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Abstract. On–board pedestrian detection is in the frontier of the state–
of–the–art since it implies processing outdoor scenarios from a mobile
platform and searching for aspect–changing objects in cluttered urban
environments. Most promising approaches include the development of
classifiers based on feature selection and machine learning. However,
they use a large number of features which compromises real–time. Thus,
methods for running the classifiers in only a few image windows must be
provided. In this paper we contribute in both aspects, proposing a cam-
era pose estimation method for adaptive sparse image sampling, as well
as a classifier for pedestrian detection based on Haar wavelets and edge
orientation histograms as features and AdaBoost as learning machine.
Both proposals are compared with relevant approaches in the literature,
showing comparable results but reducing processing time by four for the
sampling tasks and by ten for the classification one.

1 Introduction

Advanced driver assistance systems (ADAS) aim to improve traffic safety and
on–board computer vision contributes to that by detecting traffic objects of inter-
est, such as vehicles and pedestrians, using passive sensors. The topics involved
are in the frontier of the computer vision state–of–the–art since these tasks re-
quire real–time interpretation of outdoor scenarios (uncontrolled illumination)
from a mobile platform (fast background changes and presence of objects of un-
known movement). In this context, pedestrian detection is even more challenging
due to the high variability of pedestrians appearance (different articulated pose,
clothes, distance and viewpoint) and because urban environments are quite often
cluttered scenarios.

Accordingly, most proposals include 2D pedestrian classification based on
feature selection and machine learning [1–3]. A simple way of applying such clas-
sifiers to an image would be the folling: for each image pixel below a fixed ceiling
row, assume that the pixel belongs to the road surface and examine (i.e., apply
the classifier) all possible windows with origin at that pixel that could contain
a pedestrian according to some pedestrian size constraints (PSC). However, this
approach has an implicit assumption: the camera pose does not change, i.e., the
horizon line is fixed from image to image. Obviously, due to vehicle movement
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and road surface irregularities, such assumption is far for being true, specially
in urban environments. Therefore, to compensate camera pose changes, many
possible windows per pixel should be considered with the mentioned sketched
image scanning method, which can imply considering millions of windows. More-
over, due to the high intra–class variability of pedestrians, classifiers tend to use
thousands of features. Altogether turns out in a very high processing time.

In this paper we propose to use an on–board camera pose estimation, which
will allow to sample the image according to a sparse grid of windows following the
PSC (Sect. 2). Notice that such estimation can benefit also other ADAS function-
alities (e.g., vehicle detection and road segmentation). Since our system is based
on a stereo rig we will use the philosophy of [4], however, the new proposal is
four times faster while keeping the estimation accuracy. The proposed technique
reduces the number of windows to examine to roughly two thousand. These win-
dows could now be checked by any additional rejecting mechanism, e.g., based
on their corresponding depth information. However, at the current stage of our
research we address the problem of obtaining a relatively fast pedestrian clas-
sifier with state–of–the–art performance or beyond. Then, at the moment, we
use all the PSC compliant windows to test such classifier. In particular, [5] has
recently been reported as the classifier with the best performance. In this paper
we show (Sect. 3) how an alternative based on simple Haar wavelets and edge
orientation histograms as features and AdaBoost as learning machine, is able
to reach the same performance but being ten times faster. Section 4 presents
results from combining the proposed image sampling and classifier, and Section
5 summarizes the main conclusions.

2 Camera Pose Estimation and Image Sampling

The main target at this stage is to define a set of windows (Fig. 1(left)), regions
of interest (ROIs) from now on, by fitting a plane to the road surface, and, at
the same time, by estimating the relative camera pose (position and orientation
referred to the fitted plane). For that purpose we use a stereo rig and focus on
variations produced to the camera height and pitch angle (both referred to the
road plane). Variations on camera yaw and roll angles can be neglected [6]. The
proposed approach, although similar in philosophy to the one presented in [4],
reduces processing time by four.

2.1 3D data point projection and cell selection

The aim at this first stage is to find a compact subset of points, ζ, containing most
of the road points. To speed up the whole algorithm, most of the processing at
this stage is performed over a 2D space. Let D(r, c) be a depth map with R rows
and C columns, where each array element (r, c), is a scalar that represents a scene
point of coordinates (X, Y, Z), referred to the sensor coordinate system (Fig.
1(right)). Initially, 3D data points are mapped onto a 2D discrete representation
P (u, v); where u = ⌊DY (r, c) · σ⌋ and v = ⌊DZ(r, c) · σ⌋, σ representing a scale
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factor [4]. Every cell of P (u, v) keeps a reference to the original 3D data point
projected onto that position, as well as a counter with the number of mapped
points.

Fig. 1. (left) Desired sparse sampling: ROIs size in the 2D image space is automatically
defined by the corresponding depth. (right) Snapshot of the corresponding 3D data
points computed with the forward–facing stereo rig (notice that the image contains a
large amount of holes due to occlusions and noisy regions).

From that 2D representation (Y Z plane) one cell per column is selected re-
lying on the assumption that the road surface is the predominant geometry in
the given scene. Hence, the selection process goes bottom-up, in the 2D projec-
tion, through every column, and picks the first cell with more points than an
adaptive threshold τ . The value of τ is defined for every column as 80% of the
maximum amount of points mapped onto the cells of that column. It avoids the
use of a fixed threshold value for the whole 2D space, as it is imposed in [4].
Recall that the density of points decreases with the distance to the sensor, hence
the threshold value should depend on the depth. Finally, every selected cell is
represented by the barycenter of its mapped points. The set of these barycenters
define the sought subset of points, ζ. This data compression step is another dif-
ference with [4], where all points mapped into the selected cells were used for the
fitting process. Using one single point per selected cell, a considerable reduction
in the CPU time is reached.

2.2 RANSAC fitting with a compact set of 3D points

The outcome of the previous stage is a compact subset of points, ζ, where most
of them belong to the road. However, since some outliers are also included in
that subset of points, a RANSAC based [7] approach is used for computing plane
parameters. Every selected cell is associated with a value that takes into account
the amount of points mapped onto that position. This value will be considered
as a probability density function. The normalized probability density function
is defined as follows: f(i) = n(i)/N ; where n(i) represents the number of points
mapped onto the cell i (Fig. 2(left)) and N represents the total amount of points
contained in the selected cells.
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Fig. 2. (left) Bar diagram showing the amount of points mapped into the selected
cells—recall that only one cell per column is picked up. (right) Cumulative distribution
function computed from the amount of points mapped into every single cell.

Next, a cumulative distribution function, F(j), is obtained as: F(j) =
∑j

i=0 f(i);
If the values of F are randomly sampled at n points, the application of the in-
verse function F−1 to those points leads to a set of n points that are adaptively
distributed according to f(i) (Fig. 2(right)).

The fitting process computes plane parameters by means of an efficient
RANSAC based least squares approach. In order to speed up the process, a pre-
defined threshold value for inliers/outliers detection has been defined (a band of
±10 cm was enough for taking into account both 3D data point accuracy and
road planarity). The proposed approach works as follows:

Random sampling: Repeat the following three steps K times (e.g., K=100)
(1) Draw a random subsample of 3 different 3D points (P1, P2, P3) according
to the probability density function f(i) using the above process (Fig. 2(right));
(2) For this subsample, indexed by k (k = 1, ...., K), compute plane parameters
(a, b, c)k; (3) For this solution, compute the number of inliers among the entire
set of 3D points contained in ζ, as mentioned above using ±10cm.

Solution: (1) Choose the solution that has the highest number of inliers. Let
(a, b, c)i be this solution; (2) Refine (a, b, c)i by using its corresponding inliers
with the least squares fitting approach; (3) In case the number of inliers is smaller
than 10% of the total amount of points contained in ζ, those plane parameters
are discarded and the ones corresponding to the previous frame are used as the
correct ones.

Finally, by using the fitted plane, the camera pose is directly obtained (recall
that 3D data are referred to the camera coordinate system). Then, a set of ROIs
sampling the whole road plane is obtained by placing every 0.5 m, in both X
and Z axes (see grid points in Fig. 1(left)), a set of 5 boxes spanning from
(0.75 × 1.5) m up to (0.95 × 1.9) m. These boxes, around 2,000 in total, are
projected to the 2D image plane and their content is classified in the next stage.
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3 Pedestrian Classifier

Once the system has a list of ROIs laying on the ground, this stage is aimed
at labeling them as pedestrians or non–pedestrians. Our proposal is to exploit
Haar wavelets and edge orientation histograms as features and Real AdaBoost
as learning algorithm. Next we describe the components of the classifier.

3.1 Classifier features

Haar wavelets. Haar wavelets (HW) are simple and fast–to–compute features,
reminiscent of Haar basis functions used by Papageorgiou et al. [1] for object
detection. A feature of this set is defined by a filter that computes the gray level
difference between two defined areas (white and black) (Fig. 3(left)):

FeatureHaar(x, y, w, h, type, R) = Ewhite(R) − Eblack(R) ,

where x, y is the bottom-left position of the given image region R; w, h repre-
sent rectangle width and height; type is one of the filter configurations listed in
Fig. 3(middle), and Earea(R) is the summatory of the pixels in the region area
(white or black). In order to compute E, the integral image (ii) representation
[8] has been used, where the summed values of a certain region can be efficiently
computed by four ii accesses. In this work, we have followed the approach of
Viola and Jones [8], where filters are not constrained to a fixed size, as proposed
in [1], but can vary in size and aspect ratio.

Due to perspective, different ROIs framing a pedestrian can have different
sizes, so normalization is required to establish an equivalence between the fea-
tures computed in each ROI. To achieve that, features are computed following
the proposal in [8], obtaining results equivalent to normalizing examples aspect
ratio to fit an area of 12×24 pixels (Fig. 3(right)), which in our acquisition
system corresponds to a standard pedestrian at about 50m.

Filter configurations Incoming windowCanonical window

12×24
60×120

3×3 pixels 15×15 pixels

R

(x,y)

w

h

Fig. 3. Computation of Haar wavelet features: (left) Haar feature placed in a sample
image; (middle) Some filter configurations; (right) Filter normalization according to
the incoming ROI size.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           Proceedings of the 5

th
 International Conference on Computer Vision Systems (ICVS 2007) 

          Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany, ISBN 978-3-00-020933-8 

          This document and other contributions archived and available at: http:/ /biecoll.ub.uni-bielefeld.de



Edge orientation histograms. Edge orientation histograms (EOH)1 are pro-
posed by Levi and Weiss for face detection in [9]. They rely on the richness
of edge information, so they differ from the intensity area differences of Haar
Wavelets but maintain the same invariance properties to global illumination
changes.

First, the gradient image is computed by a Sobel mask convolution (contrary
to the original paper, no edge–thresholding is applied in our case). Then, gradient
pixels are classified into β images (in our case we have tested β = {4, 6, 9})
corresponding to β orientation ranges (also referred as bins). Therefore, a pixel
in bin kn∈β contains its gradient magnitude if its orientation is inside βn’s
range, otherwise is null. Integral images are now used to store the accumulation
image of each of the edge bins. At this stage a bin interpolation step has been
included in order to distribute the gradient value into adjacent bins. This step
is used in SIFT [10] and HOG [5] features, and in our case it improves the EOH
performance in 1% at 0.01 False Positive Rate (FPR). Finally, the feature value
is defined as the relation between two orientations, k1 and k2, of region R as:

FeatureEOH(x, y, w, h, k1, k2, R) =
Ek1

(R)+ǫ

Ek2
(R)+ǫ

If this value is above a given threshold, it can be said that orientation k1 is
dominant to orientation k2 for R. The small value ǫ is added to the factors for
smoothing purposes.

R

(x,y)

w

h

Sobel image

k0

Gradient orientation

k0

k1 k2 k3 k0 k1 k2 k3

Bin

accumulation

Bin

Interpolation

Feature

computation

F(k0, k1)=

E(kß) E(kß)

E(k0)

E(k1)

k1

k2
k3

Fig. 4. Computation of edge orientation histograms.

3.2 Classifier learning

We make use of Real AdaBoost [11] as learning machine, of proven usefulness
in similar classification works [8]. The idea is to build a strong classifier by
combining the response of a set of weak classifiers, improving the performance
that a complex classifier would have alone. In our case, since both HW and
EOH features are represented by a real value, each weak classifier corresponds
to threshold–like rule on each feature value.
1 In order to respect the author’s work, in this paper we maintain the original name.

However, since this can lead to confusion with other similar feature names like the
histograms of oriented gradients (HOG) in [5], we think that a more convenient name
would be ratios of gradient orientations.
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4 Results

We illustrate camera pose estimation (represented in a single value as the horizon
line position) from a fragment of a video sequence. Fig. 5(left) shows a single
frame with iis corresponding horizon line directly computed from the camera
pose estimation. Fig. 5(right) presents a comparison with [4] where similar re-
sults can be appreciated; however, it should be noticed that the current approach
is about four times faster than the previous one [4]—i.e., on average, the new
proposal took 90 ms per frame.
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Fig. 5. (left) Horizon line position for a given frame. (right) Comparison between the
proposed camera pose technique and a previous one [4]. The plot also shows the large
variability of the horizon line at urban scenarios.

In order to illustrate the performance of the classifier we have built a pedes-
trian database. Differently to other non ADAS–oriented databases [5], it contains
images at different scales from urban scenarios. In our case, color information is
discarded as an useful cue, so samples are transformed to grayscale. The complete
database consists of 1, 000 positive samples (i.e., pedestrians; Fig. 6) and 5, 000
negative ones (i.e., ROIs fulfilling the PSC but not containing pedestrians). Each
experiment randomly selects 700 positive and 4, 000 negative samples (training
set) to learn a model, and use the remaining (testing set) to measure the classi-
fier performance. All performance rates and plots are the result of averaging 4
independent experiments.

The proposed classifier is compared with, as far as we are concerned, the
current state–of–the–art best classifier for pedestrian detection, which uses his-
tograms of oriented gradients (HOG) features and support vector machine (SVM)
learning, proposed by Dalal and Triggs in [5]. HOG are SIFT–inspired fea-
tures [10] that rely on gradient orientation information. The idea is to divide
the image into small regions, named cells, that are represented by a 1D his-
togram of the gradient orientation. Cells are grouped in larger spatial regions
called blocks so the histograms contained in a block are attached and normalized.

We have followed the indications of the authors as strictly as possible, and
tuned the best parameters for our database in order to provide a rigorous and fair
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13 × 26 18 × 36 26 × 52 41 × 82 74 × 148 98 × 196 103 × 206
(53m) (38m) (26m) (16m) (9m) (7m) (6m)

Fig. 6. Some positive samples of the database illustrating the high variability in terms
of clothes, pose, illumination, background, and sizes. Below each sample it is noted its
size in the image (in pixels) and the real distance to the camera.

comparison with our proposal. As the authors suggest, no smoothing is aplied
to the incoming image, and a simple 1D [−1, 0, 1] mask is used to extract the
gradient information. Next, we have tested the best parameters for our database:
number of bins (β = {4, 6, 9}2 in 0 − 180◦), cell sizes (η = {1 × 1, 2 × 2, 3 × 3}
pixels) and block sizes (ς = {1× 1, 2× 2, 3× 3} cells), for our 24× 12 cannonical
windows. As a last step, the block histogram is normalized using L2-Hys, the
best method in the original paper. Finally, the features are fed to a linear SVM
(we have also used SVMLight3) with C = 0.01. According to Fig. 7(left), the
optimum parameters are β = 9, η = 2 × 2 and ς = 2 × 2, which provide a
Detection Rate (DR) of 0.925 at a false positive rate (FPR) of 0.01.

Regarding our proposal, we have also made tests with β = {4, 6, 9} for EOH,
with very similar results. Hence, we bet for the β = 4 bins version since it
requires less computation time. Fig. 7(right) presents a comparison between our
proposal and the HOG–based classifier. As can be seen, with 100 features (i.e.,
AdaBoost weak rules) we reach the same performance as HOG. However, our
proposed features are ten times faster to compute (each ROI is classified in 0.015
ms). With 500 features the DR improves 4% (at FPR=0.01), and it is computed
about two times faster than HOG–based classifier.

Our preliminary tests combining the proposed camera pose estimation and
classifier are giving satisfactory results in complex real scenes (Fig. 8). How-
ever, since the classifier is built to be tolerant to some amount of displacement
each pedestrian gives rise to several detections. Currently, we are developing a
method to take the best detection from such multiple ones for further quantita-
tive performance evaluation of the whole system (i.e., in terms of DR and FPR
at system level, not only at the classification level).

2 Although it is not done in the original proposal, we have made use of the integral
image representation to speed up the computation of HOG.

3 http://svmlight.joachims.org
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Fig. 7. (left) Detection rate at FPR=0.01 for all possible configurations of β, η and
ς of HOG features (the best one is marked with a star). (right) Comparison between
our proposed classifier and the best HOG–based classifier.

Fig. 8. Some snapshots of the system working in real scenes. The white horizontal line
represents the estimated horizon; the white dots compose the ground sampling grid
(adjusted frame–by–frame according to the horizon) and the yellow boxes represent
positive detections (no postprocessing was applied to filter out multiple detections).
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5 Conclusions

This paper presents improvements in two crucial steps of pedestrian detection:
(1) an adaptive image sampling method based on camera pose estimation is
described, also useful for other ADAS tasks as vehicle detection and road seg-
mentation; (2) a pedestrian classifier based on fast–to–compute features, namely
Haar wavelets and edge orientation histograms, and Real AdaBoost as learning
machine, is presented too. In both cases we have compared our proposal with
other relevant methods in the literature showing that we obtain comparable re-
sults but with a considerable reduction in processing time (four times faster for
camera pose estimation and ten times for classification).
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