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Adaptive Image Approximation by Linear Splines
over Locally Optimal Delaunay Triangulations

Laurent Demaret and Armin Iske

Abstract— Locally optimal Delaunay triangulations are con- B. Linear Splines over Delaunay Triangulations

structed to improve previous image approximation schemes. Our . Lo .
construction relies on a local optimization procedure, termed ex- LetII; denote the space of linear bivariate polynomials. For

change. The efficient implementation of the exchange algorithm is ¥ C X, et D(Y') denote the Delaunay triangulation [6] b
addressed and its complexity is discussed. The good performanceand C([Y']) the set of continuous functions ¢i]. We define
of our improved image approximation is illustrated by numerical  the linear spline spac§y by

comparisons.

Index Terms—Image approximation, linear splines, Delaunay Sy = {S s € (YD), S|T €1l forall T € D(Y)} ’

triangulations, adaptive thinning algorithms, local optimization. Any element inSy is referred to as inear splineoverD(Y).
For given luminance$!(y) : y € Y} there is a unique linear
. INTRODUCTION spline L(Y, I) € Sy with L(Y,I)(y) = I(y) forall y € Y.
N our previous paper [2], a new method for image confor a fixed subsel” C X satisfying[Y] = [X] we takeSy
pression was proposed. The compression method combiagsan approximation space for the imafedefined over the
a recent image approximation scheme with scattered daamain|X].
coding [3]. The image approximation in [2] works with
linear splineg over adaptiye Delauna_y tri.angulations, r_whec_ Quality Measure for Image Approximation
the construction of the spline approximation space relies o ) ) ] )
adaptive thinning a data-dependent recursive pixel removal 1he quality of image compression schemes is usually mea-
scheme which selects a small subset of significant pix&idred indB (decibels) by thePeak Signal to Noise Ratio
from the given image. This set of significant pixels yields an 2" x 2"
anisotropic Delaunay triangulation, and so a suitablealine PSNR= 10 * log; (M) )
spline space for image approximation. . . :
pIn thispletter, we s%owphpow to improve the approximatiowhere' for anyY” © X' and with | .X| being the size ofX,
qua_llity ofanylinear spline space by th_e c_onstructioricoﬁal_ly (Y; X)=n(Y;X)/|X]|
optimal Delaunay triangulations. This is done by using a
postprocessing local optimization algorithm, exchangeicly denotes thenean square erro(MSE) and
helps to improve the image compression method of [2]. LYY _ 2
We first review basic ingredients of our image compression (Y3 X) = Z IE(Y, 1)(z) - ()] @
method [2] in Section Il, before the exchange algorithm is o .
introduced in Section Ill. Important computational aspeare IS the square error of the approximatidiY’, /) to image!.
then addressed in Section IV. Supporting numerical compari | N€ image approximation scheme in our previous paper [2]

zeX

sons are finally presented in Section V. relies on the construction of a small subsét C X of
significant pixels, whose distribution captures the geoynet
[I. IMAGE APPROXIMATION BY LINEAR SPLINES of the image, see also the related methods in [4], [8]. The
A. Image Representation selection of the significant pixels il aims at the reduction

?,f the approximation erron(Y; X). This is in [2] done by

A digital image is a rectangular grid of pixels, where eac . L .

. . a greedy removal scheme, termed adaptive thinning, which
pixel bears a color value or a greyscale luminance. We uiestrrl cursively removes less significant pixels fralf, using a
the following discussion to greyscale images. The digita? y 9 P 9

image can be viewed as an elemént {0,1,...,2" — 1}%, Suitable criterion for measuring the significance of a pixel

where X is the set of pixels, and is the number of bits in yev. . o
. : The exchange algorithm proposed in this letter reduces, for
the representation of the luminance values.

Ve regard images as functons over the comvex bl T QU0 SRS L O SO B
of the set of pixelsX, so that[X] constitutes the rectangular y a posip 9 P P

image domain. Each pixel iX is corresponding to a planarWhICh outputs docally optimal subsel”™ C X' of size|Y™| =

. . L ) T Y| satisfyingn(Y*; X) < n(Y; X).
grid point, with integer coordinates, lying ick]. But it is recommended to use exchange only in combination
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computational costs for exchange are small, and the comeposi Therefore,(y, z) € Y x Z are exchangeable, iff
pixel selection algorithm outputs a suitable locally omlm
subsefr™* C X with reduced approximation errgfY™*; X) < es(z;Y Uz)>es(y;YU2), for(y,z)eY xZ. (5
n(Y; X), see the numerical comparisons in Section V.

Note that for any pixel paify,z) € Y x Z, which is
D. Pixel Significance Measures unconnectedn the Delaunay triangulatioP(Y Uz) of Y Uz,

For any pixely € Y c X, we measure theignificanceof i.e., [y; 2] ¢ D(Y U z), this condition can be rewritten as

yinY wrt. X by (Y \ y; X). An equivalent significance
measure ta) is given by

es(y;Y)=n(Y \y;Y) —n(Y; X). (2) Indeed, if[y; z] is not an edge ID(Y U z), thenC(y;Y) =
C(y; Y Uz), and soe;s(y;Y) = es(y; Y U z) by (3).
For illustration, Figure 1 shows one exchange for an uncon-
es(; Y)=n(Y \y; XNC(y;Y)) —n(Y; X NC(y;Y)), (3) nected pixel paify, z) € Y x Z satisfying[y; z] ¢ D(Y Uz).

es(z;Y Uz) >es(y;Y), forfy;2] ¢ DY Uz). (6)

Note that

whereC(y;Y) is the cell ofy in the Delaunay triangulation

D(Y) of Y. Therefore,es is alocal measure for the square - A

errory in the cellC(y; Y), being incurred by the removal gf ° ° =7 ° O =7
I1l. LOoCALLY OPTIMAL DELAUNAY TRIANGULATIONS /70 O\ ° C [\ ¢

A. Local Optimization by Exchange ~ " \/° 7 °\/°
Definition 1: For anyY C X, let Z = X \ Y. A pixel N\, .2 | N /o . |

pair (y,2) € Y x Z satisfyingn((Y Uz) \ y; X) < n(YV; X)

is said to beexchangeabl e. A subsetY C X is said to

bel ocal Iy optimal in X, iff there is no exchangeable (a) before exchange (b) after exchange

pixel pair(y,_z) cr X Z, and in thi-s case we also Say that thIe:ig. 1. Exchange of an unconnected pixel pajrz) € Y x Z, satisfying

Delaunay triangulatiorD(Y) of Y is| ocal |y opti rrgl © [y.2] € D(Y'Uz), where the image has sisec8 andy = (3,6), > — (3,2).
Note that by an exchange of any exchangeable pixel paie two corresponding Delaunay triangulations, T%)Y") before exchange

(y,2) € Y x Z, the approximation erron(Y; X) is strictly and (0)D((Y U 2) \ y) after exchange, are also shown.

reduced. This motivates the introduction of the following

local optimization algorithm which computes a locally opél

subset inX from any inputY C X.

Algorithm 1: (Exchange) IV. COMPUTATIONAL ASPECTS OFEXCHANGE

INPUT: ¥ C X; A. Efficient Implementation of Priority Queues

(1) LetZ=X\Y;

(2) WHILE (Y not locally optimal inX) Efficient implementation the exchange algorithm requires,
(2a) Locate an exchangeable pdiy,z) € Y x Z; in cqmbination with the two ex_change c_riteria, (5) aqd_(G),
(2b) LetY = (Y \y)UzandZ = (Z\ 2) Uy; a suitable data structure for efficient maintenance of fyior

gueues. To this end, we prefer to work with the data structure

OUTPUT: Y C X, locall timal inX. . ) .
. caly op |ma' n ) . heap a binary tree (see [1] for details), which was also used
Note that the exchange algorithm terminates after finitefy o, previous paper [2].

many steps. Indeed, _this is becaqse the inputses finite, In that paper [2], one heap, sheapY, is used to store
and each gxchange N St@b) strictly reduces the Cu.”entthe pixels inY C X in the nodes oheapY, where for each
(non-negative) appro>_<|mat|on eer_(Y;X). By construction, nodey € Y its key is given by the local errars(y; Y) of y
the output set” C X is locally optimal inX. in Y. Moreover, the binary treBeapY is organized such that
the key of a node ismallerthan the keys of its two children.
B. Characterization of Exchangeable Pixel Pairs Hence, due to the heap condition, the roohefpY contains
Efficient implementation of the exchange algorithm recuiréd pixel y* € Y, which minimizes the erroe;(y; Y’) among
a suitable characterization of exchangeable pixel paoghis all pixels inY".
end, note In the terminology of [2], the pixely* is said to be
least significant The adaptive thinning algorithm in [2] re-
n(Y \y; X) =Y X) +es(y;Y), fory €Y, (4 cursively removes least significant pixels fral, and after
from (2). By first lettingY” = YUz in (4), forz € Z = XY, each removal of a least significant pixelf, the involved

and theny = z, this provides two useful relations, data structuresP(Y') and heapY, are updated. Recall that
any update oheapY requires at mos®(log N) operations,
n((YUz)\y; X) = nY Uz X)+es(y;Y Uz), where N = |X|. Therefore, the thinning algorithm in [2] has

nY;X) = nYUzX)+es(z;Y Uz). complexity O(N log(N)), see [2] for details.
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(a) Original256 x 256 image (b) Reconstruction byAT (c) Reconstruction byE o AT (d) Locally optimal triangulation

Fig. 2. Testimagé.ena. Comparison between compression methadE andE o AT, whose image reconstruction is shown in (b) &T at 0.279%pp
with PSNR 28.77dB and in (c) forE o AT with PSNR 29.19dB. The locally optimal Delaunay triangulation output Byo AT is shown in (d).

B. Maintenance of Three Priority Queues that for any(y, z) € Y x Z the number of triangles in the cell

Due to the exchange criteria (5) and (6), the exchan§év;Y U z) is bounded above by a small number O(1).
algorithm can be implemented efficiently by usingapY and FOr computational details on this, we refer to our paper [5].
two other heaps, calledeapZ and heapE. If 6(y*,2*) > 0, then(y*, z*) are exchangeable. Otherwise

The heapheapZ contains the pixels fronz = X \ v (.e., if 6(y*,2%) < 0), there is no exchangeable pixel pair
and is used for the maintenance of their local error redoctié¥ 2) € Y x Z with [y; z] ¢ D(Y U 2).
es(z;Y U 2), which would be incurred by the insertion of a
p?xel z € Z into Y. The heaphea_pE_ contains all pairs of D. Complexity for one Pixel Exchange
pixel neighbours(y, z) € Y x Z satisfying[y; z] € D(Y U z), )

i.e., [y; 2] is an edge iD(Y U z). The key of any edgéy; 2] Note that by performing the above two checks we can

Indeed, the first check, covering the class of neighbourirgl p
6([ys2]) = es(z;Y Uz) —es(y; Y U 2), (7)  pairs, requires only one operation. The second check, ioayer

the class of unconnected pixel pairs, can be done in at most
O(log N) operations [5].

- L , In particular, by the two checks we can decide in at most

C. Efficient Localization of Exchangeable Pixels O(log N) operations whether or not there is an exchangeable

In order to efficiently locate an exchangeable pixel pair, gfixel pair contained inv x Z. Indeed, ifd([y*;2*]) < 0 in
required in stef(2a) of the exchange algorithm, the orderinghe first check and(y*; z*) < 0 in the second check, then
in the three priority queues are organized, such HedpY there is no exchangeable pixel pair contained’in Z, where
contains a pixel withsmallesterror e;(y;Y) at its head, in the bestcase each of the two checks requires oahe
HeapZ contains a pixel withlargest error es(z;Y U 2z) at  comparison. In the worst case, the two checks may require at
its head, andHeapE contains an edge witargest error most O(log N) operations, i.e., one for the first and at most
difference 6([y; 2]) at its head. Each of the three priority®(log V) for the second check.
queues is updated after each pixel exchange. Now note that the number of updates which are required in

To locate an exchangeable pixel pair, if any, the followinghe three heapsheapy, heapz andheapE) after one pixel
two checks are performed in stef2a) of the exchange exchange is constant. Indeed, this is because for each heap
algorithm. the keys of their nodes correspond laxal error measures,

In the first check, we regard the kej([y*;2*]) of the respectively, see the definitions ef in (3) (for the keys in
root [y*; z*] in heapE. If §([y*;2*]) > 0, then(y*;2*) are heapY andheapZz) ands in (7) (for the keys inheapE).
exchangeable by criterion (5), in which case we will excleang sjpce each update in either heapeépY, heapZz, or
the pixelsy* and z* in step(2b) of Algorithm 1. Otherwise heapE) costs only O(log N) steps [1], we can conclude

(i.e., if6([y"; 2*]) < 0), there is no exchangeable pair of pixethat the complexity forone pixel exchange is only at most
neighbours contained in the edgestafapE, in which case ¢(jog )

we perform a second check.
In the second check, we first locate an unconnected pixel

pair (y*, 2*) € Y x Z, satisfying[y*; 2*] ¢ D(Y U z*), which V. NUMERICAL COMPARISONS
maximizes the difference We compare the performance of the image approximation

N ) . ) method proposed in this letter with that of our previous
0y;2) = es(z Y Uz) —es(y;Y),  for [y;2] ¢ DY U2), paper [2]. We recall that the image approximation in [2]esli
among all unconnected pixel paifg,z) € Y x Z. Such a on adaptive thinning, a recursive pixel removal schemeckvhi
pixel pair can be located in only at ma8tlog V) operations computes a subséf C X of significant pixels, such that the
by using the other two heapbeapY andheapZ, provided resulting square errof(Y; X) in (1) is small.

which would be incurred by the exchange of pixglsind z.
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In this comparison, we take the significant pixé&fs ob-

[

tained from adaptive thinning, as input for the exchangiy.

algorithm to compute a locally optimal subsgt C X of
equal size|Y'| = |Y*|, satisfyingn(Y™*; X) < n(Y; X).

Each of these two image approximations is combined wi
our scattered data coding scheme [3] to obtain two complg
image compression methods, here caléB andE o AT. We
remark that the computational complexity for coding is very
small, namely only at mogf(m log(N)), wherem = |Y| and
N =|X], see the analysis in [3]. Moreover, we recall that the
image compression scherm®I' of our previous paper [2] is
competitive to JPEG2000 [7].

For the purpose of comparison, we first consider using the
popular test imagd_ena, of size 256 x 256, as shown in
Figure 2(a). We letY| = 1536 for the number of significant
pixels, yielding a compression rate of 0.2B8pp (bits per
pixel). The reconstruction of.ena obtained from AT is
shown in Figure 2(b), that one obtained frdine AT can be
seen in Figure 2(c). The locally optimal Delaunay triangjola
D(Y™), computed fromD(Y"), is shown in Figure 2(d).

The compression method\T vyields the PSNR value
28.77 dB, whereasEl o AT provides the superior PSNR value
29.19 dB, after onlyn = 203 exchange steps. Note that the
two PSNR values correspond to MSEY'; X) = 86.99 and
7(Y*; X) = 78.97. In conclusion, the exchange algorithm
provides a reduction in MSE by about 10 %, which complies
with our numerical results obtained in similar numericaineo
parisons, including the standard test cakesa, Fruits,
and Pepper s, which were also used in [2]. Table | reflects
our numerical results, wheil@’| is the size oft’ C X andn
is the number of exchange steps.

TABLE |
COMPARISON BETWEENAT AND E o AT.
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TestCase | PSNRAT) | PSNRECAT) | Y| | =n

Lena 28.77dB 29.19dB 1536 203

Lena 30.04dB 30.30dB | 2536 | 110

Fruits 31.14dB 31.53dB 2736 253

Peppers 31.38dB 31.75dB | 2536 | 217
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