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Adaptive Image Denoising Using
Scale and Space Consistency

Jacob Scharcanski, Cláudio R. Jung, and Robin T. Clarke

Abstract—This paper proposes a new method for image
denoising with edge preservation, based on image multiresolution
decomposition by a redundant wavelet transform. In our ap-
proach, edges are implicitly located and preserved in the wavelet
domain, whilst image noise is filtered out. At each resolution level,
the image edges are estimated by gradient magnitudes (obtained
from the wavelet coefficients), which are modeled probabilisti-
cally, and a shrinkage function is assembled based on the model
obtained. Joint use of space and scale consistency is applied
for better preservation of edges. The shrinkage functions are
combined to preserve edges that appear simultaneously at several
resolutions, and geometric constraints are applied to preserve
edges that are not isolated. The proposed technique produces a
filtered version of the original image, where homogeneous regions
appear separated by well-defined edges. Possible applications
include image presegmentation, and image denoising.

Index Terms—Edge detection, image denoising, multiresolution
analysis, wavelets.

I. INTRODUCTION

I N IMAGE analysis, removal of noise without blurring the
image edges is a difficult problem. Typically, noise is char-

acterized by high spatial frequencies in an image, and Fourier-
based methods usually try to suppress high-frequency compo-
nents, which also tend to reduce edge sharpness.

On the other hand, the wavelet transform provides good lo-
calization in both spatial and spectral domains, and low-pass
filtering is inherent to this transform. There are now several
approaches for noise suppression using wavelets, which have
shown promising results.

The method proposed by Mallat and Hwang [1] estimates
local regularity of the image by calculating the Lipschitz expo-
nents. Coefficients with low Lipschitz exponent values are re-
moved, and the image is reconstructed using the remaining co-
efficients (more exactly, only the local maxima are used). The
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reconstruction process is based on an interactive projection pro-
cedure, which may be computationally demanding.

Lu et al.[2] have proposed using wavelets for image filtering
and edge detection. In their approach, local maxima are tracked
in scale-space, and represented by a tree structure. A metric is
applied to prune the tree, removing local maxima related to false
edges. Finally, the inverse wavelet transform is applied, and the
output is the denoised image with edge preservation. However,
construction of the tree is difficult for noisy images containing
edges of various local contrasts (there are erroneous connections
when the wavelet coefficient maxima are dense). In this case,
some edges are lost, and filtering may not be efficient. Other
denoising methods based on wavelet coefficient trees were pro-
posed by Donoho [3] and Baraniuk [4].

Xu et al. [5] used the correlation of wavelet coefficients be-
tween consecutive scales to distinguish noise from meaningful
data. Their method is based on the fact that wavelet coeffi-
cients related to noise are less correlated across scales than co-
efficients associated to edges. If the correlation is smaller than
a threshold, a given coefficient is set to zero. To determine a
proper threshold, a noise power estimate is needed by their tech-
nique, which may be difficult to obtain for some images.

Malfait and Roose [6] developed a filtering technique that
takes into account two measures for image filtering. The first is
a measure of local regularity of the image through the Hölder
exponent, and the second takes into account geometric con-
straints. These two measures are combined in a Bayesian prob-
abilistic formulation, and implemented by a Markov random
field model. The signal-to-noise ratio (SNR) gain achieved by
this method is significant, but the stochastic sampling proce-
dure needed for the probabilities calculation is computation-
ally demanding. Another approach that uses a Markov random
field model for wavelet-based image denoising was proposed by
Jansen and Bulthel [7].

Other authors also proposed probabilistic approaches for
image denoising in the wavelet domain. Simoncelli and Adelson
[8] used a two-parameter generalized Laplacian distribution
for the wavelet coefficients of the image, which is estimated
from the noisy observations. Changet al. [9] proposed the
use of adaptive wavelet thresholding for image denoising, by
modeling the wavelet coefficients as a generalized Gaussian
random variable, whose parameters are estimated locally (i.e.,
within a given neighborhood). Strelaet al. [10] described the
joint densities of clusters of wavelet coefficients as a Gaussian
scale mixture, and developed a maximum likelihood solution
for estimating relevant wavelet coefficients from the noisy
observations. All these methods mentioned above require a
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noise estimate, which may be difficult to obtain in practical
applications.

Pizurica et al. [11] proposed a computationally efficient
method for image filtering, that utilizes local noise measure-
ments and geometrical constraints in the wavelet domain. A
shrinkage functionbased on these two measures is used to
modify the wavelet coefficients, and the image is reconstructed
based on the updated wavelet coefficients. Although this
method is fast, it does not take into account the evolution
of wavelet coefficients along scales, which usually carries
important information.

This paper proposes a new method for image denoising using
the wavelet transform, which combines wavelet coring and the
joint use of scale and space consistency. The image gradient is
calculated from the detail images (horizontal and vertical) of
the wavelet transform, and the distribution of the gradient mag-
nitudes associated to edges and noise are modeled by Rayleigh
probability density functions. Ashrinkage function, assuming
values between zero and one, is assembled at each scale. The
shrinkage functionsfor consecutive levels are then combined to
preserve edges that are persistent in scale-space (i.e., appear in
several consecutive scales), and geometric constraints are ap-
plied to remove residual noise.

The next section gives a brief description of the wavelet
framework, and the section that follows describes the new
method. Section IV presents some experimental results for our
approach, and a comparison with other denoising techniques.
Conclusions are presented in the final section.

II. WAVELET TRANSFORM IN TWO DIMENSIONS

In this work, the two-dimensional (2-D) wavelet decom-
position uses only two detail images (horizontal and vertical
details) [12], instead of the already conventional approach in
which three detail images (horizontal, vertical, and diagonal
details) are used [13]. This 2-D wavelet transform requires two
wavelets, namely, and . At a particular scale

we have

(1)

The dyadic wavelet transform , at a scale has two
components given by

(2)

Therefore, the multiresolution wavelet coefficients are

(3)

The original signal is then represented by the 2-D
wavelet transform, in terms of the two dual wavelets
and

(4)

In order to build a multiscale representation, we need a
scaling function (which is a low-pass filter), and the
corresponding component at a scaleis

(5)

We may interpret the component as a smoothed
version of , and the components , for

, as the image details lost by smoothing going from
to . Further details may be found in [12]

and [13].

A. Edge Detection Using Wavelets

Now, it is necessary to find a wavelet basis such that its com-
ponents are related to the local gradients of the
image at the scale . A smoothing function [which
is different from the scaling function , and used only to
define the wavelets and ] is selected, and the
wavelets are defined as

and (6)

Note that the wavelet coefficient can be written as

(7)

which in fact corresponds to the gradient of the smoothed ver-
sion of at the scale . Observing that an edge can be de-
fined as a local maximum of the gradient modulus along the
gradient direction [14], we can detect the edges at the scale
from . A suitable choice for proposed in [12]
was a cubic spline with compact support. This approach can be
used for digital images , using a discrete version of the
wavelet transform [12].

III. OUR IMAGE DENOISING APPROACH

Given a digital image , we first apply the redundant
wavelet transform using only two detail images, as discussed in
the previous section. As a result, at each resolution, we obtain
the detail images , and the smoothed image .
The edge magnitudes can be calculated from the image gradient,
as follows:

(8)

and the edge orientation is given by the gradient direction, which
is expressed by

(9)
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Fig. 1. (a) Originalhouseimage. (b) First noisyhouseimage (SNR= 8 dB). (c) Second noisyhouseimage (SNR= 3 dB).

Due to noise, some pixels of homogeneous regions may have
gradient magnitudes that could be misinterpreted as
edges, so we next describe a technique that assigns to each
coefficient a probability of being an edge, and propagates this
information along the scale-space using consistency along
scales and geometric continuity.

A. Wavelet Coring

Image coring is a known approach for noise reduction, where
the image highpass bands are subject to a nonlinearity that re-
duces (or suppresses) low-amplitude values and retains high-
amplitude values [8]. Many variants of coring have been de-
veloped, and the concept of “shrinkage” has been used with
wavelets [15].

For each level , we want to find a nonnegative nonde-
creasing shrinkage function , , such that
the wavelet coefficients and are updated according
the following rule:

for (10)

where is ashrinkage factor. Write
. To find the functions , we analyze the mag-

nitude image . Some of these coefficients are related to
noise, and others to edges. If the image is contaminated by addi-
tive white noise, the corresponding coefficients and
may be considered Gaussian distributed [16], with standard de-
viation . As a consequence, the distribution of the corre-

sponding magnitudes , at each

resolution , may be approximated by a Rayleigh probability
density function [17]

noise (11)

However, in practice, we observe that noise-free images typ-
ically consist of homogeneous regions and not many edges.
In general, homogeneous regions contribute with a sharp peak
around zero for the histograms of and , and the
edges contribute to the tail of the distribution. This distribu-
tion presents a sharper peak than a Gaussian [8], and therefore,
the Gaussian model is not appropriate for the distribution of

the coefficients. In fact, other distributions have been used for
modeling the wavelet coefficients, such as two-parameter gen-
eralized Laplacian distributions [8], Gaussian distributions with
high local correlation [18], generalized Gaussian distributions
[9] and Gaussian mixtures [10], [19]. However, we assume that
the distribution of the wavelet coefficients and re-
lated exclusively to edges (and not related to homogeneous re-
gions) is approximated by a Gaussian (i.e., when the sharp peak
in and associated to homogeneous regions is not
considered, we assume that the remaining data is approximated
by a Gaussian). The normal model for edge-related coefficients
is assumed because it leads to a simple model (Rayleigh) to ap-
proximate the corresponding edge-related gradient magnitudes

.
For example, consider the 256 256 houseimage and its

noisy versions (SNR 8 dB and 3 dB), shown in Fig. 1, from
left to right. Fig. 2 shows normal plots of the coefficients
for the houseimages (corresponding to the finest resolution
of the horizontal subband). In Fig. 2(a), all the coefficients

for the originalhouseimage were used. This distribution
shows significant departure from a Gaussian distribution,
as expected [8]. However, Fig. 2(b), showing the Normal
plot obtained using only the edge-related coefficients from
the original house image, shows an acceptable agreement
with the linearity expected under the Gaussian hypothesis,
even considering that coefficients associated exclusively to
edges are difficult to isolate in experiments. We conclude that
the Gaussian assumption for edge-related coefficients is not
unreasonable. Finally, Fig. 2(c) corresponds to the first noisy
houseimage (SNR 8 dB), and an even closer match to the
Gaussian distribution is noticed. This match occurs because
noise typically affects all the wavelet coefficients in the image,
while edges are related to just few image coefficients (and thus
the noise distribution dominates over the edge distribution).

Therefore, the edge-related magnitudes are approxi-
mated by a Rayleigh process

edge (12)

The overall gradient magnitude distribution (including
coefficients related to edges and noise) is given by

noise edge (13)
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Fig. 2. Normal plots of the coefficientsW f [n; m]. (a) Using all coefficients for the originalhouseimage. (b) Using only edge-related coefficients for the
original houseimage. (c) Using all the coefficients for the first noisyhouseimage (SNR= 8 dB).

where is thea priori probability for the noise-related gra-
dient magnitude distribution (and, consequently, is
the a priori probability for edge-related gradient magnitudes).
To simplify the notation, we remove the index, and (13) can
thus be written as

noise edge (14)

The parameters , and can be estimated by
maximizing the likelihood function

(15)

with the restriction , where is
the function defined in (14) evaluated at the gradient magnitudes

.
Typically, the number of noise-related coefficients is much

larger than those related to edges [as suggested by Fig. 2(c)], and
also their magnitudes are usually smaller. Therefore, the peak
of the gradient magnitude histogram is mostly due to noise-re-
lated coefficients, and usually is approximately at the same lo-
cation as the peak of the noise-related magnitude distribution

noise . Considering that the mode of the Rayleigh proba-
bility density function noise is given by [17], we
can estimate the parameter as the localization of the mag-
nitude histogram peak. The computational cost involved in the
maximization of (15) is then reduced, because only two pa-
rameters ( and ) are utilized, given the restriction

. This procedure is adaptive and does not require
a noise estimate.

Fig. 3 shows histograms of gradient magnitudes for the 8-dB
and 3-dB noisy versions of thehouseimage, and the obtained

model for these distributions, at the resolutions, , and
. It is seen that the histograms are well approximated by our

model, and no further noise estimates are needed.
Once the parameters , and are estimated,

the conditional probability density functions for the gradient
magnitude distributions noise and edge are given, re-
spectively, by (11) and (12). Also, we have determined thea
priori probabilities for noise-related ( ) and edge-related
( ) gradient magnitude distributions. The shrinkage
function for each resolution is given by the posterior
probability function edge , which is calculated using Bayes
theorem as follows:

edge
edge

edge noise
(16)

For the second noisyhouseimage, the spatial occurrence of the
shrinkage factors , for , are shown in Fig. 4.
Brighter pixels correspond to factors close to one, while darker
pixels correspond to factors close to zero. At the finest reso-
lution ( ), noise-related and edge-related coefficients have al-
most the same magnitude. As a consequence, the discrimination
between edge- and noise-related coefficients is difficult, as seen
in Fig. 4(a). For the lower resolution levels (and ), the re-
sults are more reliable, since noise is smoothed out when the
resolution decreases (increases). Further discrimination can
be achieved by analyzing the evolution of the shrinkage func-
tions along consecutive scales and applying spatial constraints,
as discussed in the next section.

B. Scale and Spatial Constraints

1) Consistency Along Scales:It is known that coefficients
associated with noise tend to vanish as the levelincreases,
while coefficients associated with edges tend to be preserved
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Fig. 3. (a)–(c) Histogram of the gradient magnitudes (dash-dotted line) and the estimated magnitude density function (solid line) for the first noisy houseimage
(SNR= 8 dB), at the resolutions2 , 2 and2 . (e)–(f) Same as (a)–(c), but for the second noisyhouseimage (SNR= 3 dB).

Fig. 4. From left to right: shrinkage factorsg [n; m], for j = 1; 2; 3, for the second noisyhouseimage.

when increases. In [1] and [6] the Hölder exponent was cal-
culated in order to explore this property. We analyze the consis-
tency of the wavelet coefficients along scales (i.e., resolutions)
differently, by combining the shrinkage functionsat various
resolutions .

For each scale , the value may be interpreted as
a confidence measure that the coefficient is in fact
associated to an edge. If the value is close to unity for
several consecutive levels, it is more likely that

is associated with an edge. On the other hand, if de-
creases as increases, it is more likely that is actu-
ally associated with noise.

For each scale , we use the information provided
by the function , and also by the functions , for

, where is the number of consecutive
resolutions that will be taken into consideration for the con-
sistency along scales. As observed by Xuet al. [5], it appears
that when two or three consecutive resolutions are used, better
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Fig. 5. From left to right: shrinkage factorsg [n; m], for j = 1; 2; 3, after consistency along scales was applied, for the second noisyhouseimage.

results are obtained than from using more consecutive resolu-
tions, because the positions of the local maxima of
may change as increases.

Thus, we need to find a function: such that
is approximately one if all the are

close to one, and must be close to zero
if any of the is close to zero. There are many functions satis-
fying this property, and we chose the harmonic mean

(17)

For the scale , the updated function is given by

(18)

This updating rule is applied from coarser to finer resolution.
The shrinkage factor , corresponding to the coarsest
resolution , is equal to . However, for other resolu-
tions , , the shrinkage factors de-
pend on scales , where .
The coefficients and are then modified according
to (10), using the updated shrinkage factors in-
stead of . For the second noisyhouseimage, the spatial
occurrences of the updated shrinkage factors , for

, are shown in Fig. 5.
2) Geometric Consistency:At this point, we have obtained

the shrinkage factors for each level . However,
we may achieve even better discrimination between noise and
edges by imposing geometrical constraints. Usually, edges
do not appear isolated in an image. They form contour lines,
which we assume to be polygonal (i.e., piecewise linear).
In our approach, a coefficient should have a
higher shrinkage factor if its neighbors along the local contour
direction also have large shrinkage factors. To detect this kind
of behavior, we first quantize the gradient directions into
0 , 45 , 90 , or 135 . The contour lines are orthogonal to the
gradient direction at each edge element, so we can estimate
the contour direction from . We then add up the shrinkage

factors along the contour direction, according to
the following updating rule:

if

if

if

if

(19)

where , is the local contour direction at the pixel
, is the number of adjacent pixels that should

be aligned for geometric continuity, and is a window that
allows neighboring pixels to be weighted differently, according
to their distance from the pixel under consideration.

After updating the shrinkage factors, coefficients with large
along the local contour direction will be strength-

ened, while pixels with no geometric continuity will not have
their shrinkage factors enhanced. This approach has limitations
close to corners and junctions, where two or more different local
contour directions arise. If the image is sufficiently sampled,
high curvature points should also be enhanced.

In the presence of noise, randomly aligned coefficients occur,
and could also be strengthened. To overcome this potential dif-
ficulty, we compare the contour direction in two consecutive
levels. It is expected that contours would be aligned along the
same direction in two consecutive levels (it is the same con-
tour at different resolutions), but responses due to noise should
not be aligned (gradients associated to noise will not be oriented
consistently in consecutive resolutions). Therefore, a second up-
dating rule is applied to the shrinkage factors . The
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Fig. 6. From left to right: shrinkage factorsg [n; m], for j = 1; 2; 3, after geometric constraints were applied, for the second noisyhouseimage.

Fig. 7. Results of denoising techniques for the second noisyhouseimage. (a)wave2 c software. (b) Wiener filtering. (c) Our method.

second updating rule takes into account the normalized inner
product of corresponding vectors in consecutive resolutions

(20)

Notice that the factor provides
a measure for direction continuity. It has value one if the same
direction occurs in two consecutive levels, and value zero if the
orientations differ by 90(i.e., are orthogonal). Fig. 6 shows the
spatial occurrences of the shrinkage factors for the
second noisyhouseimage, after applying the local geometrical
constraints.

C. Overview of the Proposed Method

A schematic overview of our method is as follows.

1) Compute the wavelet transform, obtaining the coeffi-
cients , and .

2) Calculate the edge magnitudes

and orientations

.
3) Compute the parameters , and , and

then calculate the shrinkage factors .

4) Combine the shrinkage factors in consecutive
scales, obtaining the updated shrinkage factors

where is the number of consecutive scales to be
analyzed.

5) Apply a second updating rule to the factors
using geometrical constraints (contour continuity and ori-
entation continuity along consecutive levels), obtaining

.
6) Modify the coefficients and , obtaining

, for .
7) Apply the inverse wavelet transform with and the

updated coefficients and , obtaining the
filtered image.

IV. EXPERIMENTAL RESULTS

We applied our technique to images with natural and artifi-
cial noise, and compared the results with those obtained by two
denoising methods. The first is the function imple-
mented in MATLAB, based on 2-D Wiener filtering [20]. The
second is the software , which is an implementation
of the method described in [1]. The chosen parameter values for
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Fig. 8. (a) Originalpeppersimage. (b) Noisypeppersimage (SNR= 3 dB). (c) Result of our method.

the software are the same as those used by Malfait and
Roose [6]. To evaluate the performance of the method, both vi-
sual quality and SNR gain are utilized.

In our experiments, the value was used for geometric
continuity in (19), and the window is a Gaussian (so that
larger weights are assigned to the nearest neighbors). A reliable
estimate for the parameter is obtained by first smoothing
the magnitude histogram with a Gaussian, and then finding the
localization of the peak.

Fig. 7 shows the results of the software applied to
the 3-dB noisyhouseimage, followed by the results that were
obtained applying the standard Wiener filtering and our tech-
nique. Quantitatively, filtering by software resulted in
a SNR of 12.83 dB, by Wiener filtering the output image had
SNR 12.63 dB, and filtering with our technique resulted in a
SNR of 15 dB. A similar image (noisyhouseimage also with
SNR 3 dB) was used in [6], and the resulting filtered image
achieved SNR 14.86 dB. Qualitatively, it is possible to see
that the output of our technique is both sharper and less noisy
than the other two methods.

Thepeppersimage was also used to test the performance of
our method. Fig. 8 shows the originalpeppersimage on the
left. The middle image is the noisy version (SNR3 dB),
and the image on the right is the result of our method (SNR

13.81 dB). All images have a resolution of 256256 pixels.
The image processed with the new technique has a visually ac-
ceptable quality, and the SNR gain achieved is considerable.
The outputs for the software and Wiener filtering pro-
duced, respectively, outputs with SNR11 dB and 12.46 dB.
Malfait and Roose [6] also used thepeppersimage with added
noise (SNR 3 dB) in their experiments, and their denoising
method achieved SNR 12.36 dB.

We also used images with inherent natural noise in our experi-
ments. Fig. 9(a) shows a natural aerial scene (250500 pixels),
while Fig. 9(b) and (c) show, respectively, the denoised images
obtained with our technique and Wiener filtering. Noise is ef-
fectively removed by our technique and edges were preserved,
although some subtle textures were lost. Visual comparison fa-
vors our method in comparison to conventional techniques, such
as Wiener filtering. Another aerial image (256256 pixels) is
shown in Fig. 10(a), and the output of our method and Wiener
filtering are shown in Fig. 10(b) and (c), respectively.

A brain magnetic resonance image (MRI) is shown in
Fig. 11(a), and the denoised images corresponding to the

Fig. 9. (a) First aerial image. (b) Filtered image, using our method. (c) Filtered
image, using Wiener filtering.

proposed method and Wiener filtering are shown, respectively,
in Fig. 11(b) and (c). It can be noticed that noise reduction was
remarkable in Fig. 11(b), while low-contrast structures were
preserved. Also, the edges in Fig. 11(b) appear to be sharper
than those in Fig. 11(c).

Our algorithm was implemented in MATLAB, running on a
300-MHzPentiumIIpersonalcomputer,with64MBRAM.Typ-
ical execution time for a 256 256 image, using three dyadic
scales, is about 90 s. Most of the running time is dedicated to the
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Fig. 10. (a) Second aerial image. (b) Filtered image, using our method. (c) Filtered image, using Wiener filtering.

Fig. 11. (a) Original brain MRI. (b) Filtered image, using our method. (c) Filtered image, using Wiener filtering.

maximization of (15). An efficient implementation on a com-
piled language is expected to improve the execution time.

V. CONCLUSION

Our denoising procedure consist basically of three steps. Ini-
tially, a shrinkage function for each level is assembled modeling
the distribution of the gradient magnitudes using Rayleigh prob-
ability density functions. Next, scale and spatial constraints are
applied. The shrinkage functions are combined in consecutive
resolutions, using scale consistency criteria. Finally, geomet-
rical constraints are applied to enhance edges appearing as con-
tours, and therefore connected.

The experimental results obtained are promising, both quan-
titatively and qualitatively. From this point of view, the new
method is comparable to, or better than, other denoising tech-
niques, with the advantage of being adaptive (no estimate of the
noise is needed, as opposed to [6], [8]–[10]).

Future work will concentrate on finding more accurate
models for the gradient magnitude distribution, distinct choices
of shrinkage functions, and a probabilistic approach for multi-
scale consistency. Also, we intend to investigate the application
of our method to edge enhancement in noisy images.
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