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Abstract

This paper introduces a general purpose scene segmentation system based on the model

that the gradient value at region borders exceeds the gradient within regions. All internal

and external parameters are identified and discussed, and the methods of selecting their

values are specified. User-provided external parameters are based on segmentation scale:

the approximate number of regions (within 50%) and typical perimeter :area ratio of objects

of interest. Internal variables are assigned values adaptively, based on image data and the

external parameters. The algorithm for region formation combines detected edges and a

classical region growing procedure which is shown to perform better than either method

alone. A confidence measure in the result is provided automatically, based on the match of

the actual segmentation to the original model. Using this measure, there is confirmation

whether or not the model and the external parameters are appropriate to the image data.

This system is tested on many domains, including aerial photographs, small objects on

plain and textured backgrounds, CT scans, stained brain tissue sections, white noise only

and laser range images. The system is intended to be applied as one module in a larger

vision system. The confidence measure provides a means to integrate the result of this

segmentation and segmentations based on other modules. This system is also internally

modular, so that another segmentation algorithm or another region formation algorithm

could be included without redesigning the entire system.



1 Introduction

Segmentation of a scene as a problem in Computer Vision has been studied with unrelia

bility and instability remain in the segmentation of unfamiliar images without significant

manual intervention. Models and structured programming concepts are being used in this

research to bring order to the creative (and previously often chaotic) process of translating

(sometimes vague) theoretical approaches to the machine vision process. This work is an

attempt to produce a modular segmentation process that can be understood by others

and changed without starting over at the beginning.

The task of segmentation is the grouping of pixels into equivalence classes with re

spect to some function. The problem is inherently underconstrained, non-deterministic

and data-driven. We seek constraints which are general enough that they can be applied
to a large class of problems, but which constrain the problem as much as possible. Pro

gram modularity, a primary characteristic of structured programs, requires a well-defined

interface and self-contained logic flow. We define positionally invariant generic constraints

(implemented as user-provided interface parameters) for the image segmentation process,

as well as the logic flow for basic modules. The global segmentation process is based

on explicit models, which allows prediction of the outcome of the process. In addition,

measures are provided which confirm that the result is appropriate to the given image

data.

The user interface parameters which we have found to be generic are based on the

size and detail level of meaningful objects, which we refer to as the segmentation scale
appropriate to the application. This is implemented as integral geometry (range of sizes

of expected regions and the number of expected regions), topology, and very gross shape

geometry (determined by the perimeter:area parameter). A global model of this type is

flexible and does not make any assumptions on spatial arrangement of objects.

This theory is implemented and tested to understand how far one can take the segmen

tation process without a priori semantic (contextual) knowledge. We use only the image
data and segmentation scale parameters. In order to understand when one must bring in

semantic knowledge, the limits of the (bottom-up) modules must be explored. The limits

of the modules limit the ability of higher level processes to deal with unexpected objects.

In addition, this understanding leads to the ability to stop extensive processing of images

containing no useful information.
For the discussion here, an algorithm is considered to be unstable if it can only work

on a different image from the one (or few) for which it was designed if parameter values

are reset by manual intervention. Instability can be overcome by adaptively setting values

of variables within the modules. Adaptation is done by rating trial partitions with respect

to a partition evaluation function. After the values are interated, the best partition, with

respect to the partition value function and within range of the external (user) parameters,

is chosen.

Unreliability occurs when an algorithm cannot work on a new image because the image

data is not appropriate for the model which led to the algorithm's design. Unreliability can

be overcome when the appropriateness of an algorithm can automatically be assessed. In

our implementation, a measure of confidence in the result is provided, based on the match
of the segmentation to the algorithm model, which will be described in Section 2.1. If

other segmentation algorithms were also applied to the image, each measuring confidence
in the data/model match, there would be a theoretical basis for automatic selection of the

most appropriate image segmentation for the scene.
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Thus this entire segmentation process can be used as a module in a more complete

vision system. The user interface parameters are the only application dependent terms.

Other self-adapting segmentation modules can be integrated by model-match confidence

measures. We note that the user, which provides the parameters and uses the result, can

be a person or another module.
There are several potential applications of the model-match confidence which are not

fully developed in this work. First, in a given domain, if a particular adaptive segmentation

system is known to produce good results, then the confidence measure can be applied to

test whether any useful information is present without human supervision. Second, the

confidence measure, which is applied globally here, can be applied locally to individual
regions. This can be applied to adjust the width of an edge detector, adaptively and

locally, for multi-scale edge detection.

2 The SegIllentation Process

2.1 Global Parameters

All of the external parameters, the internal variables and the modules can be described as

an n-tuple which produces a segmentation. It is assumed that the external parameters are

known approximately from domain knowledge. Using a model of regions described below,

internal modules and parameters have been selected.

To govern the entire process, the global model that regions and gradient edges are
complementary is used. This was recommended as an approach by [Haralick 85] in his

survey of segmentation algorithms and described by [Bajcsy 86]. The complementary

relationship of regions and edges was also used to confirm boundaries produced by split

and-merge techniques in [Pavlidis 88]. Regions and edges were used to generate and verify

rectilinear shape models in [Fua 87]. Integration of region-based and line-based operators
has been implemented by [Riseman 87]. Since the use of lines for segmentation is based on

the assumption that the objects to be segmented have straight borders or oriented texture

patterns, Riseman et al. have done the integration of region and line infornlation occur

after low-level processing. In this way errors which occur in one process do not effect

another process. However, edges (of the appropriate scale) can follow border contours,

whether they are straight or not. Other segmentation models have been used, such as the

maximum a posteriori model [Chou 87] [Cohen 87].

After the user specifies external parameters, values of internal variables are set auto

matically. [Beveridge 87J also sets internal variable values, using 5 pre-determined sen

sitivities and pre-calculated internal thresholds. However, for the variables used in this

system, a much greater variety of image data can be handled using adaptive calculation of
these internal variables than could be with pre-determined values of the same variables.

The external parameters can be described as an n-tuple, the values of all but 3 of

which are held constant in this system. The interface (external) parameters are (PI) the
approximate number of objects in the scene and (P2) the typical digitized complexity of

the objects. An optional third parameter is (P3) the approximate fraction of background.

The interface parameter P2 is based on object scale within images. [Koenderink 84]
discusses the limits of scale for images and objects. The outer scale of an image limits the
maximum size of objects in camera coordinates, 512 pixels long in this case. The inner
scale is the limit of camera resolution, typically 1 pixel. The inner scale determines the
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External

Parameters

Image Scale

Estimator

I

Edge 1 _I Region
Detector -------..., Grower

Figure 1: Model-Driven Segmentation Process

Partition,

Match Confidence

IModel Parameter IInstantiation IRange

Limit Estimated PI (2,250]
Number of Number of parameter
Regions Regions

Limit Estimated P2 [0.008,1.0]
Complexity Digitized parameter
of Regions Complexity (P:A)

Limit Fraction of P3 (0.0, 0.999]

Minimum Background parameter

External (or default)
Scale

Topology of Neighborhood 4-connected
Regions Connectivity (constant)

Borders are Algorithm (constant)
Edges Modules

Table 1: Models and External Variables
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PIA P 2 /A

Domain Min Max Min Max

8 pt. Roman Nonie Textt 0.83 1.00 3t 75

15 pt. Boldface Nonie Text 0.38 0.47 18 78

t Regions include letters and letter fragments (iff the whole

letters are not 4-connected), but not holes in letters

t See [Rosenfeld 82] for a comparison of perimeter

measurements which cause this value to be < 471'".

Table 2: Digitized Complexity Measures

spacing between two similar objects required for detection as separate regions. Objects

in an scene also have an their own outer scale, which is the size of the objects. For a

given object, the outer scale varies depending on where it is measured. The relationship of

object outer scale to actual object size is set by the arrangement of the image acquisition

system. Consideration is limited to object whose outer scale is between the inner and
outer scale limits.

In this system, digitized complexity is defined as the ratio of perimeter pixels P to area

pixels A, which is dimensionless. The perimeter is measured as the sum of the areas of the

borders of the region, i.e. the pixels for which one or more of their 4-connected neighbors

belong to other regions. Other measures of perimeter are described in [Ellis 79]. Perimeter

pixels are included in region area. A more frequently used complexity parameter is p2 / A

[Rosenfeld 82], where p has units of length. p21A is dimensionless and scale independent.

For a given shape, digitized complexity is scale dependent. However, for a class of regions

of similar width, such as all letters in a given font and type size, the digitized complexity

P / A is similar, while p2 / A has more variation. In this system, an important consideration

is the selection of appropriate edge scale, which is the outer scale of the interesting objects

in units of the inner scale of the imaging system. Therefore, we have found PIA to be an

effective external parameter for this system, specified as P2.

If the outer scale of objects in the scene varies over a wide range, then a third external

paranleter may be specified. This can be delineated as the approximate fraction of back

ground (P3), or as the minimum acceptable region size (P4) as an alternative invocation.

This parameter provides for adaptively applying outer scale non-uniformly across the im

age. It is used when the outer scale of the some regions (e.g. background) is much larger

than the outer scale of other important regions in the scene. Since the background itself

needs to be classified, it is not desirable to limit maximum size.

The specified external parameters are used to delineate global scene models. In prin

ciple, they could be applied locally (e.g. to smooth individual regions) after their global

application. The alternative next step is to add semantic information to produce better

results. The discussion here is based on the following assumptions:

• Stationary observer and non-moving scene

• Known scene scale

• Conditions above are constant during the time of observation

The tuple (Pl,P2,P3) and the constant parameters shown in Table 1 act as constraints

on the number of possible partitions of the pixels. In addition, the models of segmentation
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itself act as constraints, such as the model that the pixels in a region are connected. The

topology of connection is also an external parameter, held constant in this work. The

set of partitions which satisfies these constraints is still quite large. Several partitions of

each image are considered; the final selection is made using a value function, which will

be shown in Section 3.5. The value function itself is not a constraint, but simply a means

of selecting the best partition.

3 Segmentation Modules

A tuple of internal variables is used to produce the partitions. Each internal variable
(shown in Table 3) is associated with a particular module from Figure 1. The function

of the segmentation system is to search the internal parameter space to find a partition
which best matches the external models as measured by the value function.

The computationally intensive modules in the system are the Edge Detector and the

Region Grower. Computation of the value function requires a complete segmentation,
produced by the Region Grower, after edge detection is complete. Therefore, in this

implementation, all of the internal values except local similarity (8, used by the Region

Grower) are calculated, then a search is performed on 8. Using this simplification, edge

detection is done only once, and region aggregation is done approximately 5 to 20 times.

However, all the other parameters are described, so that a more complex search through

the parameter space could be performed. A planned development of the Model-Driven

Segmentation Process is to vary edge detector scale and type.

3.1 Edge Detection Module

The edge detector produces thinned gradient edges by the method of [Canny 86]. Edge

scale is estimated based on the ability of our camera system to deliver high quality edges,

at the range of expected inner scale of objects. Though different scales will be appro

priate for different image resolutions and camera systems, (J'g = 2.8 pixels is used here,

because this provides good smoothing of perimeters while still delivering location accuracy.

[Ellis 79] shows the level of improvement in the measurement of perimeter in noisy images

using different levels of Gaussian smoothing. One problem with this scale is the tendency

for edges to break at very sharp corners, which is shown in [Bergholm 87]. A planed de

velopment is the addition of multi-scale edge detection to the segmentation system, using

larger scales. Smaller scale is already provided in the region aggregation module.

Since the gradient threshold G is set from scale parameters, gradient magnitudes are

automatically normalized to provide maximum resolution within 8 bits.

Because the segmentation system is modular, any edge detection algorithm which yields

single width edges could be substituted here without making other changes in the system.

3.2 Gradient Histogram Evaluation Module

Digitized complexity (P2) and fraction of background (P3) are used to estimate the ex
pected total number of edge pixels in the scene.

This analysis applies the region/edge models as the following guiding heuristics

1. The strongest edge pixels are primarily object borders. For some types of scenes,

this assumption does not hold, particularly if only one sensor is used. Further ex-
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Table 3: Internal Variables for Different Modules

Internal Dependence Instantiation Module

Variables Method

local external parameters, search Region
similarity image noise/texture, using feedback Grower

S image signal

mInImUm external parameters calculated from Region
region size external parameters Grower
M

evaluation external model, constant Partition
function internal model; Evaluator

bias toward external model constant Edge
oversegmentation Detector,

Be,Bp Partition

Evaluator

convolution external model constant Edge
mask shape Detector

convolution camera system; constant Scale
mask width internal model Estimator
(1'g

gradient external parameters calculated from Edge
threshold external parameters, Detector

G gradient histogram
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perimentation with multiple sensors and/or multiple lightings may produce more
reliable border edges. However, in the evaluation of the segmentation result, the

match of the result to the model is checked.

2. The number of smoothed, thinned edge pixels is proportional to the number of border

pixels an object, independent of the scale of the object. By the definition of border

pixels as included in regions, there are 2 border pixels for each thinned edge, one for

each region.

Use of this technique to threshold the gradient magnitude is analogous to a binary
thresholding of a gray value image when the approximate fraction of pixels above threshold

is known [Rosenfeld 82]. It was used by [Weszka 78] to minimize "busyness" of a binary

thresholding. That technique is extended here to give the appropriate busyness of the

complete segmentation.

In thresholding edges, this system's goal is to get as many border edges as possible and
as few other edges. From a computational complexity criteria, it is less expensive to test

for the removal of a border segment than to re-segment then test, based on the algorithms

employed here. This is implemented as as the internal edge bias parameter, Be. For this

work, Be is held constant at a value of 0.5. I{BP} I is the number of border pixels, I{TP} I
is the total number of pixels, and I{EP}I is the nUITlber of edge pixels.

I{BP}I = I{TP}I * P3 * P2 * (1 + Be) =2 * I{EP}I
T is set to satisfy !{EP}I using a histogram of gradient values [Anderson 87].

3.3 Region Growing Module

The partitioning method used here is a form of edge-guided region aggregation. Regions

are aggregated using a local similarity threshold S, as described in [Rosenfeld 82], except

that aggregation is not permitted across or on edge pixels. Pixels in any region which does
not meet the minimum size are not classified at first. To spread the initial regions, the S
is then increased. Edge pixels and other unclassified pixels are aggregated with the initial

regions. S is increased further until all pixels are classified. The initial region formation
is not dependent on the choice of starting points, but only on the minimum region size

and S. The spreading process is influenced by the rate at which the S is increased and

by the choice of starting points. However, by increasing S slowly at first, the choice of
starting points has very little effect, and the borders are accurate. A 3 step increase in S
is used to aggregate all points. The initial similarity, S, is the value which is estimated

and improved in the Similarity Estimation Module.

The details of border shape normally emerge during the spreading process, rather
than during the edge-guided initial region formation. Thus the spreading allows borders

to follow the inner scale details of the object. This occurs on high intensity difference

edges which are more than 1 pixel wide. Initially, regions form on both sides of an edge,

leaving an unaggregated strip. During spreading, the pixels are aggregated with the region

closer in gray value. For example, if a corner is rounded as a result of the smoothing in

edge detection, the pixels on the wrong side of the edge are left unaggregated. They
then merge with the proper region during spreading. The advantage of using edges for
outer scale is that the probability of detection of edge pixels on long borders is increased
with smoothing, thereby preventing improper merging during the initial region formation.

This occurs when there is a low contrast between two adjacent pixels across a border,

particularly if the border is a gradual change in intensity. This particular error, known
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Number of
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mIn. SIze

Figure 2: Region Formation versus Local Similarity S

as bleeding, is reduced by use of edges. Edges do not change the ability of the system to

segment along step edges borders, although true step edges (1 pixel wide) cannot occur in

any of our camera systems (except laser images).

The minimum region size, M, is based on Pi and P3. In this implementation,

M = io * P3*~iP}I. Instead of using P3 and PI, the parameter P4 can specify M directly,

and P3 is not used. Limiting the minimum region size is a frequent practice in segmentation

[Haralick 85], but the exact minimum size threshold is difficult to justify on a theoretical

basis. For example, [Beveridge 87] uses a minimum region size of 3 pixels, because smaller

regions increase computational burden on later processing. A scale limitation on minimum

region size seems to be a natural justification. However, since a choice of minimum region

size must either be ad hoc or be determined by semantics, an external parameter with a

back-up default value is used here, based on experience using scale.

3.4 Similarity Estimation Module

For an image which has detail at all scales and a consistent noise level (O'i) throughout,

the number of regions increases when S is reduced, and decreases when S is increased,

except when S < (J'i.

Experience has shown that when S < (J'i, PI may be met, but borders found are

arbitrary and do not match edges. An example of this is shown in Section 4. However, for

an unknown image, there is no estimate of the value of (J'i. To avoid an exhaustive search

through S values, this heuristic is used to try values automatically, based on Figure 2 and

segmentation experience [Anderson 87]. Since the our camera system normally has a noise

level such that (J'i :$ 4 [McKendall 87], we begin with S = 8, then use feedback on the

number of regions to improve S, unless the initial aggregation of pixels is very small. In

that case, S is automatically reset to 20, and feedback is used on the number of regions.

A minimum of 5 and a maximum of 15 values of S are tried. Naturally, for another

camera system, another search procedure may be more appropriate. Improvements in
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this module's search procedure will reduce the computational complexity of the process.

Additional work in this area is planned as the system is developed further.

The selection of the output partition is done by the Partition Evaluation Module.

3.5 Partition Evaluation Module

The evaluation of segmentations is a difficult and poorly specified problem because seg

mentation is not done as an end in itself, but as part of a larger process. Even if a

"correct" segmentation were available for comparison, this would only give a binary eval

uation. [Levine 85] developed a performance vector for each region in a segmentation.

[Riseman 87] proposed a scalar relational measure, which is a function of different at

tributes of regions and lines. However, some distance function with no clear theoretical

basis must be imposed to use these attributes.

Segmentations are evaluated using the global model that edges and borders should

match, since the quality of the segmentation given by these algorithms depends on the
match of the data to this model. If the global model is not appropriate to the data, a

different model and resulting algorithm should be used for segmentation. [Moerdler 88]

evaluates and integrates the results of various "shape from" algorithms upon texel patches

based a measure of the match between "shape from" algorithm models and the actual

data.

The external parameter PI is used to guide the search through parameter space for the
best segmentation within the model. Since this parameter normally is not known precisely,

consideration is given to all segmentations of n regions for which

(1- Bp ) *PI ~ n ~ (1 + Bp ) *PI
For this work, Bp is held constant at 0.5.

Let EB be the set of edge-confirmed border pixels, and UB be the set of unconfirmed
border pixels. Confirmation of a border pixel occurs when a thresholded, thinned gradient

edge pixel occurs directly on or in the 4-connected set of a border pixel. An internal value,

V, of a partition is set to:

V = I{EB}I- Bp * I{UB}I
After the final partitioning, the edge/border match is used as a measure of confidence

in the borders, CM.

C - HEBli
M - HEB}U{UB}I

CM is used as a global confidence measure; however, it can be applied locally to obtain

confidence in a particular region.

4 Results

4.1 Images

Real images from several different domains were tested, including a wide variety of signal
level, noise level, texture. Since there is no standard for machine vision analogous to the

IEEE standards for television, the process of setting internal thresholds automatically is

made much more difficult. However, this work attempts to cover a variety of image types.
All images are originally 512 by 512 pixels by 256 intensities. Because of the limitations

of the edge detector and the camera system, the outermost 40 rows and columns are not
segmented or shown. For display of the results, several images are reduced further as noted

below, since the interesting material covers some subset of the remaining image area.

9



c d

Figure 3: Aerial Photo
University of Pennsylvania Campus Original (a), Segmentation (b) Smoothed Original
(c), Segmentation of Smoothed Image (d) Though the final segmentations are similar, the
internal similarity parameter is automatically set to S = 14 for a to produce b and to
S = 5 for the smoother c to produce d.
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a b

Fi"gure 4: Myelin Stained Brain Tissue Section

Original (a) and Segmentation (b)
Goal: 50 Regions. Found: 63 Regions eM = 77%
The background in the upper left corner contains a gradual intensity change of 50 (out
of 256), which is appropriately not segmented. However, there is also a gradual intensity
change in the top center from background into gray matter, which caused some gray matter

borders to be missed.

The images include:

Aerial photographs of an urban area Figure 3a contains signal at scales from below
the limits of the image acquisition system to above the limits, and many scales in
between.

Myelin stained human brain tissue section Figure 4a contains many pixels of °in
tensity, which correspond to the myelin stained white matter. The image is unevenly

illuminated, such that there is a gradient of 50 intensity values in the background of
the area used, with the brightest values at the center of the image. Only 238 by 324

pixels are shown, with a ruler, tape and border of the paper removed, though the

entire image is actually segmented.

Laser image of an architect's scale model of an urban scene This image comes from
a single plane, structured light, laser range imaging system. It contains intensity val
ues from 0 to 50, with almost no noise. Intensity values correspond to object height
of 1.5 mm per intensity unit. The limited values reflect the limit ofreal object height
difference, not a system limitation. Because the image appears very dark, it is not
reproduced here. This image is the only one which contains true step edges.

CT scans of a brain Figures 5a and 6a are normalized to 256 intensity values such that
there is maximum resolution for gray matter/white matter differences. Intensity

values above 256 (i.e. bone) are mapped to 256. Some black background has been
removed.

small objects on plain and textured backgrounds These include coins, toys, tools
and kitchen objects. Backgrounds are poster board and solid and printed cloth of

11



a b

Figure 5: CT Scan of Human Head
Original (a) and Segmentation (b) Goal: 80 Regions, Result: 81 Regions with CM = 75%

various types and brightnesses. Figure lOa shows pennies on poster board. Figure
7a shows coins on Liberty cloth.

4.2 Predictions and Performance

Several predictions can be made concerning the performance of the segmentation system:

1. Segmentation of regions with uniform brightness and with piecewise linear brightness

and additive noise occurs iff the gradient of borders exceeds the gradient within

regions.

(a) When the background in an image contains closed areas of higher gradient

than the objects desired, the background is segmented better than the desired

objects. If the external parameters are adjusted to accept both types of regions,
both types are segmented. An example of this is shown in Figure 7b and c.

(b) Two adjacent regions of equal average brightness with different levels of texture
will not be segmented. An example of this situation is the separation of gray

matter from white matter in a CT scan, shown in Figure 6b.

(c) Gradual changes in brightness will not be segmented. An example of this is
shown at the top of Figure 4b, where the illumination changes across the image,

brightest in the center.

12



a b

Figure 6: CT Scan of Brain
Original (a) and Segmentation (b)
Goal: 25 Regions. Found: 33 Regions CM = 79%
The confidence measure for brain/skull borders is high, but gray matter/white matter

borders do not produce edges.
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a b c

Figure 7: Coins on Liberty Cloth
Original (a). Segmentations:
b: Goal: 25 Regions, 50% background, Result: 34 Regions with CM = 75%.
c: Goal: 100 Regions with 20% background (default value), Result: 138 Regions with CM

= 75%.

2. The ability of the system to divide two areas of the same brightness is limited by

the separation between the areas. A minimum separation of 1 pixel is required
by the Region Growing Module. The probability of de.' E<:,tion increases as the
separation increases, particularly when the separation is sufficient for the U g of the

edge detector [Anderson 87]. The separation of objects from holes (e.g. areas of
specular reflectance or closed interstitial spaces) depends on the size of the holes and

the settings of the external parameters, since the Minimum Region Size is set from

the external parameters.

3. The external parameters are robust, in that small changes in the parameters make
small changes in the result. Table 3 shows the dependence of the modules on the
external parameters.

4. C M confirms that the detected borders do indeed match the edges. Figure 8 shows

the response of the segmentation system to a synthetic image containing only Gaus
sian white noise. Regions are detected, but CM shows that the algorithm is inap

propriate to segment this image. Of course, the definition of CM uses only borders
found, not borders which should have been found. For example, in Figure 6b, the

number of regions desired is not met. CM is high because the skull/brain edges are
sharp. However, gray matter/white matter borders are not detected.

4.3 Implementation

The Model-Driven Segmentation System, shown in Figure 1, has been written in C and
installed on a Sun 3/260 running the X Window System, Version 11 (a trademark of
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Figure 8: Noise Only
Original (a) and Segmentation (b)

Goal: 25 regions. eM = 3%, which shows that the segmentation process or external
parameters are inappropriate to this data.
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0: Region Grower using edge info.

• : Region Grower without edge info.
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Figure 9: Region/Edge Combination versus Region Growing Alone
The score (described in Appendix A) is used to rate segmentations of the penny images
with additive noise, using different local similarity (S) values, with and without assistance

from edges.

the Massachusetts Institute of Technology) and displaying the original 512 by 512 by 8
bit image, thresholded edges, intermediate results and the final result on an HP Series
9000/320. The process, excluding edge detection but including displays, takes an average
time of 10 minutes. It has been installed as a sequential process, but it could be partitioned
within the region growing module and the region growing module could be run in parallel

on several internal variables.
The segmentation quality from the region/edge combination algorithm implemented

in the Region Growing Module is a significant improvement over either edge detection
(and application of a connectivity operator to produce closed regions) or the basic region
growing algorithm without edges. Using a scoring system and adjustments to the signal
and noise which are described in Appendix A, Figure 9 shows the quality of segmentations

of the top 6 pennies shown in Figure lOa, with additive noise and reduced signal as shown
in Figure 11. For the 17.5 dB image, the 6 top pennies have unbroken edges; therefore,

edges alone are sufficient to segment the top 6 pennies. Edges of the touching pennies are
broken at all noise levels, and edges of some the top 6 pennies are broken in the 11.4 dB
image. Therefore, the combination algorithm is better than edges alone. For the 11.4 dB

example, the graph shows that best score of the combination is better than region growing
alone.

The key improvement is this: the combination algorithm gives good results over a
wide range of values of S. In other words, there is a small number of instantiations into
the internal variable tuple which produce good results for region growing alone. The

values of these variables depend on signal and noise, which are consistent throughout this

particular image. This can be thought of as a small hypervolume in parameter space
within which the segmentation score exceeds a threshold. For the combination algorithm,
the hypervolume is larger, though still dependent on signal and noise. Complex images
contain a variety of signal and noise levels. Each piece of border has a signal and noise
value, and an associated hypervolume. A trial segmentation corresponds to a point in
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Figure 10: Pennies

Original (a), Thresholded Thinned Edges (b)
and Segmentation (c) of Pennies
Goal: 12 Regions, Result: 10 Regions. CM = 95%

parameter space, and its value is the number of hypervolumes containing the point. The
combination algorithm, with larger hypervolumes, is likely to produce a better result.

Internal variables of S and T respond effectively to changes in image characteristics.
This is shown in Table 4; an example of a change in S is shown in Figure 3.

Change Gradient Final Minimum Confidence Score Test
Threshold, T S Size CM Image

Add Gaussian up up same down down pennies
white noise

Reduce same same same down down penmes

signal slightly

Smooth using same down same same none Aerial

Diffusion given Photo
[perona 87]

Table 4: System Response to Changes in Input Image
For description of Score, see Appendix A
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Figure 11: Penny Images with Added Noise and Reduced Signal

a: Noise u = 5, Signal ~ 38, 17.5 dB

b: Noise u = 10, Signal ~ 38, 11.4 dB

5 The Limits of Bottom-Up Processing

We observed that the number of acceptable instantiations which satisfy a criteria decreases

as the signal to noise ratio decreases. Acceptable instantiations are sets of values of inter

nal variables from which segmentation results exceed a threshold upon a value function,

such as the score in Appendix A. Therefore, the hypervolume (in internal parameter space)
of acceptable segmentations decreases as the signal to noise ratio decreases. The search

through parameter space may become more difficult, and it certainly becomes more im

portant. This also explains the instability of segmentation programs when test images and

parameter values are chosen in an ad hoc fashion. It should not be a surprise that internal

variables and external parameters customized for one image do not work on other images,
unless the signal, noise/texture and scale are similar.

Semantic information applied before segmentation is limited to scale parameters for

several reasons.

• The 3 dimensional arrangement of objects is not predicted in advance because it
varies from one scene to another.

• Illumination characteristics are not predicted in advance because they vary from one
scene to another.

• Characteristics of camera noise are not predicted in advance because it varies over
time for a single camera system, it varies from one camera system to another, and
it may vary with intensity.

18



When the images are not well known in advance, semantic information applied before

segmentation must be sharply limited. The scale parameters used here are: topology of

regions (4-connected), integral geometry (estimate of the number of regions, within 50%),

gross shape (perimeter to area ratio) and scale of analysis, as discussed in Section 2.1

and delineated in Table 1. Even though these parameters constrain the possible parti

tions, the result is still non-deterministic. Other variables are obtained from the image

data. However, when more semantic information is available, it can be used to refine the

segmentation and to characterize individual regions. We plan further work in this area.

The model that the gradient of borders exceeds the gradient within regions is a very

general model which is met by many images. This system also gives good results on
images with uniform intensity within regions and step edge borders, specifically laser

images. However, since our other camera and lighting systems are not able to deliver

uniform regions and step edges, we cannot depend on that model.

Any region intensity model for segmentation can be applied to any image. However, it

is not likely to be appropriate to all images; therefore we confirm the appropriateness of

our model automatically. We define and implement the confidence measure eM, which is

the fraction of border pixels which are confirmed by the presence of significant edges.

From the design and theory of this modular process, we make predictions about the

results, and we confirm them by experimentation. When the gradient of borders exceed the

gradient within regions, the regions will be separated, providing they exceed the minimum

region size derived from the scale parameters. The detection of two closely spaced objects

of similar brightness is limited by their separation. If they touch, they well be partitioned

as a single region. Two regions of different texture but the same average brightness will not

be separated by this process. In addition, we show that the combination of edge and region

information done in the Region Grower Module gives better results than either classical

region growing or edge detection (with the application of a 4-connectivity operator) alone.

In this work, internal and external parameters are identified, specified and tested for

robustness. An adaptive procedure for setting internal variables is presented and tested.

The process is tested on images from several different domains. We believe that this explicit

formulation of the segmentation process will provide a useful intermediate representation

to higher level processes, such as integration of information from multiple processes (e.g.
region grouping via texture and illumination, split and merge) and multiple sensors, and
automatic object identification.
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A Appendix: Evaluation of Known Segmentation

A human-guided evaluation of a known image is used to rank automatic segmentations

using various parameters, additive noise and reduced signal. It uses an image of a group of

pennies on a white background, shown in Figure lOa. Then the centroids of 6 of the pen

nies, confirmed by human guidance, are used as a known segmentation. Though statistical

independence is not proved, the centroid does not depend on the same characteristics as the

edge/border confirmation used within the system. Clearly, known segmentations are not

available in most situations; however, this is used simply to understand the segmentation

process.

The signal in the image is the intensity difference across the border of the penny, which

averages 150 (out of 256). The actual transition zone of the change in brightness (width of

the "step" edge) is 3 to 5 pixels wide. At the 2 closest pennies considered, the transition

zones overlap, such that the signal strength is reduced approximately 25%. Several pennies

have specular reflection which also reduce the effective signal by approximately 25%. An

estimate of the signal is taken as the intensity difference from the center of each penny to a

point approximately 2 penny radii from the center of the penny, then averaged among the

pennies. The signal is reduced by requantizing the pixel intensities to a smaller number

of values, then recentering the intensities within the original range. Spatially white, zero

mean, Gaussian noise is added after the signal is reduced. Approximately 40 combinations

of signal and noise were tested, 2 of which are shown in Figure 11. To evaluate the result

of the partition, the distance between the centroid of each detected penny and its standard

centroid is measured. The standard centroid is produced by using the segmentation system

on the original image. Each of the 6 pennies can obtain a maximum score of 20 (the

approximate radius of the penny), and its score is reduced by 1 for each pixel distance

from the standard centroid. Scores for the 2 images shown in Figure 11 are shown in

Figure 9.

The pennies in the picture which are touching each other are not included in the 6
evaluation centroids.
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