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Adaptive Image Approximation by Linear Splines
over Locally Optimal Delaunay Triangulations

Laurent Demaret and Armin Iske

Abstract— Locally optimal Delaunay triangulations are con-
structed to improve previous image approximation schemes. Our
construction relies on a local optimization procedure, termed ex-
change. The efficient implementation of the exchange algorithm is
addressed and its complexity is discussed. The good performance
of our improved image approximation is illustrated by numerical
comparisons.

Index Terms— Image approximation, linear splines, Delaunay
triangulations, adaptive thinning algorithms, local optimization.

I. I NTRODUCTION

I N our previous paper [2], a new method for image com-
pression was proposed. The compression method combines

a recent image approximation scheme with scattered data
coding [3]. The image approximation in [2] works with
linear splines over adaptive Delaunay triangulations, where
the construction of the spline approximation space relies on
adaptive thinning, a data-dependent recursive pixel removal
scheme which selects a small subset of significant pixels
from the given image. This set of significant pixels yields an
anisotropic Delaunay triangulation, and so a suitable linear
spline space for image approximation.

In this letter, we show how to improve the approximation
quality of any linear spline space by the construction oflocally
optimal Delaunay triangulations. This is done by using a
postprocessing local optimization algorithm, exchange, which
helps to improve the image compression method of [2].

We first review basic ingredients of our image compression
method [2] in Section II, before the exchange algorithm is
introduced in Section III. Important computational aspects are
then addressed in Section IV. Supporting numerical compari-
sons are finally presented in Section V.

II. I MAGE APPROXIMATION BY L INEAR SPLINES

A. Image Representation

A digital image is a rectangular grid of pixels, where each
pixel bears a color value or a greyscale luminance. We restrict
the following discussion to greyscale images. The digital
image can be viewed as an elementI ∈ {0, 1, . . . , 2r − 1}X ,
whereX is the set of pixels, andr is the number of bits in
the representation of the luminance values.

We regard images as functions over the convex hull[X]
of the set of pixelsX, so that[X] constitutes the rectangular
image domain. Each pixel inX is corresponding to a planar
grid point, with integer coordinates, lying in[X].
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B. Linear Splines over Delaunay Triangulations

Let Π1 denote the space of linear bivariate polynomials. For
Y ⊂ X, let D(Y ) denote the Delaunay triangulation [6] ofY ,
andC([Y ]) the set of continuous functions on[Y ]. We define
the linear spline spaceSY by

SY =
{

s : s ∈ C([Y ]), s
∣

∣

T
∈ Π1 for all T ∈ D(Y )

}

.

Any element inSY is referred to as alinear splineoverD(Y ).
For given luminances{I(y) : y ∈ Y } there is a unique linear
spline L(Y, I) ∈ SY with L(Y, I)(y) = I(y) for all y ∈ Y .
For a fixed subsetY ⊂ X satisfying [Y ] = [X] we takeSY

as an approximation space for the imageI, defined over the
domain[X].

C. Quality Measure for Image Approximation

The quality of image compression schemes is usually mea-
sured indB (decibels) by thePeak Signal to Noise Ratio,

PSNR= 10 ∗ log
10

(

2r × 2r

η̄(Y ;X)

)

,

where, for anyY ⊂ X and with |X| being the size ofX,

η̄(Y ;X) = η(Y ;X)/|X|

denotes themean square error(MSE) and

η(Y ;X) =
∑

x∈X

|L(Y, I)(x) − I(x)|2 (1)

is the square error of the approximationL(Y, I) to imageI.
The image approximation scheme in our previous paper [2]

relies on the construction of a small subsetY ⊂ X of
significant pixels, whose distribution captures the geometry
of the image, see also the related methods in [4], [8]. The
selection of the significant pixels inY aims at the reduction
of the approximation errorη(Y ;X). This is in [2] done by
a greedy removal scheme, termed adaptive thinning, which
recursively removes less significant pixels fromX, using a
suitable criterion for measuring the significance of a pixel
y ∈ Y .

The exchange algorithm proposed in this letter reduces, for
any given subsetY ⊂ X, the approximation errorη(Y ;X).
This is done by a postprocessing local optimization procedure
which outputs alocally optimal subsetY ∗ ⊂ X of size|Y ∗| =
|Y | satisfyingη(Y ∗;X) ≤ η(Y ;X).

But it is recommended to use exchange only in combination
with a preprocessing adaptive thinning or any other suitable
pixel reduction algorithm, which outputs a subsetY ⊂ X
with small approximation errorη(Y ;X). In this case,Y is
usuallycloseto a locally optimal subset, so that the required
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computational costs for exchange are small, and the composite
pixel selection algorithm outputs a suitable locally optimal
subsetY ∗ ⊂ X with reduced approximation errorη(Y ∗;X) ≤
η(Y ;X), see the numerical comparisons in Section V.

D. Pixel Significance Measures

For any pixely ∈ Y ⊂ X, we measure thesignificanceof
y in Y w.r.t. X by η(Y \ y;X). An equivalent significance
measure toη is given by

eδ(y;Y ) = η(Y \ y;Y ) − η(Y ;X). (2)

Note that

eδ(y;Y ) = η(Y \ y;X ∩ C(y;Y ))− η(Y ;X ∩ C(y;Y )), (3)

whereC(y;Y ) is the cell ofy in the Delaunay triangulation
D(Y ) of Y . Therefore,eδ is a local measure for the square
errorη in the cellC(y;Y ), being incurred by the removal ofy.

III. L OCALLY OPTIMAL DELAUNAY TRIANGULATIONS

A. Local Optimization by Exchange

Definition 1: For any Y ⊂ X, let Z = X \ Y . A pixel
pair (y, z) ∈ Y × Z satisfyingη((Y ∪ z) \ y;X) < η(Y ;X)
is said to beexchangeable. A subsetY ⊂ X is said to
be locally optimal in X, iff there is no exchangeable
pixel pair (y, z) ∈ Y ×Z, and in this case we also say that the
Delaunay triangulationD(Y ) of Y is locally optimal.

Note that by an exchange of any exchangeable pixel pair
(y, z) ∈ Y × Z, the approximation errorη(Y ;X) is strictly
reduced. This motivates the introduction of the following
local optimization algorithm which computes a locally optimal
subset inX from any inputY ⊂ X.

Algorithm 1: (Exchange)
INPUT: Y ⊂ X;

(1) Let Z = X \ Y ;
(2) WHILE ( Y not locally optimal inX)

(2a) Locate an exchangeable pair(y, z) ∈ Y × Z;
(2b) Let Y = (Y \ y) ∪ z andZ = (Z \ z) ∪ y;

OUTPUT: Y ⊂ X, locally optimal inX.

Note that the exchange algorithm terminates after finitely
many steps. Indeed, this is because the input setX is finite,
and each exchange in step(2b) strictly reduces the current
(non-negative) approximation errorη(Y ;X). By construction,
the output setY ⊂ X is locally optimal inX.

B. Characterization of Exchangeable Pixel Pairs

Efficient implementation of the exchange algorithm requires
a suitable characterization of exchangeable pixel pairs. To this
end, note

η(Y \ y;X) = η(Y ;X) + eδ(y;Y ), for y ∈ Y, (4)

from (2). By first lettingY = Y ∪z in (4), for z ∈ Z = X \Y ,
and theny = z, this provides two useful relations,

η((Y ∪ z) \ y;X) = η(Y ∪ z;X) + eδ(y;Y ∪ z),

η(Y ;X) = η(Y ∪ z;X) + eδ(z;Y ∪ z).

Therefore,(y, z) ∈ Y × Z are exchangeable, iff

eδ(z;Y ∪ z) > eδ(y;Y ∪ z), for (y, z) ∈ Y × Z. (5)

Note that for any pixel pair(y, z) ∈ Y × Z, which is
unconnectedin the Delaunay triangulationD(Y ∪z) of Y ∪z,
i.e., [y; z] /∈ D(Y ∪ z), this condition can be rewritten as

eδ(z;Y ∪ z) > eδ(y;Y ), for [y; z] /∈ D(Y ∪ z). (6)

Indeed, if [y; z] is not an edge inD(Y ∪ z), thenC(y;Y ) =
C(y;Y ∪ z), and soeδ(y;Y ) = eδ(y;Y ∪ z) by (3).

For illustration, Figure 1 shows one exchange for an uncon-
nected pixel pair(y, z) ∈ Y ×Z satisfying[y; z] 6∈ D(Y ∪ z).

(a) before exchange (b) after exchange

Fig. 1. Exchange of an unconnected pixel pair(y, z) ∈ Y × Z, satisfying
[y; z] 6∈ D(Y ∪z), where the image has size8×8 andy = (3, 6), z = (3, 2).
The two corresponding Delaunay triangulations, (a)D(Y ) before exchange
and (b)D((Y ∪ z) \ y) after exchange, are also shown.

IV. COMPUTATIONAL ASPECTS OFEXCHANGE

A. Efficient Implementation of Priority Queues

Efficient implementation the exchange algorithm requires,
in combination with the two exchange criteria, (5) and (6),
a suitable data structure for efficient maintenance of priority
queues. To this end, we prefer to work with the data structure
heap, a binary tree (see [1] for details), which was also used
in our previous paper [2].

In that paper [2], one heap, sayheapY, is used to store
the pixels inY ⊂ X in the nodes ofheapY, where for each
nodey ∈ Y its key is given by the local erroreδ(y;Y ) of y
in Y . Moreover, the binary treeheapY is organized such that
the key of a node issmaller than the keys of its two children.
Hence, due to the heap condition, the root ofheapY contains
a pixel y∗ ∈ Y , which minimizes the erroreδ(y;Y ) among
all pixels in Y .

In the terminology of [2], the pixely∗ is said to be
least significant. The adaptive thinning algorithm in [2] re-
cursively removes least significant pixels fromX, and after
each removal of a least significant pixel,y∗, the involved
data structures,D(Y ) and heapY, are updated. Recall that
any update ofheapY requires at mostO(log N) operations,
whereN = |X|. Therefore, the thinning algorithm in [2] has
complexityO(N log(N)), see [2] for details.
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(a) Original256 × 256 image (b) Reconstruction byAT (c) Reconstruction byE ◦ AT (d) Locally optimal triangulation

Fig. 2. Test imageLena. Comparison between compression methodsAT andE ◦ AT, whose image reconstruction is shown in (b) forAT at 0.279bpp
with PSNR 28.77dB and in (c) forE ◦ AT with PSNR 29.19dB. The locally optimal Delaunay triangulation output byE ◦ AT is shown in (d).

B. Maintenance of Three Priority Queues

Due to the exchange criteria (5) and (6), the exchange
algorithm can be implemented efficiently by usingheapY and
two other heaps, calledheapZ andheapE.

The heapheapZ contains the pixels fromZ = X \ Y
and is used for the maintenance of their local error reduction
eδ(z;Y ∪ z), which would be incurred by the insertion of a
pixel z ∈ Z into Y . The heapheapE contains all pairs of
pixel neighbours(y, z) ∈ Y ×Z satisfying[y; z] ∈ D(Y ∪ z),
i.e., [y; z] is an edge inD(Y ∪ z). The key of any edge[y; z]
in heapE is given by the local error difference

δ([y; z]) = eδ(z;Y ∪ z) − eδ(y;Y ∪ z), (7)

which would be incurred by the exchange of pixelsy andz.

C. Efficient Localization of Exchangeable Pixels

In order to efficiently locate an exchangeable pixel pair, as
required in step(2a) of the exchange algorithm, the ordering
in the three priority queues are organized, such thatHeapY
contains a pixel withsmallest error eδ(y;Y ) at its head,
HeapZ contains a pixel withlargest error eδ(z;Y ∪ z) at
its head, andHeapE contains an edge withlargest error
difference δ([y; z]) at its head. Each of the three priority
queues is updated after each pixel exchange.

To locate an exchangeable pixel pair, if any, the following
two checks are performed in step(2a) of the exchange
algorithm.

In the first check, we regard the keyδ([y∗; z∗]) of the
root [y∗; z∗] in heapE. If δ([y∗; z∗]) > 0, then (y∗; z∗) are
exchangeable by criterion (5), in which case we will exchange
the pixelsy∗ and z∗ in step (2b) of Algorithm 1. Otherwise
(i.e., if δ([y∗; z∗]) ≤ 0), there is no exchangeable pair of pixel
neighbours contained in the edges ofheapE, in which case
we perform a second check.

In the second check, we first locate an unconnected pixel
pair (y∗, z∗) ∈ Y ×Z, satisfying[y∗; z∗] /∈ D(Y ∪ z∗), which
maximizes the difference

δ(y; z) = eδ(z;Y ∪ z) − eδ(y;Y ), for [y; z] /∈ D(Y ∪ z),

among all unconnected pixel pairs(y, z) ∈ Y × Z. Such a
pixel pair can be located in only at mostO(log N) operations
by using the other two heaps,heapY andheapZ, provided

that for any(y, z) ∈ Y ×Z the number of triangles in the cell
C(y;Y ∪ z) is bounded above by a small numberk = O(1).
For computational details on this, we refer to our paper [5].

If δ(y∗, z∗) > 0, then(y∗, z∗) are exchangeable. Otherwise
(i.e., if δ(y∗, z∗) ≤ 0), there is no exchangeable pixel pair
(y, z) ∈ Y × Z with [y; z] /∈ D(Y ∪ z).

D. Complexity for one Pixel Exchange

Note that by performing the above two checks we can
efficientlylocate an exchangeable pixel pair inY ×Z, if any.
Indeed, the first check, covering the class of neighbouring pixel
pairs, requires only one operation. The second check, covering
the class of unconnected pixel pairs, can be done in at most
O(log N) operations [5].

In particular, by the two checks we can decide in at most
O(log N) operations whether or not there is an exchangeable
pixel pair contained inY × Z. Indeed, ifδ([y∗; z∗]) ≤ 0 in
the first check andδ(y∗; z∗) ≤ 0 in the second check, then
there is no exchangeable pixel pair contained inY ×Z, where
in the best case each of the two checks requires onlyone
comparison. In the worst case, the two checks may require at
mostO(log N) operations, i.e., one for the first and at most
O(log N) for the second check.

Now note that the number of updates which are required in
the three heaps (heapY, heapZ andheapE) after one pixel
exchange is constant. Indeed, this is because for each heap
the keys of their nodes correspond tolocal error measures,
respectively, see the definitions ofeδ in (3) (for the keys in
heapY andheapZ) andδ in (7) (for the keys inheapE).

Since each update in either heap (heapY, heapZ, or
heapE) costs onlyO(log N) steps [1], we can conclude
that the complexity forone pixel exchange is only at most
O(log N).

V. NUMERICAL COMPARISONS

We compare the performance of the image approximation
method proposed in this letter with that of our previous
paper [2]. We recall that the image approximation in [2] relies
on adaptive thinning, a recursive pixel removal scheme, which
computes a subsetY ⊂ X of significant pixels, such that the
resulting square errorη(Y ;X) in (1) is small.



IEEE SIGNAL PROCESSING LETTERS 4

In this comparison, we take the significant pixelsY , ob-
tained from adaptive thinning, as input for the exchange
algorithm to compute a locally optimal subsetY ∗ ⊂ X of
equal size,|Y | = |Y ∗|, satisfyingη(Y ∗;X) ≤ η(Y ;X).

Each of these two image approximations is combined with
our scattered data coding scheme [3] to obtain two complete
image compression methods, here calledAT andE ◦ AT. We
remark that the computational complexity for coding is very
small, namely only at mostO(m log(N)), wherem = |Y | and
N = |X|, see the analysis in [3]. Moreover, we recall that the
image compression schemeAT of our previous paper [2] is
competitive to JPEG2000 [7].

For the purpose of comparison, we first consider using the
popular test imageLena, of size 256 × 256, as shown in
Figure 2(a). We let|Y | = 1536 for the number of significant
pixels, yielding a compression rate of 0.279bpp (bits per
pixel). The reconstruction ofLena obtained fromAT is
shown in Figure 2(b), that one obtained fromE ◦ AT can be
seen in Figure 2(c). The locally optimal Delaunay triangulation
D(Y ∗), computed fromD(Y ), is shown in Figure 2(d).

The compression methodAT yields the PSNR value
28.77 dB, whereasE ◦ AT provides the superior PSNR value
29.19 dB, after onlyn = 203 exchange steps. Note that the
two PSNR values correspond to MSĒη(Y ;X) = 86.99 and
η̄(Y ∗;X) = 78.97. In conclusion, the exchange algorithm
provides a reduction in MSE by about 10 %, which complies
with our numerical results obtained in similar numerical com-
parisons, including the standard test casesLena, Fruits,
andPeppers, which were also used in [2]. Table I reflects
our numerical results, where|Y | is the size ofY ⊂ X andn
is the number of exchange steps.

TABLE I

COMPARISON BETWEENAT AND E ◦ AT.

Test Case PSNR(AT) PSNR(E ◦ AT) |Y | n

Lena 28.77dB 29.19dB 1536 203
Lena 30.04dB 30.30dB 2536 110
Fruits 31.14dB 31.53dB 2736 253
Peppers 31.38dB 31.75dB 2536 217
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