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Adaptive Image Denoising Using
Scale and Space Consistency

Jacob Scharcanski, Claudio R. Jung, and Robin T. Clarke

Abstract—This paper proposes a new method for image reconstruction process is based on an interactive projection pro-
denoising with edge preservation, based on image multiresolution cedure, which may be computationally demanding.

decomposition by a redundant wavelet transform. In our ap- . . .
proach, edges are implicitly located and preserved in the wavelet Y €t al.[2] have proposed using wavelets for image filtering
domain, whilst image noise is filtered out. At each resolution level, and edge detection. In their approach, local maxima are tracked
the image edges are estimated by gradient magnitudes (obtainedin scale-space, and represented by a tree structure. A metric is
from the wavelet coefficients), which are modeled probabilisti- applied to prune the tree, removing local maxima related to false

cally, and a shrinkage function is assembled based on the model g yqaq Finally, the inverse wavelet transform is applied, and the
obtained. Joint use of space and scale consistency is applied

for better preservation of edges. The shrinkage functions are outputis Fhe denoised |r?nag.e.W|th edge.pre.servatlon. Hoyvgver,
combined to preserve edges that appear simultaneously at severalconstruction of the tree is difficult for noisy images containing
resolutions, and geometric constraints are applied to preserve edges of various local contrasts (there are erroneous connections
edges that are not isolated. The proposed technique produces awhen the wavelet coefficient maxima are dense). In this case,
filtered version of the original image, where homogeneous regions ¢, me edges are lost, and filtering may not be efficient. Other
appear _separated by weII-(_ieflned _edges. Pos_slble appllcatlonsd .. thods b d let fficient t )
include image presegmentation, and image denoising. enaising methods based on Wa}’e etcoeimcient trees were pro
o . ) . posed by Donoho [3] and Baraniuk [4].

Index Terms—Edge detection, image denoising, multiresolution . .
analysis, wavelets. Xu et al.[5] used the correlation of wavelet coefficients be-
tween consecutive scales to distinguish noise from meaningful
data. Their method is based on the fact that wavelet coeffi-
cients related to noise are less correlated across scales than co-

N IMAGE analysis, removal of noise without blurring theefficients associated to edges. If the correlation is smaller than
image edges is a difficult problem. Typically, noise is cha@ threshold, a given coefficient is set to zero. To determine a

acterized by high spatial frequencies in an image, and Fourigroper threshold, a noise power estimate is needed by their tech-
based methods usually try to suppress high-frequency compisiue, which may be difficult to obtain for some images.
nents, which also tend to reduce edge sharpness. Malfait and Roose [6] developed a filtering technique that

On the other hand, the wavelet transform provides good lkes into account two measures for image filtering. The first is
calization in both spatial and spectral domains, and low-passneasure of local regularity of the image through the Holder
filtering is inherent to this transform. There are now severakponent, and the second takes into account geometric con-
approaches for noise suppression using wavelets, which hgtints. These two measures are combined in a Bayesian prob-
shown promising results. abilistic formulation, and implemented by a Markov random

The method proposed by Mallat and Hwang [1] estimatdield model. The signal-to-noise ratio (SNR) gain achieved by
local regularity of the image by calculating the Lipschitz expahis method is significant, but the stochastic sampling proce-
nents. Coefficients with low Lipschitz exponent values are relure needed for the probabilities calculation is computation-
moved, and the image is reconstructed using the remaining edly demanding. Another approach that uses a Markov random
efficients (more exactly, only the local maxima are used). THigld model for wavelet-based image denoising was proposed by

Jansen and Bulthel [7].
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noise estimate, which may be difficult to obtain in practical In order to build a multiscale representation, we need a
applications. scaling functiong(x, v) (which is a low-pass filter), and the
Pizurica et al. [11] proposed a computationally efficientcorresponding component at a scalds
method for image filtering, that utilizes local noise measure-
ments and geometrical constraints in the wavelet domain. A Soi f(z, y) = (f * ¢ai )z, y). (5)
shrinkage functiorbased on these two measures is used to
modify the wavelet coefficients, and the image is reconstructg¢e may interpret the componest,, f(z, v) as a smoothed
based on the updated wavelet coefficients. Although thigrsion of f(z, ), and the component®,; f(z, ), for j =
method is fast, it does not take into account the evolutian ..., J, as the image details lost by smoothing going from
of wavelet coefficients along scales, which usually carrie, f(z, y)to S,s f(z, y). Further details may be found in [12]
important information. and [13].
This paper proposes a new method forimage denoising using
the wavelet transform, which combines wavelet coring and the Edge Detection Using Wavelets

joint use of scale and space consistency. The image gradient ifjow, it is necessary to find a wavelet basis such that its com-
calculated from the detail images (horizontal and vertical) %nentsWij(az, y) are related to the local gradients of the
the wavelet transform, and the distribution of the gradient magnage at the scal2’—*. A smoothing functiord(z, ) [which
nitudes associated to edges and noise are modeled by Raylgitifferent from the scaling functiop(z, ), and used only to
probability density functions. Ahrinkage functionassuming define the wavelets (, 3) andy2(x, )] is selected, and the
values between zero and one, is assembled at each scale.\Jiglets are defined as
shrinkage functionfor consecutive levels are then combined to
preserve edges that are persistent in scale-space (i.e., appearz'yp(x y) = 39(3: y) and ¢3(z,y) = 39(37 ). (6)
several consecutive scales), and geometric constraints are ap- = Oz ’ ’ dy ’
plied to remove residual noise.

The next section gives a brief description of the waveld{ote that the wavelet coefficieiW , f(x, y) can be written as
framework, and the section that follows describes the new

1
method. Section IV presents some experimental results for our W, f(z, ) = <Ws f(z, y))
approach, and a comparison with other denoising techniques. ’ W2f(z, y)
Conclusions are presented in the final section. 9
S (0@, )
II. WAVELET TRANSFORM IN TWO DIMENSIONS e .
| o 2o (f 6. )
In this work, the two-dimensional (2-D) wavelet decom- Y
position uses only two detail images (horizontal and vertical =sV(fx6,)(z, y) @)

details) [12], instead of the already conventional approach in

which three detail images (horizontal, vertical, and diagonaiich in fact corresponds to the gradient of the smoothed ver-
details) are used [13]. This 2-D wavelet transform requires tvgion of f at the scales. Observing that an edge can be de-
wavelets, namely)!(z, y) and+?(z, y). At a particular scale fined as a local maximum of the gradient modulus along the

s we have gradient direction [14], we can detect the edges at the scale
fromW, f(z, y). A suitable choice fof(x, y) proposedin [12]
Y@, y) = = ¢ (_7 g) 7 i=1,2. (1) Wwasa cub!c_spll_ne with compact _suppor_t. This appr_oach can be
s s’ s used for digital imageg[n, m], using a discrete version of the

. . wavelet transform [12].
The dyadic wavelet transforif(z, v), at a scale = 27 has two [12]

components given by I1l. OUR IMAGE DENOISING APPROACH

Given a digital imagef[n, m], we first apply the redundant
wavelet transform using only two detail images, as discussed in
the previous section. As a result, at each resoliowe obtain
the detail imagesVy, f, W3, f and the smoothed imag®; f.

. ) The edge magnitudes can be calculated from the image gradient,
Woi f(x, y) = (Wa, f(@, ), W3 f(x, ) - () as follows:

Wi f(o, )= (F*h) (zy), =12 (2

Therefore, the multiresolution wavelet coefficients are

The original signalf(z, y) is then represented by the 2-D
wavelet transform, in terms of the two dual wavelgtéz, v)
and&*(x, y)

Moo f =/ (Wh 1)+ (W2 1)’ ®)

and the edge orientation is given by the gradient direction, which
. . ) ) is expressed by
f(xv y) = Z((Wij*SQj) (x,y) + (Wij*SQj) (x,y)) . 2

,. L W) .
J @) Gs f = arctan <W21]f . 9)
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Fig. 1. (a) Originahouseimage. (b) First noishouseéimage (SNR= 8 dB). (c) Second noisiiouseimage (SNR= 3 dB).

Due to noise, some pixels of homogeneous regions may hake coefficients. In fact, other distributions have been used for
gradient magnitudes\/y; f that could be misinterpreted asmodeling the wavelet coefficients, such as two-parameter gen-
edges, so we next describe a technique that assigns to eaized Laplacian distributions [8], Gaussian distributions with

coefficient a probability of being an edge, and propagates thiggh local correlation [18], generalized Gaussian distributions
information along the scale-space using consistency aloj®jand Gaussian mixtures [10], [19]. However, we assume that

scales and geometric continuity. the distribution of the wavelet coefficient@’;j f andWQ%- fre-
lated exclusively to edges (and not related to homogeneous re-
A. Wavelet Coring gions) is approximated by a Gaussian (i.e., when the sharp peak

Image coring is a known approach for noise reduction, whelfe Wz, f andW; f associated to homogeneous regions is not
the image highpass bands are subject to a nonlinearity thatf@0Sidered, we assume that the remaining data is approximated
duces (or suppresses) low-amplitude values and retains hiBM—a Gaussian). The r_10rma| model_ for edge-related cqefﬂments
amplitude values [8]. Many variants of coring have been di assumed because it leads to a simple model (Rayleigh) to ap-
veloped, and the concept of “shrinkage” has been used wRfPximate the corresponding edge-related gradient magnitudes
wavelets [15]. Myi f. ) . .

For each level/, we want to find a nonnegative nonde- For example, consider the 256 256 houseimage and its
creasing shrinkage functiogy(z), 0 < g;(z) < 1, such that noisy versions (SNR= 8 dB and 3 dB), shown in Flg 1, from
the wavelet coefficientd’}; f andW?2 f are updated according left to right. Fig. 2 shows normal plots of the coefficiefts, f

J

the following rule: for the hoqseimages (corresponqmg to the finest resqution
of the horizontal subband). In Fig. 2(a), all the coefficients

NW3; fln, m] Wr?lf for _the_f(_)rigina(ljhouseimagfe were u(ssed. This dids_trib_Etio_n
— ' _ L shows significant departure from a Gaussian distribution,
= Wai Il mg; (M fln, m]), fori=1,2 (10 as expected [8]. However, Fig. 2(b), showing the Normal
whereg; (Ms; f[n, m]) is ashrinkage factarWrite g; [, m] = plot obtained using only the edge-related coefficients from

9;(Mas f[n, m]). To find the functions;;, we analyze the mag- th.e origingl hoyseimage, shows an acceptaple agreement
nitude imageM»; f. Some of these coefficients are related t¥/ith the linearity expected under the Gaussian hypothesis,
noise, and others to edges. If the image is contaminated by adYfen considering that coefficients associated exclusively to
tive white noise, the corresponding coefficielig, f andiv2, f edges are @fﬂcult to |sqlate in experiments. We c_onclude_ that
may be considered Gaussian distributed [16], with standard §a¢ Gaussian assumption for edge-related coefficients is not
viation O—rj;oise' As a consequence, the distribution of the corrdinreasonable. Finally, Fig. 2(c) corresponds to the first noisy

. ) houseimage (SNR= 8 dB), and an even closer match to the
ekl f = 1 2 2 2
sponding magnitudes/,; f = \/(W2jf) + (W5, /)? ateach Gaussian distribution is noticed. This match occurs because

resolution2’, may be approximated by a Rayleigh probabilityojse typically affects all the wavelet coefficients in the image,
density function [17] while edges are related to just few image coefficients (and thus
r . the noise distribution dominates over the edge distribution).
pj(r|noisg = ———e™" AR (11)  Therefore, the edge-related magnitudes; f are approxi-
noise] mated by a Rayleigh process
However, in practice, we observe that noise-free images typ- r 220l TP
ically consist of homogeneous regions and not many edges. p;(rledgg = m ¢ e 12)
In general, homogeneous regions contribute with a sharp peak edge
around zero for the histograms &, f and W7}, f, and the  The overall gradient magnitude distributidfy, f (including
Edges contribute to the tail of the distribution. This diStribLboefﬁcients related to edges and noise) is given by
tion presents a sharper peak than a Gaussian [8], and therefore,

the Gaussian model is not appropriate for the distribution of p;(r) = w’_.__p;(r|noise + (1 —w’_. )p;(rledge (13)
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Fig. 2. Normal plots of the coefficientd”); f[n, m]. (a) Using all coefficients for the origindlouseimage. (b) Using only edge-related coefficients for the
original houseimage. (c) Using all the coefficients for the first noisguseimage (SNR= 8 dB).

wherew! .. is thea priori probability for the noise-related gra-modelp(r) for these distributions, at the resolutid2is 22, and

dient magnitude distribution (and, consequerntly; w? . is 22 Itis seen that the histograms are well approximated by our
the a priori probability for edge-related gradient magnitudes)nodel, and no further noise estimates are needed.
To simplify the notation, we remove the indgxand (13) can  Once the parametetg,oise, Cedge ANdwyoice are estimated,
thus be written as the conditional probability density functions for the gradient
magnitude distributions(r|noise andp(r|edge are given, re-
. spectively, by (11) and (12). Also, we have determinedahe
P(1) = Wnoisep(r|N0ISG + (1 — wnoise )p(r|edgs.  (14) priori probabilities for noise-relatedi{..is.) and edge-related
(1 — wyeise) gradient magnitude distributions. The shrinkage

The parameters oise, Oedge aNdwneise CaN be estimated by function g;(z) for each resolutior?? is given by the posterior
maximizing the likelihood function probability functionp(edger), which is calculated using Bayes
theorem as follows:

Inl = Z In(p(My; f[m, n])) (15) (edgér) = (1 — wrnoise)p(r|edgg
(m,n)in image p (1 — wnoise)p(7’|edge + wnoisep(7‘|n0ise ’
(16)

with the restriction) < wyeise < 1, Wherep(My; f[m, n]) is
the function defined in (14) evaluated at the gradient magnitude@r the second noidyouseémage, the spatial occurrence of the
My; flm, n]. shrinkage factorg;[n, m|, for j = 1, 2, 3, are shown in Fig. 4.

Typically, the number of noise-related coefficients is mucBrighter pixels correspond to factors close to one, while darker
larger than those related to edges [as suggested by Fig. 2(c)], Bgls correspond to factors close to zero. At the finest reso-
also their magnitudes are usually smaller. Therefore, the pdaiion (2'), noise-related and edge-related coefficients have al-
of the gradient magnitude histogram is mostly due to noise-f@0st the same magnitude. As a consequence, the discrimination
lated coefficients, and usually is approximately at the same leetween edge- and noise-related coefficients is difficult, as seen
cation as the peak of the noise-related magnitude distributiGhFig. 4(a). For the lower resolution levet#*(and2?), the re-
p(r|noise. Considering that the mode of the Rayleigh probaults are more reliable, since noise is smoothed out when the
bility density functionp(r|noise is given by oy [17], we resolution decreaseg (ncreases). Further discrimination can
can estimate the parametgy,s. as the localization of the mag- be achieved by analyzing the evolution of the shrinkage func-
nitude histogram peak. The computational cost involved in th@ns along consecutive scales and applying spatial constraints,
maximization of (15) is then reduced, because only two pas discussed in the next section.
rameters Qnoise and oeqqe) are utilized, given the restriction i i
Onoise < Tedge- THiS procedure is adaptive and does not requife Scale and Spatial Constraints
a noise estimate. 1) Consistency Along Scaledt is known that coefficients

Fig. 3 shows histograms of gradient magnitudes for the 8-@Bsociated with noise tend to vanish as the |@dhcreases,
and 3-dB noisy versions of tHeouseimage, and the obtainedwhile coefficients associated with edges tend to be preserved
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n

Fig. 3. (a)—(c) Histogram of the gradient magnitudes (dash-dotted line) and the estimated magnitude density function (solid line) for thetfoasaaimge
(SNR= 8 dB), at the resolution!, 22 and2?. (e)—(f) Same as (a)—(c), but for the second nbisyseimage (SNR= 3 dB).

(=) (b} fc)

Fig. 4. From left to right: shrinkage factogs[n, m], for j = 1, 2, 3, for the second noisliouseimage.

whenj increases. In [1] and [6] the Holder exponent was cails associated with an edge. On the other hang;[it, m] de-
culated in order to explore this property. We analyze the consseases ag increases, it is more likely thadtl,; [n, m] is actu-
tency of the wavelet coefficients along scales (i.e., resolutiora)y associated with noise.
differently, by combining the shrinkage functiogsat various For each scale2’, we use the information provided
resolutions2’. by the functiong;, and also by the functiong; ., for

For each scale’, the valueg;[n, m] may be interpreted ask = 1, 2, ..., K, whereK + 1 is the number of consecutive
a confidence measure that the coefficidit; [», m] is in fact resolutions that will be taken into consideration for the con-
associated to an edge. If the valygn, m] is close to unity for sistency along scales. As observed by etwal. [5], it appears
several consecutive levels, it is more likely thatMs;[n, m] that when two or three consecutive resolutions are used, better
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(b

Fig. 5. From left to right: shrinkage factogs=>!*[r, m], for j = 1, 2, 3, after consistency along scales was applied, for the second maisgimage.

results are obtained than from using more consecutive resdiaetors ngale[n, m] along the contour direction, according to
tions, because the positions of the local maxima®f[n, m] the following updating rule:
may change ag increases.

Thus, we need to find a functiol: R+ — R such that (N
h(zx1, 2, ..., Tx41) is approximately one if all the; are Z ali]gse™en + i, m],
close to one, and(xy, x2, ..., zx+1) Must be close to zero i=—N
if any of thez; is close to zero. There are many functions satis- if Cys[n, m] =0°,
fying this property, and we chose the harmonic mean N
Z oc[i]gj‘:ale[n +i, m+1d],
K+1 =N
h(zy, 2, ..., Tr+1) = . 17 .
( 1, L2 $Is+1) g% + % +o g 1 ( ) o if ng[n, m] :450’
1 2 TE41 gf [7’L, m] = N (19)

R 71 ,5cale i
For the scal@’, the updated functiop:*** is given by ‘_E:N alilg;™<[n, m+d,
if Cyi[n, m] =90°,
scale K+1 .
95 l(x):;_l’_;_i_..._i_;' (18) A
g;() ' g;+1(x) 95+ K (%) Z a[i]g;wle[n +1i,m—1,
i=—N

This updating rule is applied from coarser to finer resolution. L if Cai[n, m] =135°
The shrinkage factays*®°[n, m], corresponding to the coarsest
resolution2’, is equal tog;[n, m]. However, for other resolu- where Cs;[n, m], is the local contour direction at the pixel
tions2/, j = 1---J — 1, the shrinkage facto@;cale[n, m]de- [n, m], 2N + 1 is the number of adjacent pixels that should
pend on scale®’, 27+, ... 2% wherex = min{J, j + K}. be aligned for geometric continuity, and] is a window that
The coefficientsI/V;jf and ngf are then modified according allows neighboring pixels to be weighted differently, according
to (10), using the updated shrinkage fac;'[gﬁg;ﬂff[n7 m] in- 1o their distance from the pix¢k, m] under consideration.
stead ofy;[n, m]. For the second noidyouseimage, the spatial ~ After updating the shrinkage factors, coefficients with large
occurrences of the updated shrinkage factgf[n, m], for ¢ [n, m] along the local contour direction will be strength-
j =1, 2,3, are shown in Fig. 5. ened, while pixels with no geometric continuity will not have
2) Geometric ConsistencyAt this point, we have obtained their shrinkage factors enhanced. This approach has limitations
the shrinkage factorgj‘”*le [n, m] for each leveR’. However, close to corners and junctions, where two or more different local
we may achieve even better discrimination between noise armhtour directions arise. If the image is sufficiently sampled,
edges by imposing geometrical constraints. Usually, eddeigh curvature points should also be enhanced.
do not appear isolated in an image. They form contour lines,In the presence of noise, randomly aligned coefficients occur,
which we assume to be polygonal (i.e., piecewise lineagnd could also be strengthened. To overcome this potential dif-
In our approach, a coefficiends,; f[n, m] should have a ficulty, we compare the contour direction in two consecutive
higher shrinkage factor if its neighbors along the local contolevels. It is expected that contours would be aligned along the
direction also have large shrinkage factors. To detect this kindme direction in two consecutive levels (it is the same con-
of behavior, we first quantize the gradient directiansf into tour at different resolutions), but responses due to noise should
0°, 45°, 9, or 135. The contour lines are orthogonal to thenot be aligned (gradients associated to noise will not be oriented
gradient direction at each edge element, so we can estimepasistently in consecutive resolutions). Therefore, a second up-
the contour direction frong,; f. We then add up the shrinkagedating rule is applied to the shrinkage factgf%om' [n, m]. The
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(b {c)

Fig. 6. From left to right: shrinkage factog§“°™[n, m], for j = 1, 2, 3, after geometric constraints were applied, for the second fmisgeimage.

(&) (k) ic)

&% 45 45

Fig. 7. Results of denoising techniques for the second rtasigeimage. (ajrave2(© software. (b) Wiener filtering. (c) Our method.

second updating rule takes into account the normalized inner4) Combine the shrinkage factogs[n, m] in consecutive

product of corresponding vectors in consecutive resolutions scales, obtaining the updated shrinkage factors

eom K + 1
95" n, m] e L R e S — —
_ g]geoln’ [n’ m] . |COS(§2jf|:7'L, m] _ §2j+1f[n, m])| (20) g5 [n7 m] gj+1[n7 7711 gj+K[n7 'nl1

whereK + 1 is the number of consecutive scales to be
Notice that the factocos(sas f[n, m]—gas+1 f[n, m])| provides analyzed.
a measure for direction continuity. It has value one if the same 5) Apply a second updating rule to the fact@fgale[n, m|
direction occurs in two consecutive levels, and value zero if the  using geometrical constraints (contour continuity and ori-

orientations differ by 99(i.e., are orthogonal). Fig. 6 shows the entation continuity along consecutive levels), obtaining
spatial occurrences of the shrinkage factgs™ [, m] for the 95" n, m].
second noisyiousemage, after applying the local geometrical 6) Modify the coefficients W21j f and WQ%. f, obtaining
constraints. NW; fln, m] = W3, fn, m]g5™"[n, m], fori =1, 2.

7) Apply the inverse wavelet transform wiffy- f and the
C. Overview of the Proposed Method updated coefficient& W, f and NW3, f, obtaining the

_ filtered image.
A schematic overview of our method is as follows.
1) Compute the wavelet transform, obtaining the coeffi- IV. EXPERIMENTAL RESULTS
cientsWy, f, W2 f and S, f.

. We applied our technique to images with natural and artifi-
2) Calculate the edge magnitudesM,;f = bl . 'qu 'mages wi u "

N o X ) cial noise, and compared the results with those obtained by two
\/(ng [+ (W5, f)? and orientations «;f = denoising methods. The first is theiener2 function imple-
arctan(W3, f /W3 ). mented in MATLAB, based on 2-D Wiener filtering [20]. The

3) Compute the parametetSoise; Tedge aNd Wreise, and second is the softwareave2(©), which is an implementation
then calculate the shrinkage factgrgn, m]. of the method described in [1]. The chosen parameter values for
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(b}

Fig. 8. (a) Originapepperamage. (b) Noisypepperdamage (SNR= 3 dB). (c) Result of our method.

the softwaravave2(© are the same as those used by Malfait and ta
Roose [6]. To evaluate the performance of the method, both vi-
sual quality and SNR gain are utilized.

In our experiments, the valu¥ = 3 was used for geometric
continuity in (19), and the window[¢] is a Gaussian (so that
larger weights are assigned to the nearest neighbors). A reliable
estimate for the parameter, ;.. is obtained by first smoothing
the magnitude histogram with a Gaussian, and then finding the
localization of the peak.

Fig. 7 shows the results of the softwareve2(c) applied to
the 3-dB noisyhouseimage, followed by the results that were
obtained applying the standard Wiener filtering and our tech-
nique. Quantitatively, filtering by softwareve2(© resulted in
a SNR of 12.83 dB, by Wiener filtering the output image had
SNR= 12.63 dB, and filtering with our technique resulted in a
SNR of 15 dB. A similar image (noisfouseimage also with
SNR = 3 dB) was used in [6], and the resulting filtered image
achieved SNR= 14.86 dB. Qualitatively, it is possible to see
that the output of our technique is both sharper and less noisy
than the other two methods.

The pepperdmage was also used to test the performance of
our method. Fig. 8 shows the originpéppersimage on the
left. The middle image is the noisy version (SNR3 dB),
and the image on the right is the result of our method (SNR
= 13.81 dB). All images have a resolution of 256256 pixels.

The image processed with the new technique has a visually ac-
ceptable quality, and the SNR gain achieved is considerable.
The outputs for the@ave2(c) software and Wiener filtering pro-
duced, respectively, outputs with SNR11 dB and 12.46 dB.
Malfait and Roose [6] also used tpepperamage with added
noise (SNR= 3 dB) in their experiments, and their denoising
method achieved SNR 12.36 dB.

We also used images with inherent natural noise in our expéﬁg. 9. (a)Firstaerialimage. (b) Filtered image, using our method. (c) Filtered
ments. Fig. 9(a) shows a natural aerial scene 2500 pixels), image, using Wiener filtering.
while Fig. 9(b) and (c) show, respectively, the denoised images
obtained with our technique and Wiener filtering. Noise is efsroposed method and Wiener filtering are shown, respectively,
fectively removed by our technique and edges were preserviadiig. 11(b) and (c). It can be noticed that noise reduction was
although some subtle textures were lost. Visual comparison famarkable in Fig. 11(b), while low-contrast structures were
vors our method in comparison to conventional techniques, symeserved. Also, the edges in Fig. 11(b) appear to be sharper
as Wiener filtering. Another aerial image (256256 pixels) is than those in Fig. 11(c).
shown in Fig. 10(a), and the output of our method and WienerOur algorithm was implemented in MATLAB, running on a
filtering are shown in Fig. 10(b) and (c), respectively. 300-MHz Pentium Il personal computer, with 64 MB RAM. Typ-

A brain magnetic resonance image (MRI) is shown iital execution time for a 256 256 image, using three dyadic
Fig. 11(a), and the denoised images corresponding to thwales, is about 90 s. Most of the running time is dedicated to the
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Fig. 10.

{a}

Fig. 11.

4]

(a) Second aerial image. (b) Filtered image, using our method. (c) Filtered image, using Wiener filtering.

(a) Original brain MRI. (b) Filtered image, using our method. (c) Filtered image, using Wiener filtering.

maximization of (15). An efficient implementation on a com- [3] D. L. Donoho, “CART and best-ortho-basis: A connectiomtn.

piled language is expected to improve the execution time.

V. CONCLUSION

[4]

(5]

Our denoising procedure consist basically of three steps. Ini-
tially, a shrinkage function for each level is assembled modeling
the distribution of the gradient magnitudes using Rayleigh prob—[G]
ability density functions. Next, scale and spatial constraints are
applied. The shrinkage functions are combined in consecutive’l
resolutions, using scale consistency criteria. Finally, geomet-
rical constraints are applied to enhance edges appearing as cofs

tours, and therefore connected.

The experimental results obtained are promising, both quanig;
titatively and qualitatively. From this point of view, the new
method is comparable to, or better than, other denoising tech-

nigues, with the advantage of being adaptive (no estimate of t

noise is needed, as opposed to [6], [8]-[10]).

10
20l

Future work will concentrate on finding more accurate!1l
models for the gradient magnitude distribution, distinct choices
of shrinkage functions, and a probabilistic approach for multi-
scale consistency. Also, we intend to investigate the applicatiolt?]

of our method to edge enhancement in noisy images.
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