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Adaptive Importance Sampling to Accelerate Training
of a Neural Probabilistic Language Model

Yoshua Bengio and Jean-Sébastien Senécal

Abstract—Previous work on statistical language modeling has
shown that it is possible to train a feedforward neural network
to approximate probabilities over sequences of words, resulting in
significant error reduction when compared to standard baseline
models based on -grams. However, training the neural network
model with the maximum-likelihood criterion requires computa-
tions proportional to the number of words in the vocabulary. In
this paper, we introduce adaptive importance sampling as a way
to accelerate training of the model. The idea is to use an adaptive

-gram model to track the conditional distributions produced by
the neural network. We show that a very significant speedup can
be obtained on standard problems.

Index Terms—Energy-based models, fast training, importance
sampling, language modeling, Monte Carlo methods, probabilistic
neural networks.

I. INTRODUCTION

STATISTICAL machine learning often involves a difficult
compromise between computational costs and statistical

qualities of the model. From a statistical perspective, a major
challenge is the high dimensionality of the data and the curse
of dimensionality, and this is a very serious issue in statis-
tical language modeling. In recent years, a particular class of
neural-network-based statistical language models has been
proposed [1] to help deal with high dimensionality and data
sparsity, and it has been successfully applied and extended
for speech recognition by smoothing -gram language models
[2], [3] and stochastic grammars [4]. These models have a
parametrization that remains compact when the size of the
vocabulary increases and when the number of words of context
increases. They rely on learning a continuous-valued repre-
sentation for words and word subsequences that could help to
efficiently represent context. Even though the computations
required for training and probability prediction only scale lin-
early with vocabulary size and context size, these computations
are much greater than those required with classical statistical
language models such as -grams [5], because of the need
to normalize conditional probabilities overall all the words in
the vocabulary, at each prediction step. To make these neural
network approaches more applicable, it is thus important to find
ways to speed up these algorithms. This paper proposes a novel
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method to decrease training time, based on adaptive importance
sampling, that has allowed speeding up training by a factor of
150 in the experiments reported here.1 The idea of adaptive im-
portance sampling is to train a model from which learning and
sampling are very efficient ( -gram based) to track the neural
network. During training of the neural network, when a word
is presented in its context, instead of increasing its conditional
likelihood and decreasing the conditional likelihood of all other
words, it is sufficient to decrease the conditional likelihood of
a few negative examples. These negative examples are sampled
from the efficient -gram-based model that tracks the relative
conditional probabilities of the neural network language model.

Statistical language modeling focuses on trying to estimate
the underlying distribution that generated an observed
sequence of words (in this paper, we refer to the
subsequence as , for simplicity).

The distribution can be represented by the conditional prob-
ability of the next word given all the previous ones

(1)

In order to reduce the difficulty of the modeling problem, one
usually compresses the information brought by the last words
by considering only the last words, thus yielding the ap-
proximation

(2)

The conditional probabilities can be easily mod-
eled by considering subsequences of length , usually referred
to as windows, and computing the estimated joint probabilities

and ; the model’s conditional probabil-
ities can then be computed as

(3)

Successful traditional approaches, called -grams [6]–[8],
are based on simple counting of frequency of appear-
ance of the various windows of words in a training
corpus, i.e., on the empirical conditional probabilities

, where
is just the frequency of subsequence in the training corpus.
The main problem with is that it quickly overfits as
becomes large, and also quickly requires storing almost all of
the data set in memory. In order to smooth , it is usually

1We reported a negligible change in perplexity with respect to the standard
method.
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Fig. 1. Architecture of the neural language model. The first layer is linear with local connections and temporally shared parameters (the matrix C and D whose
columns are word features).

combined with lower order -grams ( with ) in order
to redistribute some of the probability mass to sequences of
words that have never been seen in the data but whose -long
suffix has been seen [6], [7].

A. Fighting the Curse of Dimensionality With Word Similarity

The problem faced by -grams is just a special case of the
curse of dimensionality. Word vocabularies being usually large,
i.e., in the order of ten to hundred thousand words, modeling
the joint distribution of, say, ten consecutive words potentially
requires to free parameters. Because these models
do not take advantage of the similarity between words (but see
class-based models, discussed and compared in [1]), we believe
that they tend to redistribute probability mass too blindly, mostly
to sentences with a very low probability. This can be seen by
looking at text generated by such models, which is often non-
sensical except for short sentences.

A way to approach that problem, first proposed in [9] (but
see [1] for more details), and inspired by previous work on sym-
bolic representation with neural networks, such as [10] and [11],
is to map the words in vocabulary into a feature space in
which the notion of similarity between words corresponds to the
Euclidean distance between their feature vectors. The learning
algorithm finds a mapping from the discrete set of words in

to a continuous semantic space.2 In the proposed approach,
this mapping is achieved by simply assigning a feature vector

to each word of the vocabulary. The vectors
are considered as parameters of the model and are thus learned
during training, by gradient descent.

The idea of exploiting a continuous representation for words
was successfully exploited in [12] in the context of an -gram-

2There has been some concern about whether the learned space is actually
that continuous; in some way, it might still act as a discrete space if it is largely
constituted of small neighborhoods within which variations do not affect the
result at all. That question is still an open issue.

based model. That of a vector-space representation for symbols
in the context of neural networks was also used in terms of a
parameter sharing layer [13], [14].

B. Energy-Based Neural Network for Language Modeling

Many variants of this neural network language model exist, as
presented in [1]. Here, we formalize a particular one, on which
the proposed resampling method will be applied, but the same
idea can be extended to other variants, such as those used in
[2]–[4].

The probabilistic neural network architecture is illustrated in
Fig. 1. This looks like a time-delay neural network [15] because
it has local shared weights (the matrix of feature vectors ) in
its first layer.

The output of the neural network depends on the next word
and the history which is a shorthand notation for as
follows. In the features layer, one maps each word symbol
in string to a -dimensional vector (with ). In
the framework considered here, the target (next) word is mapped
to a different feature space than the context (last) words, i.e., a
different set of feature vectors is used for the next word, whereas
the context words share the same feature vector map3

(4)

where is the th column of the word features ma-
trix of free parameters for the context words and is the
th column of the word features matrix for the next

word . The resulting -vector (the concatenation of the

3We chose to use a different set of features for the next word in order to
add more parameters to the model. Preliminary experiments also showed that
it yielded better results than sharing the feature vectors.
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projections ) is the input vector for the next layer, the hidden
layer

(5)

where is a vector of free parameters (hidden units biases),
is a matrix of free parameters (hidden layer weights),

and is a vector of hidden units activations. Finally, the output
is a scalar energy function

(6)

where is a vector of free parameters (called biases) and
(hidden to output layer weights) is a matrix of free

parameters with one column per word. Note that and the
history (context) are used in computing .

To obtain the joint probability of , we normalize the
exponentiated energy by dividing it by the normal-
izing function

(7)

The normalization is extremely hard to compute, because it
requires a number of passes (computations of ) exponen-
tial in the number of context words. However, the conditional
probability is easier to normalize

(8)

where is tractable, though still hard
to compute because the number of vocabulary words is usu-
ally large and the activation requires many multiplications
and additions (approximately the number of hidden units times

, for each value of ).
The previous architecture can be seen as an energy-based

model [16], that is a probabilistic model based on the Boltz-
mann energy distribution. In an energy-based model, the prob-
ability distribution of a random variable over some set is
expressed as

(9)

where is a parametrized energy function which is low for
plausible configurations of , and high for improbable ones, and
where (or in the con-
tinuous case) is called the partition function. In the case that
interests us, the partition function depends on the context , as
seen in (8). will, therefore, represent a possible next word,
i.e., , and probabilities are conditional on the context .

The main step in a gradient-based approach to train such
models involves computing the gradient of the log–likelihood

with respect to parameters . The gradient can
be decomposed in two parts: positive reinforcement for the ob-
served value and negative reinforcement for every ,
weighted by , as follows [by differentiating the neg-
ative logarithm of (9) with respect to ]:

(10)

Clearly, the difficulty here is to compute the negative reinforce-
ment when is large (as is the case in a language modeling
application). However, as is easily seen as a fundamental prop-
erty of exponential family models [17], the negative part of the
gradient is nothing more than the average

(11)

In [18], it is proposed to estimate this average with a Gibbs sam-
pling method, using a Markov chain Monte Carlo process. This
technique relies on the particular form of the energy function in
the case of the Boltzmann machine, which lends itself naturally
to Gibbs sampling. The idea of applying sampling techniques to
speedup language models, e.g., of the exponential family is not
new. See, for example, [19].

Note that the energy-based architecture and the products
of experts formulation can be seen as extensions of the very
successful maximum entropy models [20], but where the basis
functions (or “features,” here the hidden units activations) are
learned by penalized maximum likelihood at the same time as
the convex combination parameters, instead of being learned in
an outer loop, with greedy feature subset selection methods.

II. APPROXIMATION OF THE LOG–LIKELIHOOD GRADIENT BY

BIASED IMPORTANCE SAMPLING

If one could sample from , a simple way to estimate (11)
would consist in sampling points from the net-
work’s distribution and to approximate (11) by the av-
erage

(12)

This method, known as classical Monte Carlo, yields Algorithm
1 for estimating the gradient of the log–likelihood (10). The
maximum speedup that could be achieved with such a proce-
dure would be . In the case of the language modeling
application we are considering, it means a potential for a huge
speedup, because is typically in the tens of thousands and

could be in fact quite small.

Algorithm 1: Classical Monte Carlo Approximation of the
Gradient

Add positive contribution

for to do Estimate negative contribution

Sample negative example

Add

negative contribution

end for

However, this method requires to sample from distribution
, which we cannot do without having to compute

explicitly. That means we have to compute the partition function
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, which is still hard because we have to compute for each
.

Fortunately, in many applications, such as language mod-
eling, we can use an alternative, proposal distribution from
which it is cheap to sample. In the case of language modeling,
for instance, we can use -gram models. There exist several
Monte Carlo algorithms that can take advantage of such a dis-
tribution to give an estimate of (11).

A. Classical Importance Sampling

One well-known statistical method that can make use of a
proposal distribution in order to approximate the average

is based on a simple observation. In the discrete
case

(13)

Thus, if we take -independent samples
from and apply classical Monte Carlo to estimate

, we obtain the following
estimator known as importance sampling [21]:

(14)

Clearly, this does not solve the problem: although we do not
need to sample from anymore, the ’s still need to be
computed, which cannot be done without explicitly computing
the partition function.

B. Biased Importance Sampling

Fortunately, there is a way to estimate (11) without sampling
from or having to compute the partition function. The pro-
posed estimator is a biased version of classical importance sam-
pling [22]. It can be used when can be computed ex-
plicitly up to a multiplicative constant: in the case of energy-
based models, this is clearly the case since .
The idea is to use to weight the , with

and , thus yielding
the estimator [23]

(15)

Though this estimator is biased, its bias decreases as in-
creases. It can be shown to converge to the true average (11)
as .4

The advantage of using this estimator over classical impor-
tance sampling is that we need not compute the partition func-
tion: we just need to compute the energy function for the sam-
pled points. The procedure is summarized in Algorithm 2.

4However, this does not guarantee that the variance of the estimator remains
bounded. We have not dealt with the problem yet, but maybe some insights could
be found in [24].

Algorithm 2: Biased Importance Sampling Approximation
of the Gradient

Add positive contribution

vector

for to Estimate negative contribution

Sample negative example

end for

Add negative

contributions

III. ADAPTING THE SAMPLE SIZE

Preliminary experiments with Algorithm 2 using the uni-
gram distribution showed that whereas a small sample size was
appropriate in the initial training epochs, a larger sample size
was necessary later to avoid divergence (increases in training
error). This may be explained by a too large bias—because
the network’s distribution diverges from that of the unigram,
as training progresses—and/or by a too large variance in the
gradient estimator.

In [25], we presented an improved version of Algorithm 2 that
makes use of a diagnostic, called effective sample size (ESS)
[26], [22]. For a sample taken from proposal distri-
bution , the ESS is given by

ESS (16)

Basically, this measure approximates the number of samples
from the target distribution that would have yielded, with clas-
sical Monte Carlo, the same variance as the one yielded by the
biased importance sampling estimator with sample .
We can use this measure to diagnose whether we have sampled
enough points. In order to do that, we fix a baseline sample size
. This baseline is the number of samples we would sample in a

classical Monte Carlo scheme, if we were able to do it. We then
sample points from by “blocks” of size until the ESS
becomes larger than the target . If the number of samples be-
comes too large, we switch back to a full backpropagation (i.e.,
we compute the true negative gradient). This happens when the
importance sampling approximation is not accurate enough and
we might as well use the exact gradient. This safeguarding con-
dition ensures that convergence does not get slower than the one
obtained when computing the exact gradient.
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IV. ADAPTING THE PROPOSAL DISTRIBUTION

The method was used with a simple unigram proposal dis-
tribution to yield significant speedup on the Brown corpus [25].
However, the required number of samples was found to increase
quite drastically as training progresses. This is because the un-
igram distribution stays fixed, while the network’s distribution
changes over time and becomes more and more complex, thus
diverging from the unigram.

An early idea we tried was starting with a unigram distribu-
tion and switching to an interpolated bigram, and then to an in-
terpolated trigram during training. After each epoch, we com-
pared the model’s perplexity with that of the unigram, the bi-
gram, and the trigram. For example, once the model’s perplexity
would become lower than that of the interpolated bigram, we
switched to the interpolated bigram as our proposal distribution.
Once the perplexity would become lower than the interpolated
trigram’s, we switched to the interpolated trigram.

This procedure provided even poorer results than just using a
simple unigram, requiring larger samples to get a good approxi-
mation. We think that this is because , as was pointed out in [27],
the bigram and trigram have distributions that are much different
from neural network language models. In [1], it was also shown
that learning a simple linear interpolation with a smoothed tri-
gram helps achieve an even lower perplexity, confirming that the
two models give quite different distributions.

Clearly, using a proposal distribution that stays “close” to
the target distribution would yield even greater speedups, as we
would need less samples to approximate the gradient. We pro-
pose to use an -gram model that is adapted during training
to fit to the target (neural network) distribution .5 In order to
do that, we propose to redistribute the probability mass of the
sampled points in the -gram to track . This will be achieved
with -gram tables which will be estimated with the goal
of matching the order conditional probabilities of samples
from our model when the history context is sampled from
the empirical distribution. The tables corresponding to different
orders will be interpolated in the usual way to form a predic-
tive model, from which it is easy to sample. Hence, we try to
combine ease of sampling ( is a -gram model, which can
be sampled from very quickly) with approximating the model
distribution (represented implicitly by the neural network).

Let us thus define the adaptive -gram as follows:

(17)

where are the submodels that we wish to estimate, and
is a mixture function such that .

Usually, for obvious reasons of memory constraints, the prob-
abilities given by an -gram will be nonnull only for those
sequences that are observed. Mixing with lower order models
allows to give some probability mass to unseen word sequences.

Let be the set of words sampled from . The number
is chosen by using the ESS approximation (see Section III). Let

be the total probability mass of

5A similar approach was proposed for Bayesian networks in [28].

the sampled points in -gram and
the unnormalized probability mass of these points in . Let

for each . For each and
for each , the values in are updated as follows:

(18)

where is a kind of “learning rate” which needs to be set em-
pirically: it adds an extra hyperparameter to the whole system,
which can be selected by comparing the evolution of perplexity
on a small data set for different values of . Note that

so the update only redistributes probability mass within .
Since the other probabilities in are not changed, this shows
that after the update.

Note that we would like to match the model proba-
bility with the target probability

, but we can only com-
pute the conditional probabilities within the sample

, so we try to match with
. The proposed update rule

actually moves around and tries to equate
with . More precisely, (18) can be seen as gradient
descent in a quadratic criterion whose corresponding first-order
conditions give rise to conditional probabilities that are in av-
erage correct (conditional on and on the sampled
set ). This criterion is the expected value (over contexts

and sample sets ) of .
The first-order condition is that the average over and of

equals the average of the renormalized target
probability . Performing a stochastic gradient step
with learning rate gives rise to (18). Hence, if the learning
rate is reduced appropriately, one would get convergence to
the global minimum of this criterion.

The parameters of functions are updated
so as to minimize the Kullback–Leibler divergence

by gradient
descent.

We describe here the method we used to train the ’s in
the case of a bigram interpolated with a unigram, i.e.,
above. Rather than having the ’s be a function of all possible
histories , we instead clustered the ’s into equivalent classes
and the ’s were a function only of the class of . Specifically,
in our experiments, the ’s were a function of the frequency
of the last word . The words were thus first clustered in
frequency bins . Those bins were built so as
to group words with similar frequencies in the same bin while
keeping the bins balanced.6 Algorithm 3 describes the process
by which those frequency bins were built.

6By balanced, we mean that the sum of word frequencies does not vary a lot
between two bins. That is, let jw j be the frequency of word w in the training
set, then we wish that 8i; j; jw j � jw j .
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Algorithm 3: Building Balanced Frequency Bins

Target frequency sum per bin

while do

is the next
maximum frequency word

if

end if

end while

Then, an “energy” value was assigned for .
We set and , where

is the sigmoid function and
being the class (bin) of . The energy

is thus updated with the following rule, trying again to
match our target distribution :

(19)

where is a learning rate.

Algorithm 4: Adaptive Algorithm

Add positive contribution

vector

ESS

while ESS and threshold do

for to do Estimate negative contribution

Sample negative example

end for

ESS

end while

if threshold then

Compute the gradient on all words

else

Add
negative contributions

end if

Update proposal distribution according to (18) and (19)

Update proposal

V. EXPERIMENTAL RESULTS

We ran some experiments on the Brown corpus, with different
configurations. The Brown corpus consists of 1 181 041 words
from various American English documents. The corpus was di-
vided in train (800 000 words), validation (200 000 words), and
test (the remaining 180 000 words) sets. The vocabulary was
truncated by mapping all “rare” words (words that appear three
times or less in the corpus) into a single special word. The re-
sulting vocabulary contains 14 847 words.

On this data set, a simple interpolated trigram, serving as
our baseline, achieves a perplexity of 253.8 on the test set. The
weights of the interpolation are obtained by maximizing likeli-
hood on the validation set. Better results can be achieved with a
Kneser–Ney backoff trigram, but it has been shown in [1] that
a neural network converges to a lower perplexity on Brown,
and that the neural network can be interpolated with the trigram
for even larger perplexity reductions. Kneser–Ney is simple but
more sophisticated and better performing smoothing techniques
have been proposed; see, for example, [29]–[31]. In all settings,
we used 30 word features for both context and target words, and
80 hidden neurons. The number of context words was three. The
learning rate for the neural network was gradually decreased
using , with the number of updates
performed since the beginning of training. We used a weight
decay of to regularize the parameters. The output biases

in (6) were manually initialized so that the neural network’s
initial distribution was equal to the unigram (see [1] for de-
tails). This setting is the same as that of the neural network that
achieved the best results on Brown, as described in [1]. In this
setting, a classical neural network—one that does not make a
sampling approximation of the gradient—converges to a per-
plexity of 204 in test, after 18 training epochs. In the adaptive
bigram algorithm, the parameters in (18) and in (19) were
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Fig. 2. Comparison of errors between a model trained with the classical algorithm and a model trained by adaptive importance sampling. (a)Training error with
respect to number of epochs (b) Validation and test errors with respect to CPU time.

both set to , as preliminary experiments had showed it to be
a fair value for the model to converge. The were initially
set to so that and for all

; this way, at the start of training, the target (neural network)
and the proposal distribution are close to each other (both are
close to the unigram).

Fig. 2(a) plots the training error at every epoch for the network
trained without sampling and a network trained by importance

sampling, using an adaptive bigram with a target ESS of 50. The
number of frequency bins used for the mixing variables was ten.
The figure shows that the convergence of both networks is sim-
ilar. The same holds for validation and test errors, as is shown
in Fig. 2(b). In this figure, the errors are plotted with respect to
computation time on a Pentium 4 2 GHz. As can be seen, the net-
work trained with the sampling approximation converges before
the network trained classically even completes one full epoch.
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Fig. 3. Comparison between the mean number of samples (for each stochastic gradient estimation) and the number of epochs shows an almost linear relation
between them.

Quite interestingly, the network trained by sampling con-
verges to an even lower perplexity than the ordinary one
(trained with the exact gradient). After nine epochs (26 h),
its perplexity over the test set is equivalent to that of the one
trained with exact gradient at its overfitting point (18 epochs,
113 days). The sampling approximation thus allowed more
than 100-fold speedup (104.3, more precisely). Both algorithms
were implemented in C++ using shared code that attempted to
be efficient.

Surprisingly enough, if we let the sampling-trained model
converge, it starts to overfit at epoch 18—as for classical
training—but with a lower test perplexity of 196.6, a 3.8%
improvement. Total improvement in test perplexity with respect
to the trigram baseline is 29%.

Apart from the speedup, the other interesting point to note if
we compare the results with those obtained by using a nonadap-
tive proposal distribution [25], which yielded a speedup factor
of 18, is that the mean number of samples required in order to
ensure convergence seems to grow almost linearly with time (as
shown in Fig. 3), whereas the required number of samples with
the nonadaptive unigram was growing exponentially.

An important detail is worth mentioning here. Because
is large, we first thought that there was little chance to sample the
same word twice from the proposal at each step to really
worry about it. However, we found out the chance of picking
twice the same to be quite high in practice (with an adap-
tive bigram proposal distribution). This may be simply due to
Zipf’s law concentrating mass on a few words. It may also be
because of the particular form of our proposal distribution (17).
The bigram part of that distribution being nonnull
for only those words for which , there are con-
texts in which the number of candidate words for which

is small, thus there are actually good chances

to pick twice the same word. Knowing this, one can save much
computation time by avoiding to compute the energy function

many times for the same word . Instead, the values
of the energy function for sampled words are kept in memory.
When a word is first picked, its energy is computed in
order to calculate the sampling weights (see Algorithm 4). The
value of the sampling weight is kept in memory so that, when-
ever the same word is picked during the same iteration, all that
needs to be done is to use the copied weight, thus saving one
full propagation of the energy function. This trick increases the
speedup from a factor of 100 to a factor of 150.

Because the adaptive bigram is, supposedly, a close approxi-
mation of the neural network’s distribution, we thought of eval-
uating it on the test corpus. Clearly, if the bigram were close
enough, it would yield a comfortable perplexity, with the ad-
vantage of being a lot quicker. However, experiments showed a
larger perplexity than a simple interpolated trigram.

VI. FUTURE WORK

Previous work [1] used a parallel implementation in order
to speedup training and testing. Although our sampling algo-
rithm works very well on a single machine, we had much trouble
making an efficient parallel implementation of it. The reason is
that the parallelization has to be done on the hidden layer; thus
for each backpropagation, we have to accumulate the gradient
with respect to the feature parameters (the ’s) for each pro-
cessor and then share the gradients. The process of sharing the
gradient necessitates huge resources in terms of data transmis-
sion, which we have found to take up to 60% of the backpropa-
gation time. One way to deal with the problem is to desynchro-
nize the sharing of the parameters on the feature vectors, i.e.,
allowing the computations to continue while the messages are
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transmitted. Since the changes in the feature vectors are quite
small, this should affect convergence only slightly.

The other problem we face is that of choosing the target ESS.
Currently, we have to choose it conservatively enough to guar-
antee convergence. In fact, we could achieve the same conver-
gence by adapting it to the gradient’s variance: as training pro-
gresses, the gradient is likely to become noisier, thus necessi-
tating a greater number of samples for even the classical Monte
Carlo estimate to yield good approximations. We could thus
save even more computations by targeting a smaller ESS at the
start of training and increasing it afterwards.

Finally, although accelerating the gradient’s calculation is an
important matter, an accelerated method for estimating the prob-
abilities is left unaddressed by our work. Interesting methods
that use the network only for the most frequent words have
yielded impressive results [32]. These authors rely mostly on the
idea of restricting the vocabulary predicted by the neural net-
work in order to reduce computation time, and that technique
yields savings both during training and testing. On the other
hand, what we propose here only helps during training. If one
wants to compute the actual conditional probabilities of the next
word given the context using the neural network model, one still
has to compute the sum over all the words in the vocabulary.
Other techniques such as those discussed in [2] and [3] may be
used to speedup computation during testing.

One issue that should be looked at are the factors that would
make the proposed adaptive importance sampling method work
better or worse. Based on the experiments we have performed,
an important factor is that the approximation of the target model
by the -gram used for sampling should be sufficiently good,
otherwise the importance sampling becomes inefficient (that ex-
plains why most of the speedup is obtained initially when the
neural network has a model that is not too different from what
an -gram can capture). For this reason, exploring higher order

-grams for the proposal distribution might become necessary
for modeling more complex data. In particular, experiments on
much larger data sets are required to evaluate how this method
scales.

VII. CONCLUSION

In this paper, we describe a method to efficiently train a prob-
abilistic energy-based neural network. Though the application
was to language modeling with a neural network, the method
could in fact be used to train arbitrary energy-based models as
well.

The method is based on the observation that the gradient of
the log–likelihood can be decomposed in two parts: positive and
negative contributions. The negative contribution is usually hard
to compute because it involves a number of passes through the
network equivalent to the size of the vocabulary. Luckily, it can
be estimated efficiently by importance sampling.

We had already argued for such a method in [25], achieving
a significant 19-fold speedup on a standard problem (Brown).
Here, we show that an even greater speedup can be obtained
by adapting the proposal distribution as training progresses so
that it stays as close as possible to the network’s distribution.
We have found that it is possible to do it efficiently by reusing

the sampled words to reweight the probabilities given by an
-gram. With the new method, we were able to achieve a 150-

fold speedup on the same problem, with a negligible change in
perplexity. Analysis of the required sample size through time
also suggests that the algorithm will scale with more difficult
problems, because the mean sample size remains approximately
proportional to the number of epochs.
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