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Abstract

Nucleoside hydrolases (NHs) show homology among parasite protozoa, fungi and bacteria. They are vital protagonists in the
establishment of early infection and, therefore, are excellent candidates for the pathogen recognition by adaptive immune
responses. Immune protection against NHs would prevent disease at the early infection of several pathogens. We have
identified the domain of the NH of L. donovani (NH36) responsible for its immunogenicity and protective efficacy against
murine visceral leishmaniasis (VL). Using recombinant generated peptides covering the whole NH36 sequence and saponin
we demonstrate that protection against L. chagasi is related to its C-terminal domain (amino-acids 199–314) and is
mediated mainly by a CD4+ T cell driven response with a lower contribution of CD8+ T cells. Immunization with this peptide
exceeds in 36.73612.33% the protective response induced by the cognate NH36 protein. Increases in IgM, IgG2a, IgG1 and
IgG2b antibodies, CD4+ T cell proportions, IFN-c secretion, ratios of IFN-c/IL-10 producing CD4+ and CD8+ T cells and
percents of antibody binding inhibition by synthetic predicted epitopes were detected in F3 vaccinated mice. The increases
in DTH and in ratios of TNFa/IL-10 CD4+ producing cells were however the strong correlates of protection which was
confirmed by in vivo depletion with monoclonal antibodies, algorithm predicted CD4 and CD8 epitopes and a pronounced
decrease in parasite load (90.5–88.23%; p = 0.011) that was long-lasting. No decrease in parasite load was detected after
vaccination with the N-domain of NH36, in spite of the induction of IFN-c/IL-10 expression by CD4+ T cells after challenge.
Both peptides reduced the size of footpad lesions, but only the C-domain reduced the parasite load of mice challenged
with L. amazonensis. The identification of the target of the immune response to NH36 represents a basis for the rationale
development of a bivalent vaccine against leishmaniasis and for multivalent vaccines against NHs-dependent
pathogens.
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Introduction

In recent years, Nucleoside hydrolases (NHs) of trypanosomatid

protozoa have emerged as strong phylogenetic markers of the

Leishmania genus [1,2] and vital protagonists of pathways for

parasite replication and establishment of infection. The purine-

dependent protozoa: Crithidia fasciculata [3], Trypanosoma brucei [4],

Trypanosoma cruzi [5], Leishmania major [6], Leishmania donovani [7,8]

and Leishmania infantum [2] like most protozoan parasites, are

deficient in de novo synthesis of purines. NHs cleave the N-

glycosidic linkage of imported nucleosides making the purines

available for further parasite DNA synthesis. NHs activities have

also been described in bacteria and fungi [9,10,11] but not in

mammals [11], which have alternative pathways.

Since NHs are expressed in the early stages of infection, they are

excellent candidate targets for pathogen recognition by adaptive

immune responses. NHs of Leishmania have been described in the

parasite stages which infect the mammal host [1,2,6,7,8] and in

the exosporium membrane of Bacillus anthracis being important for

anthrax transmission [10]. Vaccines against NHs would then

prevent the replication of many different pathogens at the very first

stage of their life-cycle and thus prevent infection, mild disease,

severe disease and death while vaccine with antigens present in

later stages of the parasite cycle would only protect from severe

disease and death [12].

The NH of L. donovani shows significant homology to the

sequences of L. major (95%) [7], L. chagasi (99%), L. infantum (99%),

L. tropica (97%), L. mexicana (93%), L. braziliensis (84%) [13], T. brucei
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(27%) and Crithidia fasciculata (80%) [7] and shares 68% identity

with Haemophylus influenzae and 30% identity and conserved motifs

with Bacillus anthracis [10,13]. Identification of the immunogenic

molecular domain of the NH of one pathogen should allow the

rational design development of a cross-protective subunit or

synthetic vaccine and this would explain the protection generated

by NH of Leishmania donovani against infections by other

leishmanias [14–17].

However, the role of the Nucleoside hydrolases in the induction

of immunoprotective CD4+ T cell driven or CD8+ T cell-

mediated cytotoxic immune response has never before been

systematically examined in the context of parasitic diseases. We

developed the first licensed second generation vaccine against

visceral leishmaniasis [18–21] that has already reduced the

incidence of the human and canine disease in endemic areas

[22]. Its main component is the Nucleoside hydrolase of Leishmania

donovani (NH36) which was specifically recognized by sera of

patients of human VL [23] and by most anti-FML monoclonal

antibodies [24]. According to the guidelines of WHO [12], NH36

was first identified as a powerful antigen present in the early stages

of the parasite infection. Its NH nature and degree of identity to

other Leishmanias NHs was only disclosed after molecular cloning

[8]. In its native form it protected mice from infection by L.

donovani [25] and was also identified by polyclonal antibodies

among promastigote exo-antigens [7]. In its recombinant or DNA

formulations it protected mice from infection by L. chagasi, L.

mexicana [14,15], L. amazonensis [16] and L. major [17] and dogs

from infection by L. chagasi [26] indicating the potential use of its

sequence in protection against both leishmaniasis. As a bivalent

vaccine, it induced a TH1 immune response mediated by IFN-c-

producing CD4+ T cells which led to a 88% prophylaxis against

visceral leishmaniasis (VL) [14], 65–81% against tegumentary

leishmaniasis (TL) [14,16,17] and 91% immunotherapy against

VL [27]. Also, higher proportions of CD4+-NH36 specific

lymphocytes and higher levels of IFN-c, IL-2 were found in

NH36-vaccinated dogs than in untreated controls [26].

NH36 is composed of a 314 amino acid sequence [7]. In order

to map the domain which is the target of the adaptive immunity,

three recombinant fragment proteins representing the amino acids

1–103 (F1, N-terminal domain), 104–198 (F2, central domain) and

199–314 (F3, C-terminal domain) were generated and used for the

stimulation of splenocytes of NH36 vaccinated mice, which

secreted IFN-c and TNF-a after stimulation with the F3 followed

by the F1 fragment, confirming the induction of a cellular

protective TH1 immune response [28].

An effective subunit vaccine against VL must include T cell

epitopes capable of eliciting protective immune responses, since

progressive suppression of the cellular immunity is one of the main

signs of the disease. Synthetic vaccines based on short peptides

which represent immunogenic epitopes are able to impair and

even exceeded the protective potential of the native cognate whole

protein [29] and they can also induce universal T cell responses,

which are related to many human HLA-DR allotypes and to

diverse mice genetic backgrounds [30,31].

In this investigation, we vaccinated mice with the F1, F2 and F3

recombinant peptides and saponin in order to identify the NH36

protective epitopes recognized by antibodies and by MHC class I

and II restricted T cells and then move on to develop a Nucleoside

hydrolase based synthetic vaccine against VL. We identified the C-

terminal domain of the Nucleoside hydrolase NH36 as being

responsible for the adaptive immunity and vaccine-induced

protective efficacy.

Material and Methods

Ethical statements
All mouse studies followed the guidelines set by the National

Institutes of Health, USA and the Institutional Animal Care and

Use Committee approved the animal protocols (Biophysics

Institute-UFRJ, Brazil, protocol IMPPG-007).

Recombinant peptides and epitopes of the NH36
Nucleoside Hydrolase

NH36 is composed of 314 aminoacids (EMBL, Genbank and

DDJB data bases, access number AY007193). Three fragments of

the NH36 antigen composed respectively, of the amino acid

sequences 1–103 (F1), 104–198 (F2) and 199–314 (F3) were cloned

in the pET28 plasmid system. Fragments were amplified by PCR

with the Platinum Taq High Fidelity DNA polymerase (Invitro-

gen) and oligonucleotides containing the NcoI and XhoI

restriction sites, cloned into the pMOS vector (GE) for sequencing

confirmation and further cloned into pET 28b. The recombinant

proteins were expressed in E. coli Bl21DE3 cells and purified in a

Ni-NTA column (Qiagen). To improve protein expression, F2 was

further cloned in the pET28a. The NH36 protein amino acid

sequence was analyzed using epitope prediction algorithms based

on MHC-binding motifs. Epitopes for antibodies and CD4+
lymphocytes were defined by the Protean Pad program based on

the A. Sette algorithm for the H2d haplotype of Balb/c mice (IAd

and IEd alleles) and epitopes for CD8+ T cells (H2 Ld haplotype),

by the HLA peptide motif search (http://bimas.dcrt.nih.gov/

molbio/hla_bind/) and the SYFPEITHI (http://www.syfpeithi.

de/) programs.

Immunization and parasite challenge by Leishmania
chagasi

Female Balb/c mice, 8-week-old, were vaccinated at weekly

intervals, by the sc route, with 3 doses of 100 mg of NH36, F1, F2

or F3 recombinant proteins and 100 mg of SIGMA saponin [32].

On week 4, mice were challenged with 36107 L. chagasi

Author Summary

The continued spread, morbidity and mortality of human
leishmaniasis together with the emergence of drug-
resistant variants, the failure of epidemiological control
based on dog culling and insecticide vector control and
the chemotherapy toxicity have spurred attempts to
develop an effective vaccine. Leishmaniasis affects 12
million people and another 350 million live under risk
worldwide. We developed the first licensed second
generation vaccine against leishmaniasis, a canine vaccine
that has already reduced the incidence of the human and
canine disease in endemic areas. Its main component is
the Nucleoside hydrolase of Leishmania donovani (NH36)
which in its recombinant and DNA formulation is cross
protective against agents of tegumentary leishmaniasis
(TL). For this work we generated three recombinant
peptides covering the NH36 sequence and identified the
C-domain of the Nucleoside hydrolase as being responsi-
ble for its immunogenicity and vaccine-induced protective
efficacy against VL and also for the reduction of lesion size
and parasite load against TL. Since all Leishmanias species
share high identity in their Nucleoside hydrolases amino
acid sequences, our study represents a major step forward
in the development of a bivalent synthetic vaccine against
leishmaniasis and a potential future multivalent vaccine
against pathogens that are dependent on NHs for
replication.
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amastigotes. Fifteen days after infection, mice were euthanized

with ether and the parasite load was evaluated in Giemsa-stained

liver smears and expressed in LDU values (Leishman Donovan

units of Stauber = number of amastigotes per 600 liver cell

nuclei/mg of liver weight) as described [32]. The increase in total

body weight and liver/corporal relative weight were also recorded

as clinical signs of VL. In order to assess the possible generation of

long-term protection 8-week-old female Balb/c mice were

vaccinated at weekly intervals, by the sc route, with 3 doses of

100 mg of F1, F2 or F3 recombinant proteins and 100 mg saponin,

challenged with 36107 L. chagasi amastigotes on week 4 and

euthanized 28 days after infection for evaluation of their liver

parasite load.

Detection of antibodies
Seven days after immunization and 15 days after infection with

Leishmania chagasi, antibodies of sera were measured in sera by an

ELISA assay against NH36 recombinant protein as previously

described [33], using 2 mg antigen per well and goat anti-mouse

IgG (Sigma) or goat anti-mouse IgG1, IgG2a, IgG2b, IgG3, IgM

and IgA horseradish peroxidase conjugated antibodies (Southern,

Biotechnology Associates, Birmingham, AL, USA) in a 1:1000

dilution in blocking buffer. The reaction was developed with O-

phenyldiamine (Sigma), interrupted with 1 N sulfuric acid, and

monitored at 492 gm. Each individual serum was analyzed in

triplicate in double-blind tests. Positive and negative control sera

were included in each test. Results were expressed as the mean of

the absorbance values (492 gm) of the 1/100 diluted sera of each

animal.

Antibody-inhibition binding assay
To determine the immunodominance of the sequences

predicted to be antibody epitopes of NH36 by the Protean Pad

program, the synthetic peptides were obtained and solubilized in

DMSO. The FML antigen (2 mg/well) was solubilized in

carbonate buffer (pH 9.6), and used to coat flat-bottom 96-well

plates for 1 h at 37uC and overnight at 4uC [33]. Plates were

washed with blocking buffer and incubated for 1 h at 37uC with a

pool of sera of healthy dogs vaccinated with the FML-based

licensed vaccine (Leishmune) (n = 10) in the presence or absence of

each one of the synthetic peptides diluted in blocking buffer (0.5 to

0.0002 mM). Antibodies were detected using peroxidase-labeled

protein-A (Kirkegaard & Perry Laboratories, Gaithersburg,

Maryland) at a 1:16000 dilution, in blocking buffer and the

reaction was developed with O-phenyldiamine (Sigma), interrupt-

ed with 1 N sulfuric acid, and monitored at 492 gm. The

absorbency values of sera pre-incubated with peptides at

0.125 mM was compared to that of total sera with no pre-

incubation and expressed as percent of antibody binding

inhibition. Sera were analyzed in triplicate. Positive and negative

control sera were included in each test.

Anti-NH36 specific T cell immunity
Seven days after immunization and 15 days after infection with

Leishmania chagasi, the intradermal response against L. donovani

lysate (IDR) was measured in the footpads as described earlier

[32]. Briefly, mice were injected intradermally, in the right hind

footpad, with 107 freeze-thawed stationary phase Leishmania

donovani promastigotes in 0.1 ml sterile saline solution. The

footpad thicknesses were measured with a Mitutoyo apparatus,

both before and 0, 24 and 48 h after injection. Injecting each

animal with 0.1 ml saline in the left hind footpad served as control.

At each measurement, the values of the saline control were

subtracted from the reaction due to Leishmania antigen. Previous

experiments carried out in Balb/c mice and CB hamsters

demonstrated that 24 h after inoculation saline treated footpads

returned to base levels [32,34].

All further analyses of cellular immune responses were carried

out using 106 splenocytes after 5 days of in vitro culturing at 37uC
and 5% CO2 in RPMI medium and/or 5 mg of recombinant

NH36. Flow cytometry analysis (FACS analysis) in a FACScalibur

apparatus was performed after splenocyte immunostaining with

anti-CD4 (clone GK1.5) or anti-CD8-FITC (clone 53–6.7)

monoclonal antibodies (R&D systems, Inc). Secretions of IFN-c
and TNF-a were evaluated in the supernatants of in vitro cultured

splenocytes with an ELISA assay, using the Biotin Rat anti-mouse

IFN-c (clone XMG1.2), the purified Rat anti-mouse IFN-c (clone

R4-6A2) and the Mouse TNF ELISA Set II kit (BD Bioscience

Pharmingen) according to the manufacturer’s instructions.

The intracellular production of IFN-c, TNF-a and IL-10

cytokines by CD4+ and CD8+ T cells was determined using

10 mg/ml brefeldin (SIGMA) for 4 h at 37uC and 5% CO2

followed by washing with FACS buffer (2% Fetal Calf serum,

0.1% Na Azide in PBS). Cells were labeled for 20 min. at 4uC in

the dark with rat anti-mouse CD4FITC and CD8FITC (R&D

systems) in FACS buffer (1/100). After that they were fixed with

4% paraformaldehyde, washed and treated with FACS buffer with

0.5% saponin (SIGMA) for 20 min. at room temperature and then

further stained with IFN-cAPC, TNFPE and IL-10PE monoclonal

antibodies (BD-Pharmingen), 1/100 diluted in FACS buffer with

0.5% saponin for 20 min., and finally washed and resupended in

FACS buffer.

For both the FACS and ICS methods, 30,000 cells were

analyzed by flow cytometry on a Becton Dickinson FACScalibur

apparatus, and further analyzed using WinMDI (Windows

Multiple Document Interface Flow Cytometry Application)

Version 2.8 software.

In vivo depletion of CD4+ or CD8+ T cells was performed by

treating NH36 and F3-vaccinated mice with GK1.5 or 53.6.7 rat

IgG MAb on days 2, 4 and 6 before challenge and on day 7 after

challenge. Control mice received the NH36sap and F3sap vaccines

and 0.05 ml of rat serum ip, equivalent to 0.25 mg of IgG, or nude

mice ascitic fluids containing 0.25 mg of anti-CD4+ and/or anti-

CD8+ antibodies. As determined by FACS analyses, the efficacy of

depletion of CD4+ or CD8+ spleen cells before challenge was of

99.94% or 96% in anti-CD4+ or anti-CD8+ treated mice,

respectively. The efficacy of depletion treatment was monitored

by the increase in liver parasite load and liver relative weight, 15

days after infection.

Cross-protective efficacy to infection by Leishmania
amazonensis

Female Balb/c mice, 8-week-old, were vaccinated at weekly

intervals, by the sc route, with 3 doses of 100 mg of NH36, F1, F2 or

F3 recombinant proteins and 100 mg of SIGMA saponin [32]. On

week 4, mice were challenged in the right hind footpad with 105 L.

amazonensis (PH 8 strain) metacyclic promastigotes [17] which had

been isolated from hamsters and maintained in Schneider’s axenic

media for 3 successive passages. Measurements of the infected

footpad thicknesses were performed weekly with a Mitutoyo

apparatus and the thickness values of the non-infected left footpads

were substracted from them. The total number of parasites in

footpad lesions was determined after sacrifice by Real Time PCR as

modified from Manna et al., [35] using the primers of Leishmania

chagasi (Primer forward: 59GGCGTTCTGCGAAAACCG39;

Primer reverse 59AAAATGGCATTTTCGGGCC39 and Probe

59TGGGTGCAGAAATCCCGTTCA39) on DNA isolated from

promastigotes of L. amazonensis (PH 8) and the Taq man system.

Nucleoside Hydrolase Immunogenic Domain
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Briefly, for sample collection, 100 ml of PBS were injected and

recovered from each infected footpad. Only 1 ml of each suspension

was used for amplification by RTPCR.

Statistical analysis
The normal distribution of values of each variable was assessed

by the Anderson Darling A2 test (Analyze-it). Means of normally

distributed variables were compared by ANOVA analysis simple

factorial test and by one way ANOVA-Tukey’s honestly significant

difference (Tukey’s HSD) post-hoc method (SPSS for Windows).

When necessary the confidence interval (95% CI) was also used.

Means of non-normally distributed variables were compared by

Kruskall Wallis and Mann Whitney non-parametrical tests

(Analyze-it). Correlation coefficient analysis was determined on a

Pearson bivariate, two tailed test of significance (SPSS for

windows).

Results

Mice were immunized with NH36, F1, F2 or F3 proteins and

saponin (NH36sap; F1sap, F2sap and F3sap vaccines, respective-

ly), challenged with amastigotes of Leishmania chagasi on week 4 and

euthanized on week 6 (Figure 1A). The humoral response assayed

by ELISA disclosed higher antibody levels to NH36 in the sera of

vaccinated animals when compared to saline controls after

immunization (p,0.004) and after challenge (p = 0.001)

(Figures 1B and C). The F3sap vaccine induced IgG levels as

high as NH36sap. The IgM and IgG2a levels induced by the

F3sap vaccine were as high as the ones elicited by NH36 and

F1sap vaccines (Figure 1B). The F2 vaccine induced only IgG2b

and IgG1, to the same extent as the other vaccines. After challenge

(Figure 1C) only the IgG1 (p = 0.039) and IgM (p = 0.003)

responses were lower. The F1sap increased the IgA and IgG

and the F3sap, the IgG, IgG2a and IgG3 responses (Figure 1C).

The IgG2a level induced by the F3sap vaccine were 70% and 34%

higher than those of F2sap and F1sap vaccines, respectively,

suggesting that NH36 B cell epitopes for IgG2a antibodies are

located mainly in the F3 fragment followed by the F1 fragment.

The algorithm program predicted three B-cell epitopes in F3, only

one in F1, one between F1 and F2 and one in F2 (Figure 2 and

Table 1) and the inhibition of antibody-binding assay was chiefly

induced by the synthetic epitopes of F3 (18.82–31.40%) (Table 1)

Figure 1. Vaccination, challenge and development of NH36-specific humoral immune response. (A) Study design: Balb/c mice were
vaccinated with NH36sap, F1sap, F2sap or F3sap at the indicated time intervals, through the sc route, followed by intravenous challenge with L.
chagasi amastigotes. Bars represent the mean 6 SE of the absorbance values of anti-NH36 antibodies from 1/100 diluted serum of two independent
experiments (n = 11–12 mice per treatment) after immunization (B) and after challenge (C). * p,0.05 different from the saline control. # p,0.05
different from F1sap vaccine; # p,0.05 different from the F2sap vaccine; X p,0.05 different from NH36sap vaccine; p,0.05 different from all
other vaccines.
doi:10.1371/journal.pntd.0000866.g001
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confirming its superiority for the induction of the humoral

immune response.

The cell-mediated immune response induced by immunization

was initially assessed by the IDR for the leishmanial antigen, a

strong correlate for protection against human and animal VL that

was higher in vaccinated animals than in controls prior to

(Figure 3A) and after challenge (Figure 3B) (p,0.0001 in both

cases). After immunization, the F3sap vaccine induced the highest

footpad swelling (p,0.05), followed by the NH36sap (p,0.05)

(Figure 3A). After challenge, the IDR responses were enhanced

(p,0.0001) mainly by the NH36sap which was as potent as the

F3sap vaccine (p.0.05) at 24 h after injection (Figure 3B). The

preponderance of the F3sap vaccine was recovered (p,0.05) 48 h

after injection and its best immunogenic properties confirmed

(Figure 3B).

The proportions of anti-NH36-specific CD4+ and CD8+
lymphocytes in spleens were analyzed by FACS (fluorescence

activated cell sorting) (Figure 4A and B). After immunization, the

splenic CD4+ T cell proportions (Figure 4A) remained unaltered.

After challenge, on the other hand, the F3, F1 and NH36 sap

vaccines showed CD4+ T cell proportions increased compared to

the saline controls (p,0.05) and the F2sap vaccine (p,0.05). The

best performance was achieved by the F3 vaccine with higher

proportions of CD4+ T cells than the NH36 vaccine (p,0.05). Of

note and as expected due to the progress of VL, after challenge,

the CD4+T cell proportions were decreased in saline controls

(22%, p,0.05) (Figure 4A). The CD8+ T cell proportions (Figure

4B) that remained unaltered after immunization were, on the

other hand, increased by all vaccine treatments after infection

(p,0.0001) compared to their respective values before infection

(p,0.05) and to the saline control (p,0.05) (Figure 4B).

The levels of cytokines were measured in supernatants of

lymphocytes upon in vitro stimulation with recombinant NH36

(Table 2). After immunization, and compared to the saline

controls (IC95%–1.27 to 9.20 gg/ml), higher concentrations of

IFN-c were detected only in the NH36sap vaccinated mice

(mean = 20.61 gg/ml). After infection on the other hand, the F1

(mean = 12.35 gg/ml), F2 (mean = 9.30 gg/ml) and F3

(mean = 21.84 gg/ml) vaccines were superior to saline controls

(IC95%–1.65 to 8.10 gg/ml) and the F1sap and F3sap vaccine

showed higher IFN-c levels than the NH36sap vaccine (0.08–

11.11 gg/ml) (Table 2).

As detected for IFN-c, the TNF-a levels after immunization

(Table 2) only increased in the supernatants of NH36sap treated

mice (mean = 114.77 pg/ml) when compared to the saline injected

controls (IC95%–9.20 to 87.88 gg/ml). After infection, the TNF-a
secretion which correlates to the IFN-c secretion (p,0.0001) also

showed the highest values in the F3sap and F1sap vaccinated

Figure 2. Nucleoside hydrolase NH36 T cell and antibody epitope mapping. The peptide sequence of MHC class II-IAd and IEd, haplotype
H2d CD4+ T cell epitopes (bold), of MHC class I Ld-CD8+ T cell predicted epitopes (underlined) and of epitopes for antibodies (grey background) in the
F1, F2 and F3 fragments of the NH36 Nucleoside hydrolase of Leishmania donovani.
doi:10.1371/journal.pntd.0000866.g002

Table 1. NH36 antibody epitope mapping.

Fragment position Sequence (aa) antibody binding inhibition (%)

F1 40–57 N Q T L E K V T R N A R L V A D V A G 0.00

F1–F2 94–108 P E F K T K L D G R H A V Q L 2.15

F2 114–126 M S H E P K T I T L V P T 0.46

F3 202–219 A V Q K R V K E V G T K P A A F M L 31.40

F3 228–239 V Y E K E R N T Y A T V 18.82

F3 278–291 F R Y P R P K H C H T Q V A 20.89

Percent of the antibody binding inhibition from sera of Leishmune vaccinated dogs by each of the predicted synthetic peptides in a competitive ELISA assay.
doi:10.1371/journal.pntd.0000866.t001
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individuals (447.44 pg/ml and 431.40 pg/ml, respectively, not

shown). This experiment was the only one in the whole

investigation in which neither the ANOVA-Tukey’s HSD nor

the Kruskall Wallis-Mann Whitney tests disclosed any significant

differences. For this reason we used the IC95% for analysis.

The expressions of IFN-c, TNF-a and IL-10 were also studied

by the ICS (intracellular cytokine staining) approach. In order to

characterize the potential TH1 response generated by vaccination

with the NH36 peptides we show the results as ratios of IFN-c/IL-

10 and TNF-a/IL-10 CD4+ and CD8+ producing cells (Figure 5).

Our analysis disclosed the predominance of the F3 domain of the

Nucleoside hydrolase which induced the highest TH1 response

after immunization, which was sustained after challenge. Indeed,

after immunization, the ratios of IFN-c/IL-10 CD4 producing

cells increased significantly (p,0.009) mainly in F3sap vaccinated

mice compared to those of mice vaccinated with F2sap (p,0.05)

while no differences were found in CD8+ T cells. After challenge,

the ratios of IFN-c/IL-10 CD4+ T cells also showed significant

increases (p,0.0001). The F3sap vaccinated mice showed a 65%

increase compared to saline controls and enhancements compared

to all other vaccines (p,0.05) except for the F1sap which itself

showed a 32% increase over saline controls (p,0.05). The CD8+
IFN-c/IL-10 producing cells also showed differences (p,0.031)

mainly due to the increase in F3 vaccinated mice (p,0.05)

(Figure 5).

Furthermore, the TNF-a/IL-10 CD4+ response after challenge

was stronger than the IFN-c/IL-10 CD4+ response (p,0.0001).

Indeed, the TNF-a/IL-10 CD4+ ratios of the F3sap vaccinated

mice showed a 29% increase compared to the IFN-c/IL-10 CD4+
ratios for the same group (p,0.0001). Also, different from what

Figure 3. Intradermal response to the leishmanial antigen. (A) 24 h and 48 h after complete immunization and (B) after challenge with 36107

amastigotes of L. chagasi obtained from hamster spleens. Results of 3 independent experiments with 20–24 mice per treatment (A) and 8–11 mice
(B) per vaccine group are shown as mean + SE. * p,0.05 significantly different from the saline treated controls, # the F1, # the F2 or from all the
other vaccines.
doi:10.1371/journal.pntd.0000866.g003

Figure 4. Development of NH36-specific cellular immune response as disclosed by flow cytometry analysis. Splenocytes stained with
anti-CD4 (A) or and anti-CD8 (B) antibodies in vaccinated mice challenged with L. chagasi. Results are shown as mean + SE of two independent
experiments (n = 14–16 mice per treatment). ** Significant increase in the CD8+ T cell proportions after challenge, * p,0.05 significant differences
from the saline treated controls, # from the F2sap and X from the NH36sap vaccine.
doi:10.1371/journal.pntd.0000866.g004
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detected for IFN-c, both the NH36 and the F3sap vaccinated mice

showed TNF-a/IL-10 CD4+ ratios higher than those of saline

controls, F2 and F1 vaccinated animals (p,0.05). Additionally the

F3 vaccine ratio was 22% greater than that of the NH36 vaccine

(p,0.05) (Figure 5). Finally, the TNF-a/IL-10 CD8+ producing

cells were only increased in the F3 vaccinated mice (p,0.05). Our

results indicate that the response induced by the F3 peptide (C-

terminal domain) overcomes the one induced by the cognate

NH36 protein suggesting that it holds the main NH36 sequences

responsible for the TH1 immune response. The TNF-a/IL-10

ratio also suggests, in the F3 sequence, the presence of more

epitopes interacting with CD4+ than with CD8+ T cells (the mean

of CD4 = 1.71 falls outside the IC95% of CD8 = 1.12–1.62). This

is not the case for the NH36sap vaccine which stimulates similar

proportions of both subsets of T cells (the mean of CD4 = 1.3 is

included in the IC95% of CD8 = 1.02–1.54).

The in vivo depletion assay with anti-CD4+ and anti-CD8+
monoclonal antibodies (Figure 6) on mice immunized with

NH36sap and F3sap vaccines confirmed the results of ICS. When

compared to the saline control (mean = 1402.9 LDU) a 90.5%

reduction was obtained with the F3sap vaccine (mean = 132.56

LDU) (Figure 6B) while only 65% was obtained after vaccination

with the NH36 sap vaccine (mean = 478.95 LDU) (p,0.05)

(Figure 6A), indicating that the F3sap vaccine induced a 25.2%

increase in protective efficacy against mice VL.

In correlation to what was detected for the TNF-a/IL-10 ratios

after infection (Figure 5), in NH36sap vaccinated mice, the anti-

CD4+ treatment induced 59.5%, and the anti-CD8+, 52% of the

total LDU counts of mice treated with both antibodies

simultaneously, indicating a similar degree of contribution of

CD4+ and CD8+ T cells (Figure 6A; p.0.05) to the vaccine

induced protection. Also in correlation with the results of TNF-a/

IL-10 ratios (Figure 5), protection due to the F3sap vaccine was

mainly mediated by the CD4+ T cells (p,0.05) with a lesser

contribution by CD8+ cells, since treatment with anti-CD4+ or

antiCD8+ antibodies led to increases in susceptibility of 59.0%

and 29.5%, respectively (Figure 6B). Coincidentally, enhanced

liver/body relative weight (hepatomegaly), was promoted in NH36

vaccinated mice treated with anti-CD4+ MAb or anti-CD4+ plus

anti CD8 + Mabs together (Figure 6C) and in the F3sap

vaccinated mice treated with anti-CD4+ antibodies alone

(Figure 6D). These results confirm that while the NH36sap global

protection is mediated by CD4+ and CD8+ lymphocytes, the

contribution to immune response of the F3 protein is mainly

mediated by CD4+ T cells with a minor contribution of CD8+ T

cells.

Table 2. Development of NH36-specific cellular immune response. ELISA of cytokines in supernatants of mice splenocytes.

Treatment
IFN-c after
immunization (gg/ml)

IFN-c after
challenge (gg/ml)

TNF-a after
immunization (pg/ml)

TNF-a after
challenge (pg/ml)

Controls IC95% Saline 21.27–9.20 –1.6528.10 29.20287.88 29.522188.78

NH36sap 0.39240.82 0.08–11.11 8.65–220.89 210.50–110.38

F1sap 21.15–7.81 23.50–28.21 20.39–82.80 238.81–181.67

F2sap 25.58–19.00 23.58–22.19 212.01–76.98 15.21–117.22

F3sap 25.26–19.66 24.77–48.45 24.77–148.27 224.43–250.07

Means of vaccines NH36sap 20.61 5.60 114.77 49.94

F1sap 3.32 12.35 41.20 71.43

F2sap 6.71 9.30 32.48 66.21

F3sap 7.20 21.84 71.74 112.82

The mean of one group of data of vaccinated mice (results of one experiment with n = 7–8 mice per treatment) is or not included in the 95% CI of control groups.
doi:10.1371/journal.pntd.0000866.t002

Figure 5. Development of NH36-specific cellular immune response as disclosed by intracellular staining analysis of splenocytes in
vitro cultured with NH36 before and after L. chagasi infection. Anti-CD4-FITC and anti-CD8-FITC antibodies were used for labeling the cell
surfaces and anti-IFN-c-APC, anti-TNF-a-PE and anti-IL-10-PE for intracellular staining. In order characterize the TH1 response bars represent the ratio
of IFN-c/IL-10 and TNF-a/IL-10 producing cells. Results represent mean + SE of two independent experiments (n = 7–8 mice per treatment). * p,0.05
indicate significant differences from the saline treated controls, # from F1sap, # from F2sap, and X from the NH36sap vaccine.
doi:10.1371/journal.pntd.0000866.g005
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Regarding the parasitological assessment of infection and as

expected from the results of the humoral and cellular immune

responses, significant differences were found (p = 0.011) and the F3

vaccine induced the highest efficacy with a 88.23% parasite load

reduction (p,0.05) (Figure 7). The reduction due to F3 vaccine

was not significantly different from that due to the NH36 vaccine

(37.06%), which in spite of that, exhibited more than 1000 LDU in

2 of 6 vaccinated mice (Figure 7). The F3sap vaccine also induced

a 20.9% reduction (p,0.05) of the liver/body relative weight (not

shown). The F1 vaccine, on the other hand, did not provide

protection (Figure 7) in spite of the results of the antibody, FACS,

ICS and cytokine analyses.

Epitope prediction programs disclosed three H2-Ld peptide

nonamers for CD8+ lymphocytes in NH36 (Figure 2). The

YPPEFKTKL CD8+ epitope is located in F1 fragment and the

SPVAEFNVF and DPEAAHIVF epitopes in the F2 fragment.

Among the epitopes for CD4+ lymphocytes, the peptides

ELLAITTVVGNQ (IAd allele) and FRYPRPKHCHTQ (IEd

allele) with the highest predicted affinity, are located in F1 and F3,

respectively (Figure 2) while two peptides with lower affinity are

located in F3, one in F1 and one in F2.

Aiming to identify the NH36 domain responsible for the NH36

cross-protection to other infections caused by Leishmania species

[14,16,17], we also assayed the protective efficacy of NH36 and its

Figure 6. Development of cell-mediated immune response as disclosed by in vivo depletion with anti-CD4+ and anti-CD8+
monoclonal antibodies. Leishmania chagasi parasite-load (A and B) and percent of liver/corporal relative weight (C and D) in mice vaccinated
with NH36sap and F3 sap vaccine and treated with rat serum, anti-CD4+ or anti-CD8+ or the combination of anti-CD4+ and anti-CD8+ MAbs. Maximal
parasite load reduction was achieved in mice that received either the NH36sap or the F3sap vaccines and rat serum (rat IgG) as controls for antibody
treatment. Bars represent the mean + SD (5 mice per each treatment). The parasite load is expressed in LDU values (number of amastigotes per 600
liver cell nuclei/mg of liver weight) (A and B). Hepatomegaly was assessed by the individual increment in liver relative weight expressed as percent of
the body weight. + p,0.05 significant differences between treatments.
doi:10.1371/journal.pntd.0000866.g006

Figure 7. Protective efficacy of vaccinated mice against L. chagasi infection. The individual L. chagasi liver parasite load of vaccinated and
control groups is expressed in LDU values (number of amastigotes per 600 liver cell nuclei/mg of liver weight) of 2 independent experiments, each
with 4–8 mice per vaccine group. *p,0.05 significant differences from the saline controls, # from the F1sap and # from the F2sap vaccines. The
mean averages of LDU values are: 1632.64 (sal); 1027.50 (NH36sap); 1806.49 (F1sap); 1469.91 (F2sap) and 192.14 (F3sap).
doi:10.1371/journal.pntd.0000866.g007
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fragments in the TL model. Vaccinated mice were challenged with

infective L amazonesis promastigotes on their footpads. Significant

differences in footpad sizes were detected until week 6 after

infection (p,0.0001) (Figure 8A). The NH36sap, F1sap and F3sap

vaccines reduced lesion sizes in comparison to the F2sap vaccine

(p,0.05) and to the saline treated controls (p,0.05). Furthermore,

the parasite load evaluation in footpad lesions coming from

Leishmania amazonensis DNA dosage by Real Time PCR performed

on week 6 after infection, disclosed, in agreement to what has

already been described for protection against L. chagasi (Figures 6

and 7) that only the F3 fragment (C-terminal domain) was effective

against L.amazonensis infection (Figure 8B). Indeed, significant

differences were found in the parasite load (p = 0.039). Despite the

spontaneous negativation of 5 of the 10 untreated controls, the

F3sap vaccine significantly reduced the parasite load to zero in all

mice promoting 100% reduction of parasite load (p,0.05) when

compared to the untreated controls (mean = 9.87 promastigotes)

and to the F2 vaccinated mice (mean = 42.6 promastigotes). In

both the VL and TL models, the C-terminal domain of NH36 (F3)

is the main target of the immunity and protective efficacy against

the pathogen infection with a minor immunogenic contribution

detected in the N-terminal domain (F1).

Although in some variables (anti-NH36 antibodies, ratio of

TNF-a/IL-10 CD4 producing cells, footpad swelling in vaccina-

tion against L. amazonensis) no significant differences were found

between the effects of the NH36 and the F3sap vaccines, in many

others, the superiority of the F3 over the NH36 vaccine was

evident. We calculated the increment in the immunoprotective

effect of the F3 vaccine taking in consideration all the variables

that showed significant differences between the two formulations

(Table 3). We found that the F3 vaccine developed a 36.73%

higher average protective effect than the NH36 vaccine.

Furthermore, the possible long-term protection generated by

the F3sap vaccine was assayed in Balb/c mice submitted to 3

weekly interval vaccinations with either F1, F2 or F3 peptides in

saponin formulations and challenged, 4 weeks after completing all

vaccinations. The results of parasite load evaluation are summa-

rized in Figure 9 and disclosed a 97.5% level of protection

generated only by the F3 vaccine compared to the saline controls

(p,0.05) and the F2sap vaccine (p,0.01) revealing that the C-

terminal domain of NH36 includes the epitopes of the Nucleoside

hydrolase NH36 involved in the induction of long-term protection

against VL.

Discussion

Our study has disclosed very reliable information about

immunoprotection against VL. As expected for the protection

Figure 8. Protective efficacy of vaccinated mice against L. amazonensis infection. (A) Evolution of the size of footpad lesions of mice
challenged with 105 metacyclic promastigotes of L.amazonensis one week after completing vaccinations. Results are from 2 independent experiments
with 5 animals per treatment. Lesions development was followed by measuring the increment in the thickness of the infected footpad compared to
the thickness of the contra-lateral non-infected footpad. Results represent the mean + SE of the footpad measurements. (B) The number of
promastigotes of Leishmania amazonensis in the footpad lesions as disclosed by Real Time PCR assay. The horizontal lines represent the mean
averages. *p,0.05 significant differences from the saline controls and # from the F2sap vaccines.
doi:10.1371/journal.pntd.0000866.g008
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generation, significant inverse correlations were found between the

decrease of both liver LDU and liver/body relative weight and the

increases of IDR (2p = 0.049) and ratios of TNF-a/IL-10 CD4+
producing cells (2p = 0.014). Accordingly, we demonstrated that

the F3 peptide vaccine was capable of increasing the IDR and the

ratios of TNF-a/IL-10 CD4+ T cells and of decreasing the

parasite load and hepatomegaly. Thus, in our model and

confirming previous results [36–43], the increase of IDR and the

ratio of TNF-a-CD4+ producing cells are the immunological

parameters correlated with protection against VL. Also similar to

what has already been reported [44,45] the ratios of IFN-c/IL-10

producing CD4 T cells were not correlated to the decrease of

LDU or hepatomegaly (p.0.05), but were correlated to the

increase of IDR, CD4+ T cells and IgG, IgG2a and IgG2b

antibodies (p,0.023 for all variables). Therefore, in our model, the

increase in IFN-c producing cells was not a correlate for protection

and the F1 vaccine which indeed promoted these increases did not

give protection.

The epitope prediction programs disclosed the CD8+ epitope

YPPEFKTKL in F1 and the SPVAEFNVF and DPEAAHIVF

CD8+ epitopes in F2 while no CD8+ epitope was found in the F3

fragment. In agreement to that, the ICS and in vivo depletion

assays disclosed that protection generated by the F3 vaccine is

predominantly mediated by CD4+ T cells, suggesting that the

CD8+ stimulating activity of the NH36 vaccine is related to those

epitopes located in the F1 and/or F2 sequences. Furthermore, the

epitopes with the highest predicted affinity for CD4+ lymphocytes,

are located in F1 and F3, while the two lower affinity CD4

peptides are located in F3. Epitope prediction therefore, suggested

the strongest capability of F3 for CD4+ T cell mediated protection

and antibody synthesis.

After challenge, and as described before [28] increased levels of

IFN-c and TNF-a were secreted by mice vaccinated with F1 and

F3 peptides but not with the NH36 protein. Our results correlate

to the presence of 3 important CD4+ T cell epitopes in F3. They

correspond to a sequence of 14, 12 and 14 amino acids,

respectively, making a 40 amino acid potent sequence. For each

vaccine dose containing NH36 (314 amino acids) these 40 amino

acids represent only 12.7% of the main active component. On the

other hand, they represent a 34.8% of the 115 amino acid

sequence of peptide F3 meaning that the F3 vaccine has a 2.7

enrichment of the main active component. This might explain the

earlier induction of IFN-c and TNF-a by F3sap vaccine, its

strongest efficacy (88–90.55% of reduction of parasite load) and

the lower potential of the NH36 vaccine for generation of DTH,

IFN-c/IL-10 ratio of CD4+ and CD8+ T cells as well as the

reduction of hepatomegaly and parasite load detected in this

(37.06% and 65.90%) and in previous investigations (67.80–

79.00%), respectively [14,25].

There is an increase also in the ratio of TNFa/IL-10 but not of

IFN-c/IL-10 CD4+ producing cells in NH36 vaccinated mice

after challenge that was not detected by the cytokine ELISA assay.

This might be due to the higher sensitivity of the ICS technique.

Another possible reason for that would be the sequence of events

involved in the CD4+ T cell differentiation [46]. TNF-a is

considered to be the most ubiquitous cytokine and it is produced

by most activated CD4+ T cells [reviewed in 46] generated under

conditions that favor TH1-cell differentiation. It proved to be

important in protection against VL [36–43]. Optimal protection

would be achieved by having a population of multifunctional T

cells that can mediate an effector function quickly and have a

Figure 9. Long-term protection generated by the F3sap vaccine. Balb/c mice were vaccinated with NH36sap, F1sap, F2sap or F3sap at the
indicated time intervals, through the sc route, followed by the intravenous challenge with L. chagasi amastigotes 28 days after the last immunization.
Bars represent the mean 6 SD of the individual parasite load in liver measured by LDU (one experiment, n = 3–4 mice). *p,0.05 significant
differences from the saline controls and # from the F2sap vaccine.
doi:10.1371/journal.pntd.0000866.g009

Table 3. Superiority of the F3 over the NH36 vaccine.

Variable F3 NH36 Enrichment

IDR 24 h after immunization 0.262 0.178 32.06%

IDR 48 h after immunization 0.173 0.114 34.10%

IDR 48 h after challenge 0.243 0.191 21.40%

Ratio IFN-c/IL-10 CD4 T cells 1.23 0.77 37.39%

Reduction of parasite load (in vivo depletion) 90.5 65.90 27.18%

Reduction of parasite load L chagasi 88.23 37.06 57.99%

Reduction of parasite load L. amazonensis 100 53.00 47.00%

Mean + SD

36.73+12.33%

Calculation was performed according the following equation = (F3-NH36/F3)
values x 100 = protective effect increment.
doi:10.1371/journal.pntd.0000866.t003
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reservoir of memory T cells that secrete IL-2, TNF-a or both.

Once CD4+ T cells have developed into IFN+-TNF+-IL-2+ T cells

they have three potential fates: they can persist as memory or

effector T cells, they can further differentiate into less functional T

cells or they can die following activation [46].

The model for effector and memory CD4+ T-cell differentiation

of Seder [46] involves the earliest secretion of TNF-a followed by

IL-2, by TNF-a and IL-2 and by the later IFN-c-TNF-a-IL-2

secretion in CD4+ cells that can persist as memory or effector T

cells. The finding of TNF-a producing cells in mice vaccinated

with NH36sap and challenged could indicate the existence of an

early effector cell-response generated by the vaccine. On the other

hand, mice vaccinated with the F3 peptide that contains a higher

density of the immunoprotective epitopes show a more advanced

stage of CD4+ T cell differentiation with a more intense and

suggestive combined secretion of IFN-c and TNF-a that indicates

the optimized effector function of CD4 T cells and the potential

generation of long-term memory T cells. Therefore, our results

might indicate the presence of an early TNF-a secreting response

by CD4+ T cells of mice vaccinated with the less potent NH36

vaccine and the presence of single-TNF-a and/or double TNF-a-

IFN-c producers in mice vaccinated with the most potent F3

fragment. The percents of cell producing IFN-c or potential

double TNF-a-IFN-c producers are much lower in NH36 mice

and yet not significantly different from the saline control. In

agreement with the results of ICS, the ELISA assay of splenocyte

supernatants after infection, which probably correspond to

multiple different cells, shows that the F3, not the NH36, induced

an increase in IFN-c secretion. In our study the ICS was carried

out by the independent labeling of the T cell populations secreting

IFN-c, TNF-a and IL-10 and not by multiparameter cytometry.

In order to establish if the increase in TNF-a and IFN-c producing

T cells caused by the F3 vaccination treatment is due to TH1

multifunctional T cell differentiation [46,47] or if it is the result of

the secretion by distinct independent T cells, a further multipa-

rameter cytometry analysis will be necessary. Our preliminary

experimental results of mice challenged one month after

vaccination however suggest the existence of memory T cells

and the induction of long-term protection by F3 vaccine. Indeed,

97.5% of parasite load reduction was detected disclosing that the

vaccine is able to generate both effector and memory T cells

responsible for the immunoprotective response. Further experi-

ments with challenges performed after one month of complete

vaccination should bring relevant information on the extension of

the long-term protection generated by the F3 fragment.

Vaccines eliciting a high frequency of single-positive IFN-c
producing cells may be limited in their ability to provide durable

protection [46,47]. Most vaccine studies for infections requiring

TH1 responses measure the frequency of IFN-c producing cells as

the primary immune correlate of protection. Although IFN-c is

clearly necessary, using it as a single immune parameter may not

always be sufficient to predict protection [47]. TNF-a is another

effector cytokine that can mediate control of intracellular

infections. Indeed, IFN-c and TNF-a synergize in their capacity

to mediate killing of pathogens [47]. As described in our

investigation for the F3 vaccine mediated protection against L.

chagasi, Darrah et al. [47] reported that vaccine-elicited protection

against L. major was completely abrogated upon depletion of CD4+
T cells. Also, depletion of IFN-c or TNF-a at the time of infection

abolished vaccine mediated protection [47]. The total frequency of

antigen-specific IFN-c+ cells was not predictive of vaccine-elicited

protection. In contrast, the analysis showed a correlation between

the frequency of multifunctional (IFN-c, IL-2 and TNF-a triple-

positive) CD4+ T cells and the degree of protection [47].

In our investigation, the analysis of the cell-mediated immune

response confirmed the epitope prediction analysis indicating that

protection induced by NH36 vaccine is mediated by equal

proportions of CD4+ and CD8+ T cells and it is even extended

by protection generated by F3 vaccine which is mediated

predominantly by CD4+ with a minor contribution by CD8+ T

cells. This is an outstanding property of the C-terminal domain of

NH36 considering the difficulties to obtain CD4+ mediated

immune protection against protozoa infections [30]. The CD8+ T

cell contribution of the NH36 vaccine might be related to the

CD8+ epitopes predicted for the F1 sequence.

NH36 is a strong phylogenetic marker for the Leishmania genus

[1,2] and the finding of 93–99% of homology between the NHs

amino acid sequences of L. donovani, L. major [7], L. chagasi, L.

infantum, L. mexicana, L. amazonensis and L. tropica [7,13] explains the

previously detected cross-protection [14,16,17]. Vaccination with

NH36 of L. donovani promoted an 88% reduction of the L. chagasi

parasite load [14] and induced a 65%, 80.4% and 97% reduction

of the skin lesion sizes or parasite loads of mice with tegumentary

leishmaniasis by L. mexicana [14], L. amazonensis [16] and L. major

[17], respectively. We showed that while reduction of the lesion

size due to L. amazonensis infection was promoted by immunization

with either the F1 or F3 of NH36, in agreement with our findings

on modulation of infection by L. chagasi, the reduction of parasite

load was only determined by the F3sap. The increase in size of

infected footpads is a specific measure of the progress of infection

since the normal increase of footpad size with corporal growth is

subtracted. It might be argued that the lesion size might also be

influenced by the amount and nature of the local inflammatory

response [48] which might be mediated by the B2R receptor for

the released bradykinin at the local of infection [49]. In Swiss and

C57BL/6 mice infected with L. amazonensis, the histopatological

primary footpad lesion analysis showed liquefactive necrosis and

inflammatory infiltrate mainly consisting of macrophages filled

with amastigotes and rare lymphocytes [48]. Interestingly, the

study of the dermal ear infection with L. amazonensis in C57Bl/6

mice showed that the absence of the TLR2 receptor determined

the reduction of both the parasite load and the recruitment of

inflammatory cells [50]. On the other hand, the generation of an

inflammatory response is expected to determine a bradykinin-

mediated partial protection of mice vaccinated against leishman-

iasis using a saponin adjuvant [Nico D, Souza LOP, de Almeida

LN, Monteiro ACS, Scharfstein J, et al., unpublished results]. In

spite of those evidences, in the present investigation, the footpad

sizes were significantly diminished only by vaccination treatment

with NH36, F1 and F3 and saponin but not with F2-saponin or

saline indicating that the sustained small footpad sizes are more

related to the protection generated towards the antigenic

sequences used for vaccination than to the inflammatory response

generated by the Leishmania infective challenge or by the saponin

adjuvant.

In this investigation, the RTPCR although sensitive enough for

dog diagnosis [35] generated results that were not directly related

to the increase of the whole footpad lesions (Pearson correlation

coefficient, p = 0.726). While all control animals developed

footpad lesions (mean+ SE = 0.008+0.0036) only 5 out of 10

showed parasites. In our model, the footpad swelling detected the

protective contribution of the F1 and F3 vaccines while the

RTPCR disclosed only the most potent F3 peptide as the main

domain of NH36 involved in generation of immunoprotection.

Both results were significantly different from controls and are in

agreement with the results obtained in the vaccination against L.

chagasi infection confirming the C-domain of NH36 as the one

containing the more important epitopes of potential cross-
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protection. The finding of few parasites in footpads might be

related to the lower infective challenge used in this work. We used

105 infective promastigote of L. amazonensis, as Al Wabel et al. did

for Balb/c vaccination with recombinant NH36 against L. major

infection [17]. Coelho et al. [51], on the other hand, used 106 L.

amazonensis infective promastigotes and obtained more enhanced

increases of Balb/c footpads. The use of a higher inoculum would

probably also determine an increase of the parasite load in our

model. However, it is worth noting that in our investigation,

although using a lower challenge, significant differences concern-

ing protection were found.

Similar to what described by Kao et al. for the P. aeruginosa Type

IV pilus vaccine [29] the superiority of the F3 vaccine over the

NH36 cognate protein vaccine is evident by the 36.73% average

increase in IDR, IFN-c/IL-10 CD4 T cells and reduction of L.

chagasi and L. amazonensis parasite load. This is probably related to

the 2.7 enrichment in the important epitope sequences which

represent 34% of the F3 peptide. Vaccine protection could be

further improved by the generation of shorter recombinant

peptides of the F3 fragment composed only of the combination

of the most relevant epitopes (research in progress).

The F1sap vaccine induced lower levels of antibody response

that was not inhibited by the synthetic predicted peptides. The F2

vaccine, on the other hand, showed the worst performance of the

three fragments tested. It showed the lowest inhibition of binding

assay and was only able to increase the anti-NH36 IgG2b and

IgG1 antibodies to the same extent as the other vaccines. This

increase seems to be related to specific properties of the QS21

saponin-containing adjuvant [52] since no other antibody

enhancements were detected after vaccination with F2. After

challenge, the levels of IgG1 antibodies were reduced in

vaccinated mice but increased in controls indicating that

protection against the VL-TH2 expansion was achieved by all

vaccines despite the typical TH1/TH2 mixed response expected

for the use of saponin adjuvant [52]. The IgM response was also

reduced after challenge confirming the establishment of a

secondary IgG antibody immune response.

Despite the many antigens tested for vaccination in laboratory

models [53] only two other formulations are under analysis as

tentative synthetic vaccines against Leishmania [54,55]. Thirty

overlapping 9-mer peptides of the kmp-11 protein of L. donovani

trigger IFN-c secretion by human CD8+ T cells and contain many

potential HLA class I-restricted T cell epitopes that can be

presented by different HLA molecules [54]. The other formulation

is the polyprotein Leish110f composed of the TSA, LmSTI1 and

LeIF candidates fused in tandem induced mice protection

mediated by CD4+ T cells with a higher secretion of TNF-a
followed by IFN-c and IL-2 [55].

To our knowledge the description of the C-terminal domain of

the NH36 antigen as the main active component in protection

against leishmaniasis constitutes the first case of a licensed vaccine

to evolve to a DNA, to a recombinant defined protein formulation

and then progress to a synthetic vaccine. Our findings contribute

to the potential development of synthetic vaccine formulations

against parasites of the Leishmania genus and against multiple

microorganisms which have NHs in their replication pathways.
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30. Parra-López C, Calvo-Calle M, Cameron TO, Vargas LE, Salazar LM, et al.

(2006) Major Histocompatibility Complex and T cell interactions of a universal

T-cell epitope from Plasmodium falciparum circumsporozoite protein. J Biol Chem
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