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ABSTRACT A common observation about confocal microscopy images is that lower image
stacks have lower voxel intensities and are usually blurred in comparison with the upper ones. The
key reasons are light absorption and scattering by the objects and particles in the volume through
which light passes. This report proposes a new technique to reduce such noise impacts in terms of
an adaptive intensity compensation and structural sharpening algorithm. With these image-
processing procedures, effective 3D rendering techniques can be applied to faithfully visualize
confocal microscopy data. Microsc. Res. Tech. 64:156–163, 2004. © 2004 Wiley-Liss, Inc.

INTRODUCTION
Confocal optical microscopy is generally believed to

be the most significant advance in optical microscopy in
the 20th century (Diaspro, 2001; Shotton, 1989; Webb,
1996). In the last two decades, it has become a widely
accepted tool for optical imaging in biological and ma-
terial sciences. This technique has the advantage of
obtaining 3D volume information through non-invasive
optical sectioning and scanning of 2D confocal planes
inside the specimen (Sheppard and Choudhury, 1977;
White et al., 1987; Wilson and Sheppard, 1984). In
confocal microscopy, only in-focus light is imaged,
whereas out-of-focus light is rejected by the confocal
aperture (pinhole). By scanning successive optical
planes, a three-dimensional image of the sample can be
obtained (Bianco and Diaspro, 1977; Brakenhoff et al.,
1979; Diaspro et al., 1990; Sheppard, 1989; Wilson,
1989).

However, noise remains a major problem in 3D con-
focal microscopy images. In particular, noise increases
with the depth of the confocal plane. A key physical
mechanism responsible for this noise is that the incom-
ing light rays are significantly scattered and absorbed
by objects encountered on the path before reaching the
targeted confocal plane. This occurs with strong im-
pact, especially when dense objects that significantly
scatter and absorb light are present above the region of
focus. As a consequence, image stacks captured using
confocal optical microscopy have lower intensities and
are more blurred when the focal planes are deeper
inside the specimen.

The intensity attenuation and structural blurring in
the image stacks cause serious problems in the analy-
sis of confocal microcopy images. These problems not
only limit the capability of the device to capture the 3D
structures of biological objects, but also hamper the
application of advanced computer visualization and 3D
reconstruction techniques such as iso-surfacing
(Lorensen and Cline, 1987) and direct volume render-
ing (Drebin et al., 1988; Levoy, 1988). For example, it is

well known that the volume-rendering technique of ray
casting using color composition is able to reveal 3D
structures with high image quality, much better than a
maximum intensity projection (MIP) or an average in-
tensity projection (AIP) does (Schroeder et al., 1998).
However, ray casting using color composition requires
the classification procedure that maps voxel intensities
to physical properties such as colors and opacities
through transfer functions. Typically, a transfer func-
tion has a peak profile centered at an iso-value of a
volumetric dataset, and this iso-value is specified by
the user (Levoy, 1988). Voxels with values far from the
iso-value will be ignored, such that the cast rays pen-
etrate them as if they were perfectly transparent.
Therefore, if a volumetric dataset has significant errors
in its voxel intensities, the ray casting technique will
not be able to reveal the 3D structures accurately. For
the same reason, other advanced computational algo-
rithms such as iso-surfacing and 3D reconstruction will
also fail to generate the true object structures and
geometries.

A simple idea is to perform a uniform intensity com-
pensation, which depends only on the depth of the
stack image. The problem of this approach is that it
will brighten all the data in the stack images, even
though there are actually no interfering objects in the
light paths. In this report, we propose an adaptive
method for voxel intensity compensation and struc-
tural sharpening. Our approach is based on the phys-
ical consideration of light-scattering and absorption
behavior and will apply the intensity compensation
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and sharpening algorithm only when there are dense
objects above the image area where the light paths
intersect. This approach effectively removes the noise
due to light scattering and absorption deep within the
confocal microscopy images.

After the adaptive treatment of noise removal, we
use a 3D volume-rendering technique to visualize the
confocal microscopy datasets. Several techniques are
applied, including ray casting, maximum intensity pro-
jection (MIP), or average intensity projection (AIP). In
addition, we propose a new technique called ranged
intensity projection (RIP), which we believe operates
particularly well for confocal microscopy datasets.
These techniques will be compared in terms of ren-
dered images of real datasets.

BACKGROUND
Although confocal microscopy provides the capability

of simple, non-invasive 3D imaging, visualization of the
confocal dataset is a difficult task. The simplest (and
still most popular) methods, such as presentation of
individual 2D sections or combining 2D images using
maximum intensity projection, do not provide a clear
and intuitive 3D view of the examined object. More-
over, various types of noise and optical distortions re-
main a major problem.

1. The asymmetrical shape of the point-spread func-
tion (PSF) leads to distortions of the visualized 3D
shapes. This problem can be partially solved by im-
age deconvolution procedures (Bertero et al., 1990;
Boutet de Monvel et al., 2001).

2. Fluorescence attenuation in depth owing to photo-
bleaching is another limitation of confocal visualiza-
tion (Tsien and Waggoner, 1995; Van Oostveldt et
al., 1998). Researchers avoid this problem of photo-
bleaching by decreasing the z-sampling rate during
confocal data collection. However, according to the
Nyquist principle, sampling at twice the resolution
is required to provide sufficient information about
an object. The issue of photobleaching may be par-
tially solved by adding antioxidants to the biological
sample, by decreasing the light intensity, or by data
processing, where a function describing loss of in-
tensity is used to correct the microscopy data
(Nagelhus et al., 1996).

3. The image contrast in confocal microscopy degrades
with increasing depth of penetration owing to light
scattered and absorbed outside the focal region. This
is a major limitation when highly turbid media such
as tissue are studied. In the case of tissue, both the
excitation light and the fluorescence light emission
are scattered or bent by the encountered objects or
interfaces, or absorbed by tissue components.

At present, the most popular method of confocal data
visualization accumulates all voxel intensities or uses
the maximum intensity value to create a 2D projection
of a 3D volume. Despite its popularity, this technique is
known not to produce good representations of confocal
datasets. More sophisticated techniques like ray cast-
ing give better results. However, ray casting and other
similar approaches require classification (a transfer
function), which maps voxels intensity onto colors or
opacity. Such a transfer function takes an iso-value

and the gradient value of voxels and performs the
mapping using some kind of a Gaussian function cen-
tered at the iso-value. All voxels with values that are
far from the iso-value are ignored and, therefore, are
transparent to the simulated rays. Obviously, the
proper choice of the iso-value is critical. Because of the
aforementioned strong effect of intensity attenuation,
this becomes a problem when confocal datasets are
visualized. The major reason for this attenuation and
contrast degradation is light absorption and scattering
by the sample itself. As a result, powerful visualization
tools such as ray casting may produce artifacts or false
negatives. To correct the problem, some method of in-
tensity/contrast compensation is needed. However,
simple uniform intensity compensation using depth as
the only variable does not work, since the blurring and
attenuation brought by every optical slice may differ.

The other major limitation to the application of in-
tensity correction is the effect of refractive-index mis-
match (Carlsson, 1991; Cox and Sheppard, 1983; Di-
aspro et al., 2000, 2002; Gan and Gu, 1999; Hell et al.,
1993; Sheppard and Török, 1997; van der Voort and
Strasters, 1995; Visser et al., 1992; Wan et al., 2000).
For example, Diaspro et al. (2002) reported experimen-
tal studies on refractive-index mismatch in high-reso-
lution three-dimensional confocal microscopy. They
measured the axial aberration induced in the case of
fluorescent latex microspheres in four uniform media
(air, oil, NOA, glycerol). Using latex subresolution
beads immersed in three uniform media (air, oil, glyc-
erol), they also investigated the effect of refractive-
index mismatch on the point-spread function (PSF)
under different conditions. The PSF has been widely
studied with measurement using beads embedded in a
turbid medium (oocyte cytoplasm) (Gan and Gu, 1999;
Sheppard and Török, 1997; Wan et al., 2000), and mod-
eled and simulated computationally (Diaspro et al.,
2002; Hell et al., 1993; Sheppard and Török, 1997; van
der Voort and Strasters, 1995).

Significant research has been devoted to computer
visualization of cellular objects and confocal micros-
copy data. In a pioneering work, Kaufman et al. (1990)
developed a software system called BioCube to render
cellular structures. Sakas et al. (1996) applied volume
rendering to visualize static and dynamic structures of
3D confocal microscopy datasets. Recently, de Leeuw et
al. (2000) have developed a virtual reality software
system for confocal microscopy images, and Razdan et
al. (2001) have investigated the multicolor factor to
effectively visualize confocal microscopy data.

MATERIALS AND METHODS
All confocal laser scanning microscopy experiments

were conducted using a Bio-Rad MRC-1024 laser-scan-
ning confocal attachment (Bio-Rad Laboratories,
Hemel Hempstead, UK) mounted on a Nikon Diaphot
300 inverted microscope (Nikon, Tokyo, Japan). The
confocal system was equipped with a 20� CF Fluor
0.75-NA dry objective lens, an air-cooled krypton-argon
laser (American Laser, Salt Lake City, UT) with a
maximum output of 100 mW, three fluorescence detec-
tion channels (photomultipliers), and a nonconfocal
transmitted-light detector. Image volumes were col-
lected by scanning a series of images, with focus control
provided by a precision microstepping motor.
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Figure 1 shows a measurement example (a section
through the stem of a water hyacinth plant, Eichhornia
crassipes) that consists of 30 confocal 512 � 512-pixel
image slices. The voxel size is 0.9 � 0.9 � 0.7 mm3.
Green laser light (514 nm) attenuated to 10% of max-
imum power was introduced into the sample. Autofluo-
rescence signal from the sample passed through a 488/
568/647 triple dichroic filter (BioRad T1 filter block),
then through a 560-nm dichroic long-pass filter (Bio-
Rad E2 filter block), and a 605/32-nm emission filter.
The signal was detected with a photomultiplier with
gain set to 1,100. The iris controlling the degree of
confocality was set to 4.0. Larger views of slices 1 and
30 are also shown in Figure 2. Note that this specimen
shows similar structures across the image stacks; this
feature is particularly useful to illustrate the technique
and algorithm we propose in this report.

RESULTS
Light Absorption and Scattering

Consider light propagation from point r0 to r in a
transparent medium. The effect of light absorption and
scattering can be generally described (Wyszecki and
Stile, 1982) by

I��,r� � I0��,r0�T��,r,r0�, (1)

where � is the wavelength and T(�,r,r0) is usually
called the internal transmittance. Generally speaking,
the internal transmittance can be expressed in the
form

T��,r,r0� � exp��S��,r,r0��, (2)

where S(�,r,r0) describes the overall effect of absorp-
tion and scattering from r0 to r:

S��,r,r0� ��
0

1

a��,r��dl�. (3)

Here l 	 �r0-r� is the path length and 
(�,r) represents
the sum of the volume absorptivity and scattering
power per unit length of the medium at location r.

Eqs. (1) to (3) quantify the attenuation of the light
intensity due to absorption and scattering. Structural
blurring in confocal microscopy images is also associ-
ated with these equations. Consider a light ray passing
through a volume region that contains scattering ob-
jects. When there is stronger scattering, light attenu-
ation will be stronger and so will the structural blur-
ring. This consideration is the basis of our adaptive
algorithms for intensity compensation and structural
sharpening shown below.

Fig. 1. Measured confocal microscopy images from 1 to 30 with increasing depth. In the last several
images, which are the deepest, pixel intensities are significantly lower and more blurred. See the
comparison between slices 1 and 30 in Figure 2.

Fig. 2. Original slice 1 (top left), original slice 30 (top right),
image after intensity compensation of slice 30 (bottom left), and
image of slice 30 after both intensity compensation and structural
sharpening (bottom right).
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Adaptive Approach
A basic assumption in this report is that the function


(�,r�) in Eq. (3) is associated with the voxel intensity
at r measured in the confocal images. A larger value of

(�,r�) implies stronger scattering power, which gener-
ates a brighter spot in the confocal image as well as
attenuates light rays more significantly. Thus, this as-
sumption can be written as

a��,r�� � A�i�, j�,k��, (4)

where A�i�, j�,k�� is the intensity value of pixel (i�, j�) in
image slice k�. In other words, location r� corresponds
to voxel (i�, j�, k�), where i�, j�, k� are voxel indices.
Consider a light path from point r0 to point r as shown
in Figure 3, which is the path from voxel (i, j, 1) to (i, j,
k). Thus Eq. (3) can be written as

S��,r,r0� � 
 �
k�	1

k

A�i, j,k��, (5)

where 
 is a constant depending on the material.
At this point, it seems that the original incident light

intensity I0��,r0� that is not attenuated could be recov-
ered by simply applying Eq. (1), where I��,r� is given by
the measured intensity at r of image stack k, and
T��,r,r0� is computed using Eqs. (2) and (5). However,
this approach is not appropriate for intensity compen-
sation in the context of confocal microscopy images, for
two key reasons. First, the incident laser beams always
come to a target point r in a cone. Second, because of
volume scattering, the top image slices usually have
larger impact areas. In this report, we solve this prob-
lem by considering the influence areas and using an
impact map as presented below.

Influence Areas and Impact Maps
An initially thin light ray will gradually spread out

because of volume scattering in the specimen. Suppose
that the scattering objects are uniformly distributed in
the specimen volume being considered. For a spatial
point r on an image stack with index k, the impact of
upper image stacks (with index k� � k) will be in the
form of a conic shape, as shown in Figure 3. Note that
an image stack with a small value of k� will have a
larger influence area. Specifically, suppose that the im-
pact of slice k -1 is described by a Gaussian function

whose deviation defines the influence area. For slice k
� 2, because it is farther from slice k, the impact will be
described by a Gaussian function having a larger devi-
ation while maintaining the integrated value of the
Gaussian function unchanged. In the same pattern,
this description works for all the slices from 1 to k � 1.
In practical datasets, the scattering objects are usually
not uniformly distributed, and therefore the impact
region is distorted from a perfectly conic shape.

Given the spatial point r, our interest is to compute
the entire impact accumulated by slices from 1 to k � 1.
We call this accumulated impact an impact map, de-
noted by S� ��,r�. For any voxel (i, j) on slice k, this
impact map provides the information on the impact of
light absorption and scattering occurring in the slices
from 1 to k � 1. Figure 4 presents the pseudocode of the
algorithm that we propose for computing the impact
map. First, the algorithm clears the 2D array of the
map to zero. Then for every pixel point on the consid-
ered image slice, it loops all the slices above. In each
iteration, for the component (i, j) in the impact map, the
algorithm adds the contribution of the voxel (i, j, k�),
and then applies a Gaussian filter to the current im-
pact map. Since the contributions from the top slices
are added to the impact map first and a Gaussian filter
is applied every time one moves to the next slice, the
contributions from top slices are blurred more, which
in effect generates larger impact areas.

Figure 5 shows the impact maps for slice 30 (the
deepest image slice) in Figure 1 computed using differ-
ent sizes for the Gaussian filter. Note that when the
filter size is 1 (the first case in Fig. 5), the Gaussian
filter actually has no impact. This corresponds to the
result of S(�r,r0) given by Eq. (5), which simply accu-
mulates all the voxel values that are exactly above the
map coordinates. When the filter size is larger, the map
intensity is more uniformly distributed. In our compu-
tation below, we will use the impact maps with filter
size 5.

It should be noted that the impact map S� ��,r� is not
equivalent to the result of directly applying a Gaussian
filter to S(�,r,r0), and this approach has not considered
the factor of slice separation. The method that com-
putes S� ��,r� using the algorithm in Figure 4 is more
accurate in modeling the light-scattering process.

Intensity Compensation and Image Sharpening
Now we use the impact map to perform the intensity

compensation for each image slice. From Eq. (1), we
can determine the incident light intensity by

I���,r� � I��,r�/T� ��,r�, (6)

where I��,r� is given by the measured voxel intensity at
a particular image stack and

T� ��,r� � exp��S� ��,r��, (7)

where the impact map S� ��,r� is calculated from the
procedure in Figure 4 using a Gaussian filter size of
5. Therefore, a large value in the impact map S� ��,r�
which is associated with strong absorption and scatter-
ing, will result in an increase in the voxel intensity. On

Fig. 3. Impact cone region for spatial point r on image stack with
index k.
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the other hand, if the value of S� ��,r� is zero, which
means that no volume absorption and scattering are
involved, there will be no need for intensity compensa-
tion and the voxel value will remain unchanged.

In Figure 2, we have displayed the image slice for
index 30 (the deepest image) after applying the opera-
tion for intensity compensation. Compared to the orig-
inal image, intensities in the central part have been
significantly increased; as a result, the image after
intensity compensation appears closer to that of the
image slice index 1 (the top image). The significant
intensity compensation in the central part corresponds
to the impact map shown in Figure 5, where stronger
scattering impacts show near the center and therefore
more intensity compensation should be given.

Image blurring resulting from volume scattering can
also be reduced using the impact map computed above.
After the operation of intensity compensation, we apply
the following sharpening procedure to each image slice:

I����,r� � �I���,r��
 �S��,r� � exp�
S� ��,r�lnI���,r��, (8)

where I���,r� is the result after intensity compensation,
and 
 is a positive constant. Suppose that we let the
maximum intensity value be 1. If the value of
I���,r� is 1, I����,r� will still be 1. However, if the value of
I���,r� is below 1, the exponential operation in Eq. (8)
will generate a smaller value of I����,r�. This in effect
results in the sharpening of objects in the operated
image. Figure 2 shows the result of sharpening for
image slice 30.

Visualization
After a 3D confocal dataset has been processed with

the operations of intensity compensation and sharpen-
ing, we can apply sophisticated volume-rendering tech-
niques such as ray casting to visualize the dataset. In
this report, we follow the rendering pipeline of ray
casting using color composition (Levoy, 1988). As we
pointed out in the first section, ray casting requires a
classification procedure that maps the voxel intensities
to colors and opacities through a transfer function.
Typically the transfer function has a peak profile cen-
tered at an iso-value specified by the user. The ren-
dered result is, therefore, sensitive to the iso-value.

Since we have reduced the noise impact from light
absorption and scattering in 3D confocal images, ray
casting is able to reveal the 3D structures more faith-
fully.

Although the composition method of ray casting
based on classification and the Phong illumination
model can achieve high-quality rendered images, this
method is much more computationally expensive than
the maximum intensity projection (MIP) or average
intensity projection (AIP) methods. On the other hand,
MIP and AIP do not support the feature that allows the
user to select an iso-value or a range of intensity values
that are of most interest to the user in a specific appli-
cation. In this report, we propose a ranged intensity
projection (RIP) method that can achieve fast render-
ing and support user selection of the specific intensity
range. The RIP method works like the average inten-
sity projection (AIP) method except that we need to
accumulate along the cast ray only those voxel inten-
sities that are within a specified range.

Figure 6 displays four images that are rendered us-
ing the AIP, MIP, RIP, and composition methods. Let
the z direction be the surface normal pointing out of the
specimen from image slice 1. The images in Figure
6 are rendered with the viewing direction at an angle of
150° to the z direction. In other words, we are looking
at the deepest slices. For the RIP image, we select the
range to be from 0.5 to 1.0. This RIP image is obviously
better than the MIP image, which appears to be flat in
the ring areas because the cast rays for these areas
have almost the maximum intensity. The RIP method
also improves the AIP by removing the shades due to
voxels with low intensities. The composition image, for
which we select the iso-value to be 1, provides the most
informative 3D structure.

Figure 7 shows two rendered images: one with the
adaptive treatment of intensity compensation and
structural sharpening, and one without the treatment.
The two images are quite different. With the adaptive
treatment, the rendered image shows a much clearer
specimen structure (for example, the ring near the
center). For both images, the viewpoint has an angle of
120° to the z direction, which means that we are look-
ing from the bottom to the top.

Figure 8 shows rendered images using RIP with the
range from 0.5 to 1.0 for different viewing directions.

Fig. 4. Pseudocode for computing the impact map for image slice k.
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For these images, the viewpoint forms an angle with
the specimen surface normal (or the z direction) of 0,
15, 30, 45, 60, 75, 105, 120, 135, 150, and 165°. Note
that the bottom images reveal the structures captured
by the deepest confocal image slices. These are actually
screen shots during an animation where the specimen
spins while the camera is fixed. Because RIP is very
fast, this method has potential to be implemented on
regular PC workstations to commonly support real-
time 3D animation of confocal datasets.

DISCUSSION
In confocal microscopy imaging, there is a common

effect of intensity attenuation and image blurring from

the top to the bottom of image stacks owing to light
scattering and absorption. In this report, we have pro-
posed a method to reduce such resultant noises, using
an adaptive algorithm. This method is based on the
physical consideration of light scattering and absorp-
tion, and computes the noise influence areas and im-
pact maps by iteratively applying a Gaussian filter.
The impact maps are then used to perform the proce-
dures for intensity compensation and structural sharp-
ening of deep image slices. This method can effectively
remove the noise impact generated by light absorption
and scattering.

We have applied several volume-rendering tech-
niques to the 3D confocal dataset after the adaptive

Fig. 5. Impact maps for slice 30 generated with filter sizes of 1, 2, 3, 4, and 5.

Fig. 6. Images rendered using the AIP, MIP, RIP, and composition methods of ray casting, respec-
tively.

Fig. 7. Images rendered with (left) and without (right) the adaptive treatment of intensity compen-
sation and sharpening.
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treatment of noise removal. We have shown that the
color composition technique of ray casting based on
voxel classification and the Phong illumination model
is most effective for displaying the 3D structural infor-
mation of confocal datasets. The ranged intensity pro-
jection (RIP) that we proposed here can render images
with better clarity than MIP and AIP methods, and can
provide the flexibility that allows the user to explore
objects within a specified intensity range.

This work may lead to future research in several
directions. First, the adaptive algorithms for intensity
compensation and structural sharpening can be used
generally with confocal datasets before applying ad-
vanced analysis and computational processing tech-
niques, such as in iso-surfacing and 3D reconstruction.
The adaptive approach proposed in this report can be
further extended to the case of transmission confocal
microscopy, where scattering and absorption on both
sides of the focal plane are involved. Moreover, it is
possible to improve the adaptive algorithms by tak-
ing into account wavelength information and the
datasets generated at multiple wavelengths, because

the wavelength information is useful to model the
process of light absorption and scattering. In partic-
ular, one can conduct a numerical simulation such as
the Monte Carlo method to further study the influ-
ence areas and impact maps that are proposed here.
Furthermore, the constants such as 
 and 
 needed
in our method could be predicted from the numerical
study. The better understanding of the interfering
impacts of light scattering and absorption between
image slices will also help in solving the problem of
imaging distortion resulting from a varying index of
refraction in the specimen.

To understand 3D confocal microscopy datasets most
effectively, it is important to develop an interactive
visualization environment. In the past, an interactive
microscopy data exploration method was developed in
terms of a combination of the shear-warp volume-ren-
dering technique with image-based transfer function
mapping (Biddlecome et al. 1998; Fang et al., 2000).
Such techniques have been successfully implemented
in a prototype visualization system on SGI worksta-
tions. In this study, we propose an RIP method that is

Fig. 8. Rendered images using ranged intensity projection (RIP). The viewpoint rotates from the
normal direction with angles 0, 15, 30, 45, 60, 75, 105, 120, 135, 150, and 165°.
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fast and flexible. This method has the potential to
support interactive rendering of large confocal datasets
and real-time visualization of dynamic confocal images
on regular PC systems.
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