dynamics, which are usually
modeled by parabolic partial differential equations (PDEs), it is often of interest to identify the
physical parameters of the plant from the existing data. For a large class of plants, this problem
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132 A. SMYSHLYAEYV, Y. ORLOV AND M. KRSTIC

has been considered in [1,2] under the assumption that distributed actuation and measurements
are available. Problems with boundary actuation have also been addressed in [2]; however, only
open-loop identification has been considered, thus limiting the results to stable plants. In this paper
we extend the previous study in two ways. First, we consider boundary-actuated plants that are
open-loop unstable. Second, we assume that only boundary measurements are available.

We consider two benchmark plants,i one with the unknown parameter in the domain:

ur(x,t)=uye(x,t)+gu(0,t), O<x<l D
uy(0,¢)=0 2)
and the other with the unknown parameter in the boundary condition:
u;(x,t)=uyc(x,1), O<x<l 3)
ux(0,1) =—qu(0,1) “
Both plants are actuated from the boundary:
u(l,ny=U(@) 5)

and we assume that only u(0,¢) is measured. Both plants are of infinite relative degree and are
unstable for g>2 and ¢>1, respectively. Our objective is to identify the unknown parameters g
and q.

The above plants capture significant features of the model of thermal instability in solid propellant
rockets [4]. However, our primary motivation to study these systems comes from a recent paper
[5], where it was shown that a general reaction—advection problem

U (X, 1) =vxx (X, ) +b(x) v (x, 1) +A(x)v(x, 1) (6)
vx(0,)=0 @)
with output v(0, ¢) and input v(1l,¢) can be transformed into the form
ur(x, 1) =uxx(x,1)+g(x)u(0,1) ®)
ux(0,1)=—qu(0,1) ©))

while keeping input and output the same: u(1,1)=v(1,1), u(0,¢) =v(0, ¢). The finite-dimensional
analog of the form (8), (9) is the observer canonical form, in which parametric uncertainties
multiply the measured output. The comparison of (1)—(4) with (8), (9) reveals that the benchmark
problems presented here serve as a first step to the output-feedback adaptive identification of
reaction—advection systems (6), (7).

The paper is organized as follows. In Section 2 we carry on identifiability analysis and design the
open-loop identification scheme for the case of stable plants. The closed-loop identification scheme
for the plant with parametric uncertainty in the domain is designed in Section 3. In Sections 4
and 5 we present the least-squares identification scheme for the plant with unknown parameter

The shortened version of the design for one of the plants, (1)—(2), was presented at the 45th Conference on Decision
and Control, 2006 [3].
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ADAPTIVE IDENTIFICATION 133

in the boundary condition. In Section 6 we show numerical simulations that support theoretical
results. Finally, we discuss further research directions in Section 7.

Notation: The spatial L,(0, 1) norm is denoted by | -||. The temporal norms are denoted by
Lo and ¥, for t>0. We denote by /; a generic function in ¥ N.Z].

2. OPEN-LOOP IDENTIFICATION

For simplicity, we start our investigation with a case of open-loop stable plants. We will only
consider plant (1), (2), (5) in this section; the open-loop analysis for the other plant (3), (4), (5) is
very similar.

The parameter g of plant (1), (2), (5) is said to be identifiable from the measured output
u(0,t) if there exists a control input U (¢) such that for initial conditions u(x,0) € L,(0,1) and
u(x,0)e L,(0,1) of the plant and its model

Ur(x,t) =ty (x,t)+gu(0,1) (10)
i, (0,1)=0 (11)
u(l,t)=U() (12)

the identity u(0,¢)=1(0,¢) results in g=g.

2.1. Identifiability analysis

Lemma 1
Let system (1)—(2), (5) with U (¢) =0 be asymptotically stable. Then, when forced by a constant
input U (t)=u; #0, system (1)—(2), (5) possesses a time-invariant steady-state solution:

2 2
uS () =y (13)
2—-¢g
such that u%(0) =ug #0.
Proof
The steady-state solution has to satisfy the following ordinary differential equation (ODE):
d2uss (x)
a2 ¢ u™(0)
o (14)

d
—u®0)=0, u¥1)=u
dx
This two-point boundary value problem has a unique solution given by (13). Introducing the error
variable w(x,t) =u(x,t) —u*(x), we get the system
o (x, 1) =xx (x, 1) +80(0, 1) (15)
wx(0,1)=w(1,t)=0 (16)

which is asymptotically stable by assumption, so that (13) is indeed a steady-state solution of
(1)—(2), (5). To complete the proof it remains to note that u%¥(0) £0.
We are now in a position to state the identifiability result. U
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134 A. SMYSHLYAEYV, Y. ORLOV AND M. KRSTIC

Theorem 1
The parameter g of system (1)—(2), (5) is identifiable from the measured output u(0,¢) with an
arbitrary constant input U (¢) =uj #0 under the assumption g<2.

Proof

Let us fix a constant input U (1) =u #0. Since g<2, system (1)—(2), (5) has asymptotically stable
internal dynamics. Let us assume that the model system (10)-(12) produces the same output
as the original system: u(0,¢)=1u(0,t) for all 0. This implies that system (10)—(12) also has
asymptotically stable internal dynamics. By Lemma 1, both systems (1)—(2), (5) and (10)—(12)
have time-invariant steady-state solutions ©**(x) and % (x), respectively, and these solutions take
non-zero values u**(0) Z0 and #%(0) #0 at x =0. Setting du(x,t)=u(x,t)—u(x,t), 0g=g—g,
we obtain

Ouy(x,1)=0uxy(x,t)+0gu(0,t) (17)
ou,(0,t)=0ou(1,t)=0 (18)
This system has a steady-state solution ou®(x) =u® (x)—i* (x), which satisfies
oul, +0gup=0 (19)
oul(0)=ou’(1)=0 (20)

where ug=u*(0) £0. It follows that
oul(x)= %5gu0(1 —x?) (21)

Since dou(0, 1) =0 by assumption, we get 6u®(0)=0, and therefore from (21) we obtain dgug=0.
Since ug#0 it follows that g =0. Hence, g=g and the parameter g is identifiable under an
arbitrary non-zero constant input U (t) =u #0. The proof is completed. O

2.2. Adaptive identifier design

We propose the following gradient update law with normalization for the on-line identification of
the parameter g [4]:

¢(0,1)v(0,1)

g= VHT(O,I) (22)

where y>0 is the adaptation gain. The above identifier utilizes the prediction error
e(x,t)y=u(x,t)—g)v(x,t) —n(x,1) (23)

evaluated at x =0, and the filters

U (X, 1) =vxx (x, 1)+ u(0,1) (24)
vx(0,1)=v(1,)=0 (25)
0 (e D) =1, (1, 1) (26)
7,(0,1)=0 27)
n(l,6)=u(l, 1) (28)
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2009; 23:131-149
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ADAPTIVE IDENTIFICATION 135

such that the boundary value problem
er(x,t)=exx(x,1) 29)
ex(0,1)=e(1,1)=0 (30)
expressed in terms of the error e(x,t)=u(x,t)—gv(x,t)—n(x,t) is asymptotically stable.

Theorem 2

Consider plant (1), (2), (5) with filters (24)—(28) and the update law (22). Let U (t) =u1 #0. Then
for any initial conditions u(x, 0), v(x,0),#(x,0) € L2(0, 1), £(0) R and any adaptation gain y>0,
the signals g(¢), u(x,t), v(x,t), y(x,t) are uniformly bounded for >0 and lim;_, - g(¢) =g.

Proof

1. Following the line of reasoning used in the proof of Lemma 1, one shows that under a constant
input U(¢) =u; #0 the linear time-invariant system (1), (2), (5), (24)—(25) has a time-invariant
steady-state solution:

2

—gx N 1—x

u™(x)=u; (3D
The states u, v, n of heat equations (1), (2), (5), (24)—(28) with bounded inputs are uniformly
bounded for ¢>0.

2. Representing the update law (22) in terms of the deviation from the nominal value

d e(0,1)v(0,1) (32)
ar T T 00,0
let us introduce the positive definite functional
Lt 2 1 2
Vie,Ag)== [ e (x,1)dx+—[Ag(1)] (33)
2 Jo 2y
and compute its time derivative along the solutions of system (29), (30), (32):
) 1 Ag(1)e(0,1)v(0, ¢t
V) = _/ 2 (x, 1) dx — 28D ; )v(0.1)
0 1+v=(0,1)
! 62(0,t 6(0,1)e (0, t
o [ Gt EQD_ H00e0)
0 1+v2(0,7)  1+v2(0,1)
A2 A
e=(0,7) le(0,t)[llex (-, )l
<—llex 0P ——=—+ =
1+v2(0,1)  /1+02(0,1)
1 1 &*0,1)
<—= D — 34
el = T s (34)
Therefore, V is bounded and thus Ag(¢) and g(¢) are bounded.
Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2009; 23:131-149
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136 A. SMYSHLYAEYV, Y. ORLOV AND M. KRSTIC

3. By taking into account the relation
e(x,)=e(x,t)+Ag(t)v(x,1) (35)
resulting from (23), (30), the update law (22), rewritten in the form

d . [e(0,2)+Ag(®)v(0,1)]v(0,1)
8= 112(0,1) (36)

and coupled to system (29), (30), turns out to be asymptotically autonomous because
. ui
lim v(0,1)=v*(0)=—#0 (37)
t—00 2—g

4. By extending the invariance principle [6, Chapter VIII] to the asymptotically autonomous
parabolic system (29), (30), (36) (in analogy to that of [7, Theorem 4.3.4]), there must occur a
convergence of the system trajectories to the maximal invariant subset of a set of solutions of (29),
(30), (36), for which V(t) =0. Since (29), (30) is exponentially stable, we get

e(x,1)=0, ¢(0,1)=0, Ag(®)v(0,1)=¢€(0,t)—e(0,¢)=0 (38)

Owing to (37), we get lim;_, o, Ag(¢) =0. The theorem is proved. ]

3. CLOSED-LOOP IDENTIFICATION: PLANT WITH UNKNOWN PARAMETER
IN THE DOMAIN

When the internal dynamics of (1), (2), (5) are unstable, we propose the following boundary
controller:

1
u(l,r):u1+/0 R(1, O)(@v(E D) +n(& D) de (39)

- {—@sinh@w—@, 8>0 w0)
X,0)=
V_§Sin\/_§(x_6)a §<0

coupled to the filters (24)—(28) and the gradient update law (22). Note that l%(x, &) depends on
time through ¢. The above controller with #; =0 was introduced in [8] (the nominal controller
was designed in [9] using the backstepping method). The present controller modification with
a constant component #] 0 makes the control signal sufficiently rich to persistently excite the
system, yielding the desired parameter convergence.

Our main result is summarized as follows.

Theorem 3
Consider system (1), (2) with the boundary controller (39), (40) where u; #0, (24)—(28) are filters,
and the update law is given by (22). Then for any ¢(0)€R and any initial conditions ug, vy,
1o € L2(0, 1), the signals g(¢), u(x,t), v(x, 1), n(x, ) are uniformly bounded for >0 and g(r) — g
as 1 — o0.
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DOI: 10.1002/acs



ADAPTIVE IDENTIFICATION 137

Proof
We break the proof into several steps.

1. It is straightforward to verify that estimate (34) of the time derivative of the positive definite
functional (33), computed on the solutions of (22), (29), (30), is still satisfied. This yields the
following properties:

50,
_O0D g, Agews (41)
V14+0v2(0,1)
Since
(0, 1) (0, 1) v(0,1)
— +Ag (42)
V1+0v2(0,1)  /1402(0,1) V1+02(0,1)
5 e(0,1) v(0, 1)
g§=y (43)
V1I+02(0,1) /1+02(0, 1)
we get
COD Nt Agc Lo be PN (44)
R —— 2 9 g b g 2
J1+02(0.1) > > >
2. Consider the transformation
X
ﬁ)(x,t)=§v(x,t)+n(x,t)—/0 k(x,&)(Gu(&, t)+n(&, 1))dé (45)

with IG(x, &) given by (40). One can show that (45) maps (1), (2), (23)-(28), (39) into the following
system (see Lemma 4 in Appendix A):

Wy (0, 1) =ex (X, 1)+ B)EO, 1)+ gv(x, 1)+ 8 fo a(x —&) (§u (&, )+ (&, 1) dé (46)

Wy (0,7)=0 (47)
W, 1) =u (48)

where

. hv/g 50
——sin X, >0,
VA : gooshy/Zx, g0
a(x)= | B(x)=kg(x,0)= . _ . (49)
\/_sin\/—g)x, 8<0, geosy —gx, g<0

—8
Using the fact that u(0,¢) =w(0,)+¢€(0, 1), let us rewrite filter (24), (25) in the form
vt(xst)zvxx(xat)+w(0,t)+é(0st) (50)

v (0,6)=v(1,£)=0 (51)

We now have two interconnected systems (46)—(48) and (5Q)—(51) for w and v, which are driven
by three external signals: a constant u; and signals (0, ¢), g(¢) with properties (44).
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3. Our next goal is to demonstrate that v-system and W-system are asymptotically stable around
the limit points

1 1 1 —x?2
wP(x)=uy, vPx)=u 5 (52)
Let us introduce the error variables =1 — w'P, 1 =v—v'P. The equations for w and v are
. . X
IDt(x,t)=IDxx(x,t)vLﬁ(X)é(O,t)+§5(x,t)+§/o a(x—&) (8v(, )+ w(&, 1) dé
A ui
+g[>’(x)7 (53)
8
wy (0, )=w(l,7)=0 (54)
and
U (x, 1) = Uxx (x, ) +w(0, ) +€(0, 1) (55)
5,(0,0)=0(1,£)=0 (56)
Consider a Lyapunov function
1! 1!
V1=—/ iz(x)dx—i-—/ 2 (x) dx (57)
2 Jo 2 Jo
Using Young’s, Poincare’s, and Agmon’s inequalities’ we have!
) 1 1 1 1
vlz_/ aﬁdx+(w(0)+é(0))/ ﬁdx—/ 5§xdx—(u‘)(0)+é(0))/ Dy dx
0 0 0 0
_ 1 _ ¢%(0)
< =10 P+ = 191> +4———— (14030
llox |l +8||vI| + 1+v2(0)( +v7(0))
_ _ 1 - 2%(0)
+4||wx||2—||vxx||2+§||vxx||2+||wx||2+m<1+v2(0»
Lo 1 o 0) o U
<3 I8P =SB P4 5145 | 1421007+
1 1 _ _ _
< = 10l = S W 12+ S 12+ 191+ (58)

where by /] we denote a generic function of time in ¥ 1N Y% .

SWe use the following versions of these inequalities: ||w(x)||<2[|wx |, [w(O)|<||wy]l, w2 (x)<4|lw|l||lwy|l, where w
is any function satisfying w(1)=0.
IWe drop the dependence on time in the proofs to simplify the notation.
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ADAPTIVE IDENTIFICATION 139

Using the following Lyapunov function for the w—system

1 1
V2=—/ lZ}de (59)
2 Jo
we get
_ 1 1 .l . [l
v2=_f B2 dx+é(0) ﬂwdx+§/ u')ﬁdx+§f (@) (x) d
0 0 0 0
. 1 X
43 /0 D(x) /O 1 = y)@VP(y) +ur +§5(y) +iD(y)) dydr (60)

Before we proceed, we note that Ag is bounded and therefore ¢ is also bounded; let us denote
this bound by go. The functions o and f are also bounded; let us denote these bounds by o
and f,. With the help of Young’s, Poincare’s, and Agmon’s inequalities, we get the following
estimate:

HE 1212(1+00g0)?

<oy P+ 2 ||'|| 2+ 2 U3 cosh® (/o) +cr o] + = ——— 19|12
8cy 2cy
B &0 ( _ |g| )
re Ty (IR ) erla)+ =2 a2
< —(1=10e) | [I*+ N |12+ 1 10, 12+ (61)

Choosing c; = % and using the Lyapunov function V=V, + %Vl, we get

1o [ 1 - -
A T e BN e Y G N R N e 22

1
<—ZV+11V+11 (62)

and by Lemma 3 we obtain boundedness and square integrability of ||w]|, ||v||, and ||vy|]. Using
these properties we can compute

l d - 2 - 2 A - x - - -
Eallwxll S =N 174 Bole O) wax [ +1& x| (L +00g0) [V ]| + a0l w]])

cosh? (V/20)
2

+ 18w [l 1|

1 _
< —§||wx||2+11 (63)

so that by Lemma 3 ||wy || € 2N ¥ . Using the fact that ||vy]|, ||wy ]| are bounded, it is easy to
see that

d

dr

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2009; 23:131-149
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By Barbalat’s lemma we get ||w|| — 0, ||v||— 0. By Agmon’s inequality, we have

max [v[<2[v]|[|vx ] (65)
x€[0,1]

and therefore v(x, ¢) is uniformly bounded and is regulated to zero as t — co. By the same argument
we get the boundedness and regulation of w(x, ¢). Thus, we proved that v-system and w-system
are globally asymptotically stable around the limit points v'?(x) and w'P(x), respectively.

4. In order to show the boundedness of #(x,?) and u(x,t), we express # in terms of v and w
with the inverse transformation to (45):

§v(x,t)+f1(x’t)=ﬁ)(x,t)—§fo (x—=Ow(¢, 1 dé (66)

Since v(x,?) and w(x,t) are bounded, we see from (66) that 5(x, ¢) is also bounded. Finally, the
boundedness of u(x,t) is obtained from the relationship u =e+gv+n.
5. We showed that

lim v(0,1)= WP (0) = % £0 (67)

Thus, the update law (22), being rewritten in the form (36) and coupled to the parabolic system
(29), (30), turns out to be asymptotically autonomous. To complete the proof it remains to apply
the invariance principle to the asymptotically autonomous system (29), (30), (36) and note that
due to (67), the convergence of the solution to the maximal invariant set Ag(#)v(0,¢) =0 results
in lim;_, oo Ag(¢) =0. Theorem 3 is thus proved.

In the proof we presented, we assumed the existence and uniqueness of the solution of the
nonlinear closed-loop system (1), (2), (22)—(28), (39), which is defined in a mild sense as the solu-
tion of a corresponding integral equation expressed by means of a strongly continuous semigroup,
generated by an appropriate infinitesimal operator. ]

4. CLOSED-LOOP IDENTIFICATION: PLANT WITH UNKNOWN PARAMETER IN THE
BOUNDARY CONDITION

Consider the following plant:

ut(x,t):uxx(xJ) (68)
ux(0,1)=—qu(0,1) (69)
u(l,))=U(@) (70)

where U (t) is the control signal. With U (#) =0 this PDE is unstable for g>1. One can estab-
lish identifiability of (68)—(70) for g<1 with constant non-zero input following the approach in
Section 2. We are going to skip this calculation and start directly with the unstable case.

For the case of known ¢ the transformation

w(x,r):u(x,r)+/xqe‘1<x—f>u(§,t)d§ (71)
0

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2009; 23:131-149
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along with the feedback

1
U(t)=— / qe? ' Ou(é, 1 dé (72)
0
was used in [8] to map (68)—(70) into the target system
Wi (X, 1) =Wxx(x,1) (73)
wy(0,5)=w(1,t)=0 (74)

The first step in our identification algorithm is to design the least-squares adaptive identifier.

4.1. Least-squares adaptive identifier

We first introduce input and output filters:

Vi(x, 1) =vxx(x,1) (75)
v (0,8) =—u(0,1) (76)
v(1,1)=0 (77)

e (X, 1) =My (X,7) (78)
7,(0,£)=0 (79)
n(l,0)=u(l,r) (80)

The error e=u —qv—n satisfies the exponentially stable heat equation (29)—(30). Let us define
the prediction error as

e(x,n)=u(x,n)—qu(x,1)—n(x,1) (81)
The least-squares update law is
e(0,1)v(0,1)
1+7()v2(0,1)

P2 (t)v2(0,1)
1+y(t)v2(0, t)’

G()=y@t) (82)

)=- 7(0)>0 (83)

Lemma 2
The identifier (75)—(83) guarantees the following:

1. O0<y(t)<oo, |7(t)|<oo for all 1>0.

2. Aq(t) is bounded.

3. 6(0)/v/1402(0,1) € 2N Lo and § € LN L.

4. There exist Yo, goo such that lim;_, o0 Y(¢) =740, liMy— 00 ¢ (1) =Goo-

Proof
1. Rewriting (83) as

P(H)"12(0, 1)

d
@O =TT 0

(84)
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we can see that y(r)~!>7(0)~'>0. Therefore, y(¢) is bounded and positive. From (83) we get
[7(®)|<|y(t)|<oo for all r>0.
2. Consider the Lyapunov function

1
——II I +2—mAq (85)
where Ag=q —q. We get
- 1 Ag?v?(0)  Aqu(0)é(0) 2, 1 Aqv(0) .
V= —llexll 2T47020)  14+992(0) =—lex| ZW(AQU(O)—%(O))
les|? +3 1 (€(0)—e(0))(=e(0) —e(0) _ ey |2+ 1¢%(0)—&(0)
o 1+9v%(0) T 0020)
1 1 &0
<_§” exl? T2 T 00R0) (86)
Therefore, V is bounded, which in turn implies that Ag is bounded.
3. Integrating (86) in time, we get £(0)/+/1+7(1)v2(0,1) € ¥>. We also get
€(0,1) €(0,1) V1+9(0)v2(0,1) e(O t)«/l—i-y(O
= (87)
VIH020,0)  V/T+90v20,0) /1+v2(0,1) Jl S 0R0.0
and
e0,r)  e(0,1) Agv(0,1) (88)
VI4020,1)  V/1+02(0,1)  /14+02(0,1)
From (82) we have
b= e(0) yOv0,0) V(e N (89)

VI+70v20,1) V1470020, 1)  V1+90)v2(0,1)

4. Since y(t) is monotonically decreasing and is bounded from below, it has a limit:
limy— o0 Y(2) =74 We rewrite (82) as

v(O 1)(e(0,1)+Aq(t)v(0,1)) v(0,0)e(0,1)  Aq(z).
—A ()= i~ —— L e 10 (90)
14+y(0)v=(0,1) L+y@)v=(0,2) ()
The solution to this ODE is
Aq(0) " v(0,7)e(0,7)
Aq(t)= YO =) | ————>——dt oD
7(0) o 1+7(0v(0,7)
Therefore,
Aq(0 ) /oo v(0,7)e(0, 7)
hm H=q——— 1 —————dt= 92
RAO=a==0) T || Thmeen i ©2)
since the integral in (92) is obviously bounded. ]
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4.2. Main result

Our main result is stated in the following theorem.

Theorem 4
Consider system (68)—(69) with the controller

1
u(l,t)=u1—/ el Gu(e. 1) +n(E 1) dé (93)
0
update law (82)—(83), and filters (75)—(80). Then for any ¢(0) and any initial conditions u, vo, 1o €
L»(0, 1), the signals g(¢), u(x, 1), v(x,t), n(x, ) are uniformly bounded and §(¢) — ¢ as t — oo.
5. PROOF OF THEOREM 4
We break the proof in several steps.
1. Following (71), we introduce the transformation
X

@(x,t)=6}v(x,t)+"l(x,t)+/ Gel I Gu(E, 1) +n(E 1) dé (94)
0

where qu(x, 1) +n(x,t) is the estimate of the state u. One can show that this transformation maps
(68)—(69), (93) into the following system (see Lemma 5 in Appendix A):

Wi, ) =ex (X, 1)+ 2(0, 1) +Gu+4 / OO Gu(E, )+ (E, 1)) dE (95)
0

ﬁ)x(O,t):—éé(O,t) (96)

(1, 1) =u, 97)

Noting that u(0, 1) =w(0,)+¢(0, 1), we rewrite v-filter as

U (X, 1) =Vxx (X, 1) (98)
vy (0, 1) =—w(0,1)—e(0,1) (99)
v(1,1)=0 (100)

We now have two interconnected systems for w and v excited by the constant boundary input u
and by the signal ¢(0, t) with properties established in Lemma 2.

2. Our next goal is to demonstrate that these systems are asymptotically stable around the limit
points

WP ) =up, VPE)=ui(1-x) (101)
Introducing the error variables w = w—uP, t=v—vP, we get
A . ~ x ~ ..
Wy (X, 1) =Wx (x, 1) +G2e176(0,1) +¢ |:17+M1€qx+/ €q(xg)(éﬁ(f,l)-i-@(f,l))df] (102)
0
wy (0,1)=—4e(0,1) (103)
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w(l,1)=0 (104)
Ur (X, 1) =Uxx (X, 1) (105)
Ux (0, 1) =—w(0,1)—e(0, 1) (106)
v(l,1)=0 (107)
Consider the Lyapunov function

1, 1,

V:—/ w (x)dx—i——/ v (x)dx (108)
2 Jo 2 Jo

We get
. 1 .ol 1 . 1
V:@w(O)é(O)—/ wﬁdxM/ 1D(x)17(x)dx+é(0)/ ézeqxw(x)dx—/ 2 dx
0 0 0 0

. 1 x ~ . l ~
+4 / w(x) | %79 GD(E) 4+ w(&)) dé dx +T(0) (W (0) +&(0) +Guy / e w(x) dx
0 0 0

_ R _ o (14+goe®)2|g[? 2q0|q|2 _
<—||wx||2+|e(0)|(qo|w(0>|+q3e"°||w||)+ﬁu o2+ ——w|?

cr. . _ 1 1 _ R el |(}|2u262‘10
+5||w||2—||vx||2+§||vx||2+5||wx||2+|v(0>||e<0)|+5||w||2+ e

1 B 1 _ _ _
<— (5—4c1) ||wx||2—5||vx||2+11||w||2+11||v||2+11
+q0lé(0)||w(0)|+gZe?[e(0)| W]l +|5(0)]16(0)] (109)

Here by go and y, we denoted the bounds on ¢ and y, respectively, and [; is a generic function
of time in ¥ NY%~. We now separately estimate the last three terms of (109) using Poincare’s,
Agmon’s, and Young’s inequalities:

é(0)
V14+02(0)

gg(L+lui)?  &2(0)
4cy 1+02(0)

q01€(0)|
V1+02(0)

& ol | llw)?
< calle 1>+ 43l | +call |1 +qo]+ +

q0le(0)]|w(0)] < golw(0)] (I +fur [+ 0O

1€(0)]
Vv 1+v2(0)

<ol + +2q0/ Il [l 151110

< collie >+ + (lwHwa I +1vlHTve D

200) \ 4es | deq
<ol | Dl|* +call o IZ+ 0 1812+ | w]|* +1 110
S allwx” +esllwell” +eallvx 1"+l "+ lwl® 4+ (110)
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5 _ _e(0)
qge® 1) [lw] < gge®||w] 5 (I +fur [+ v (O

V14+02(0)

4 ,2q0 1 2 ~2
o PAd+mD™ e (1 1 -2
1 T1020) CS+C6 lwl” ) +csllvxl

< osllwl* +cell vy |12+ 1w 12 +1 (111)

_ q
<osllwl*+

[0(0)Ie(0)]
1+v2(0)

(1+2)% 820 e, o 8 (IBOIONN 5
2¢7 1+#m{kiwﬂ'%_<l+ﬂm))”m

HOIEOIES (14+2u +41|5][1| 5 1)

c7
<7||vx||2+

<crllvx P +0 17+ (112)
Substituting (110), (111), and (112) into (109), we get
V < —(3—4ci —ca—c3—des) x> +11 [ wl|?
— (3 —ca—ce—eplull*+ 1 10117 +1 (113)
Choosing 4c =cz=C3=4C5=%, C4=C6=C7=l—12, we get
V<—§V+LV+I (114)

and by Lemma 3 we obtain ||w],||v] € ¥2NP~. By integrating (113) we also get [wy],
vl € £>.

3. To show the parameter convergence, we note that

¢(0,1)
V1+v(0,1)2

because ||vy || € %> and €(0,1)//1+v(0,1)? € 2NZL+ by Lemma 2. Using the definition of &,
we express

le(0,1)|< (I+-llox |+ ur]) € £2 (115)

e(0,1)=e(0,1) +Aq()v(0,1) =e(0,1) +Aq()v(0, 1) +Aq ()u, (116)
from which we have for u; #0:

1€(0,1)|+1e(0, )[4+ Ag ()] || v |l
lueq ]

|Aq()|< (117)
Since Ag(t) is bounded and €(0,t), e(0,7), and ||0,| are all square integrable, from (117) we
conclude that Ag (¢) is square integrable. By Lemma 2 Ag (¢) and d/dfAg are bounded. By Barbalat’s
lemma, we have lim;_, .o Ag(t) =0.

4. We already showed boundedness in Lj-norm. Unlike in the identification proof for the
g-plant, here it is considerably difficult to show spatially uniform boundedness. The main difficulty
is the presence of non-homogeneous terms in the boundary conditions (103) and (106), which does

Copyright © 2008 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2009; 23:131-149
DOI: 10.1002/acs



146 A. SMYSHLYAEYV, Y. ORLOV AND M. KRSTIC

not allow us to use the Hj-norm as the standard Lyapunov function. To remove this difficulty, we
consider the following transformation from (w, v) into (w, v):

ﬁ)(X)=ID(X)+6}(1—X)/O e(y)dy (118)

() =v(x)+(1 —X)/O (e(y)+w(y))dy (119)

The purpose of this transformation is to make boundary conditions (103) and (106) homogeneous.
One can easily check that in the new variables we have w,(0,7)=w(1,1) =0,(0,7)=0v(1,¢)=0.
The right-hand side of the resulting PDEs for w and v is quite complicated, but has a simple
structure with all the terms proportional either to ¢, ¢(0), or Ag, all of which are square integrable
and bounded as we have shown. After this crucial step, the rest of the proof closely follows the proof
for the g-case. One first shows the boundedness of ||w,|| and ||U| with the Lyapunov function:

V=301 + 1512 4 1 1>+ 1152 11%) (120)

By Agmon’s inequality this implies boundedness of w(x, ¢) and v(x, #). Then from transformation
(118), (119) it follows that w(x,?) and v(x,t) are bounded (after the substitution e=e+Aqv+
Aqui(1—x)). From the invertible transformation (94) it then follows that n(x,?) is bounded.
Finally, since u =e+qv+n, we get the boundedness of u(x,1).

6. SIMULATION RESULTS

To illustrate the proposed identification scheme, we consider plant (1), (2) with unknown parameter
g =4 (the open-loop system is unstable for this value of the parameter). The initial estimate of the
parameter is g(0)=2. A constant boundary input #; =2 is added to the feedback. The results of
closed-loop simulations are presented in Figures 1 and 2. In Figure 1 the evolution of the parameter
estimate is shown in comparison with the case u; =0. We can see that the unknown parameter is
successfully identified. The additional constant input is turned off at =3 to achieve regulation to
zero. In Figure 2 the closed-loop state is shown.

7. CONCLUSION

We developed on-line identification schemes for two unstable parabolic systems with boundary
sensing and actuation. Further research will be focused on extending the results of the paper to
reaction—advection—diffusion PDEs with functional (spatially varying) parametric uncertainties.
One possible approach to this challenging problem is to approximate the unknown functional
parameter in (8) as

N
gy~ Y gnx" 121
n=0
and consider a problem of simultaneous identification of the parameters g, g1, ..., gn. There are

no fundamental obstacles in using our methodology for that problem. However, one would need
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Figure 1. Left: convergence of the parameter estimate g to the true value g =4 with (solid
line) and without (dashed line) additional constant boundary input. Right: the control
effort; the additional constant input is turned off at 1 =3.

Figure 2. The closed-loop state u(x, ).

to establish the persistency of excitation condition on the boundary input, since a constant input is
not sufficient for the identification of more than one parameter. This condition amounts to proving
that the states of the corresponding filters evaluated at x =0 [vg(0, ¢), v1(0,1),..., vy (0,1)] are
linearly independent functions of time, provided the input is sufficiently rich of order (N/2)+1
(based on the finite-dimensional intuition). Then one can choose N sufficiently large to identify
g(x) with any prescribed accuracy.

APPENDIX A

Lemma 3 (Lemma B.6 in [10])
Let v, /1, and [ be real-valued functions defined on R, and let ¢ be a positive constant. If /

and I, are non-negative integrable functions of time and V< —cv+I;(t)v+1(¢), v(0)=0, then
vel NP .
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Lemma 4
The transformation (45) maps (1)—(2), (39) into system (46)—(48).

Proof
First, we verify boundary conditions (47), (48):
Wy (0, 1) =—2vy(0,1) —k(0,0)8v(0, 1) —k(0,0)17(0,1) =0 (A1)
1
ﬁ)(l,t)=u(1,t)—/0 k(1,8 (gu(&, 1) +n(&, 1) dé=u; (A2)

Next, we compute the derivatives of w:

W (X, 1) = §Uxx (X, 1) F 11 (X, 1)+ 20 (x, 1)+ 1 (x, 1)

+8* /O a(x —E)(Gu(E, 1) +n(& 1)) dé (A3)

Wy (x, 1) = gup(x, 1)+, (x, 1) — §u(0, 1)+ f(x)u (0, 1) + §*v (x, 1) + g1 (x, 1)

— B (0, 1) +3(0, 1))+ gv(x, 1)+ & fo go(x — (&, 1) dé

+ 2‘% /0 [(x =O)B(x =) +gau(x —OIGV(&, 1) +n(&, 1)) dE (A4)

In (A4) we integrated by parts twice (x and f§ are defined in (49)). Subtracting (A3) from (A4)
and using the inverse transformation (66), we get

w,(x,n=szx<x,r>+ﬁ<x>é(o,t>+§v<x,t>+§fo go(x — (&, 1) dé

. X ¢
+£’/0 [(x =OP(x =) +ga(x— Q)] (@(5, t)—é'/o (E=»w(y, t)dy) d¢ (A5)
Changing the order of integration in the double integral (last term in (A5)), computing the internal
integral, and gathering all the terms together, we obtain (46). |

Lemma 5
Transformation (94) maps (68)—(69), (93) into system (95)—(97).

Proof
First, we verify boundary conditions (96), (97):
Wy (0,0)=—qu(0,1)—qv(0,1) —n(0,1)) =—qe(0,1) (A6)
1
ﬁ)(l,t)=u(1,t)+/ gel™ = (qu(&, n+n(E 1) dE=u (A7)
0
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Next, we compute the derivatives of w:

Wy (4, 1) = G (X, ) F 10 (0, 1) FG2 02 (6, D) +G, (6, 1) +G0(x, 1) +¢%n(x, 1)

+ / 33100 Gu(E, N (&, 1) dé (A8)
0

Wy (x, 1) = Guy (6, 1) 17, (6, 1) G200 (8, 1) — 26850, (0, 1) +G v (x, 1) +§20(x, )+, (x, 1)
X

— 3T v(0,1) — 4% n(0, 1)+ / eI @Gu(E, D +n(E D) dé+Gu(x, 1)
0

+5}/0 c}e‘m@v(f,t)dfﬂ}/o (140G — o= GuE.+nE.0)dE (A9)

In (A9) we integrated by parts twice. Subtracting (A8) from (A9) and using the inverse transfor-
mation

X

C?U(x,t)Jr"l(x,t):ﬁ)(X,f)—é/ w(y,1)dy (A10)
0

we get
X

Wy (0, 1) = Wx (xr, 1) +§%e756(0, 1) +Gu(x, 1) +¢ / Ged=9y(&, 1) d¢
0

. [ A ¢
+4 /0 (1+gx =8t 9 (DD —g /0 w(y,ndy | d (A1)
Changing the order of integration in the double integral (the last term in (A11)) and computing
the internal integral, we obtain (95). O
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