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Abstract Telesurgical Robot Systems (TRSs) have
been the focus of research in academic, military, and
commercial domains for many years. Contemporary
TRSs address mission critical operations emerging in
extreme fields such as battlefields, underwater, and
disaster territories. The lack of wirelined communi-
cation infrastructure in such fields makes the use of
wireless technologies including satellite and ad-hoc
networks inevitable. TRSs over wireless environments
pose unique challenges such as preserving a certain re-
liability threshold, adhering some maximum tolerable
delay, and providing various security measures depend-
ing on the nature of the operation and communication
environment. In this study, we present a novel approach
that uses information coding to integrate both light-
weight privacy and adaptive reliability in a single proto-
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col called Secure and Statistically Reliable UDP (SSR-
UDP). We prove that the offered security is equivalent
to the existing AES-based long key crypto systems,
yet, with significantly less computational overhead. Ad-
ditionally, we demonstrate that the proposed scheme
can meet high reliability and delay requirements of
TRS applications in highly lossy environments while
optimizing the bandwidth use. Our proposed SSR-UDP
protocol can also be utilized in similar cyber-physical
wireless application domains.

Keywords wireless telesurgery · teleoperation ·
privacy · statistical UDP · statistically reliable UDP

1 Introduction

Telesurgical Robot Systems (TRSs) have been recently
the focus of research in academic, military, and com-
mercial domains [37]. Such systems are designed to
allow a master (called surgeon controller) to operate on
a slave (called surgical robot) located at a distant geo-
graphical location. The first generation surgical robots
are constructed to perform minimally invasive surgeries
on a patient, using a console placed in the operating
room. On the other hand, contemporary TRSs address
mission critical operations emerging in adversarial en-
vironments such as battlefields, underwater, and disas-
ter territories at remote regions [16, 20, 29]. The lack of
wirelined communication infrastructure in such fields
makes the use of wireless technologies including satel-
lite and ad-hoc networks inevitable. Although these
wireless platforms demonstrate varying characteristics
[41], design and implementation of a secure and reliable
wireless communication conforming to the application
tolerable delay and packet loss for TRSs is crucial.
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TRSs are categorized as real-time interactive net-
work applications. Similar to the other real-time ap-
plications, TRSs are constrained with maximum delay
and loss requirements. Recently, a new communica-
tions protocol (ITP), has been developed to allow in-
teroperability of surgical robots and controllers [25].
To achieve lowest possible latency, ITP employs light-
weight UDP protocol. To deal with small amount of
packet losses, ITP relies on repositioning based on the
expected continuity of the motion [25]. ITP assumes an
acceptable network performance and infrastructure in
order to meet reliability, privacy, and security require-
ments of TRSs. However, these assumptions do not
hold when considering insecure, high loss, and high de-
lay nature of wireless environments such as battlefield
ad hoc network environments.

To cope with security issues, researchers have ex-
tended the ITP to provide basic encryption and au-
thentication using DTLS [34]. However, this approach
introduces fixed extra overhead that contributes further
to the packet delay problem without addressing the re-
liability issues. Unlike wirelined networks, the primary
source of packet loss in wireless is bit errors instead
of congestion. Depending on the type of the opera-
tion being performed a TRS session needs to achieve
different reliability levels. To illustrate, a mediocre op-
eration might tolerate up to 10% average packet loss
(at least 90% average reliability) in an environment
providing only 80% reliability on the average, whereas,
an intricate surgery might tolerate at most 2% average
packet loss in the same environment. As the packet
retransmission delay is usually unaffordable in wireless
TRSs, using Forward Error Correction (FEC) is mostly
the only viable solution. However, just combining tra-
ditional crypto techniques such as AES with FEC [35]
obtains unacceptable delay for wireless TRSs as the
AES encryption delay overhead increases significantly
with the traffic redundancy (see Section 7.1). In ad-
dition, many of the existing FEC methods based on
digital fountain [11, 28, 33, 39] does not provide privacy
protection of the transmitted messages and the FEC
methods based on network coding [2, 23, 26] are tai-
lored for multicast communication rather than unicast.
It should be noted that Luby [28] mentions that LT
code (which is a fountain code) packets are generated
by some random linear combination of the message
packets with the random degree d, where the random-
ness is shared by the transmitter and the receiver. To
some readers, this may be considered as the privacy
protection since the receiver could only decrypt the
encoded packets with the knowledge of the random-
ness information. However, the random space could
exhaustively be searched within 2k steps, where k is

the number of grouped packets. Thus these randomized
fountain LT codes does not provide privacy.

In this paper, we present a novel adaptive infor-
mation coding scheme to support both confidentiality
and adaptive reliability simultaneously. The protocol
introduced in this study, Secure and Statistically Re-
liable UDP (SSR-UDP), demonstrates the fact that
security and reliability could be well-integrated into
a single protocol in order to accommodate the TRSs
requirements in wireless environments. In a typical
TRS application, the controller constantly generates
messages to be transmitted through a wireless channel
and the robot collects and processes the messages at
the application layer. SSR-UDP is a light-weight layer
located between transport and application layers of the
Internet Protocol Suite and it is responsible for ad-
dressing security and reliability requirements of TRSs.
At the sender side SSR-UDP accumulates k messages
while adhering to the application delay constraints
and encodes these messages into a batch of n packets
(k < n). At the receiver side SSR-UDP immediately
recovers all k messages given that at least k out of n
packets in the batch have been successfully received.
SSR-UDP introduces redundancy while translating k
messages into n packets in order to maintain required
α reliability in the long run over a wireless channel that
provides average β reliability such that 0 < β < α < 1.
Additionally, our information coding scheme used in
SSR-UDP automatically provides both confidentiality
and reliability with significantly less delay overhead
compared to other standalone crypto approaches such
as DTLS [34], TLS/SSL [15], and IPSec [24]. Moreover,
our information coding scheme is adjustable to provide
varying security key lengths depending on the TRS
application requirements.

Our analytical proofs show that suggested privacy
scheme can be as strong as AES with 128 and 256 key
length, but with significantly less delay overhead (up to
70% for AES-128 and n = 4, k = 3). In the reliability
side, we have shown that even with high variation of
packet loss, the protocol can achieve α = 99% tar-
get reliability threshold over a channel providing only
90% average reliability with a reasonable redundancy
ranging between 30–45%. Additionally, we show that
our protocol can achieve α = 98% long run reliability
requirement with 86% redundancy over a channel pro-
viding 76% reliability on the average.

Although the presented technique can be poten-
tially used with general real-time wireless applica-
tions that require both security and reliability, this
technique addresses particularly wireless telesurgery
because of its unique characteristics which require
dynamic adjustment of both security and reliability
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simultaneously based on not only network condition
but also the type and context of the tele-operation.
Therefore, unlike many other real-time wireless appli-
cations, telesurgery requires constant tuning of network
traffic coding parameters to enable both tele-operation-
aware and network-aware adaptation for secure and
reliable telesurgery.

The rest of the paper is organized as follows: in
Section 2 we present the related work; the proposed
information coding technique, cryptographic functions
and their analysis is introduced in Sections 3, 4, and 5,
respectively; in Section 6 we present dynamic adjust-
ment of message encoding based on the observed loss
and delay in the channel; we discuss the experimental
results in Section 7; finally, we present conclusions and
future works in Section 8.

2 Related work

Since the first telesurgical robot system [18] which was a
couple of mechanical hands cabled to a remote handle,
many successful works have been done in the field [6,
19, 21]. Brady and Tarn [10], developed a framework
for extending teleoperation systems to Internet. Project
RAVEN [30] is an implementation of TRSs and it
proved that remote surgeries can successfully be real-
ized over the Internet via UDP.

Lum et al. [29], showed that RAVEN can be utilized
over transatlantic Internet and wireless radio links.
Brett et al., demonstrated an experimental surgical
robot in extreme conditions where the installation of
wireless networks is not feasible by using unmanned
airborne vehicles as a network topology. Finally, an-
other study shows that RAVEN can be deployed in
undersea environments [16].

In this study we develop an information coding
scheme along with an application layer protocol for
addressing both security and reliability in TRSs over
wireless links. Our coding scheme is based on adaptive
forward error correction [35] (FEC). Many FEC tech-
niques based on digital fountain have been designed
in the past [11, 28, 33, 39] for efficient and reliable
multicast. In digital fountain technique, the source host
divides a given message into k packets and generates a
potentially infinite supply of encoding packets from the
original k packets. The receiver host reconstructs the
original message from any of the received k encoding
packets. However, digital fountain techniques are not
applicable to TRSs because in these techniques privacy
protection is not addressed. Network coding is also
used for multicast communication [22, 23, 26, 27]. In
a network coding based communication, each inter-

mediate node receives data packets from its incoming
edges, combines them by some encoding algorithms,
and transmits the encoded data via its outgoing edges.
When the receiver receives sufficiently many packets,
it could recover the original message with high prob-
ability. Although network coding provides a proba-
bilistic framework for increasing network capacity and
reliability, it is not applicable to TRSs because (1) it
requires the deployment of network coding capability
into intermediate nodes, (2) it is suitable for multicast
communication rather than unicast, and (3) privacy
protection is not addressed.

3 Information coding

In the traditional one-time-pad encryption scheme
(Vernam Cipher), one may encrypt a message m with
the key a by letting the cipher text c = am. This scheme
could be extended to achieve reliability and privacy
at the same time. Specifically, our information coding
scheme is based on a secure key generation function
G, which takes a secret key key (shared between the
parties) and an arbitrary length string x to return a
fixed length (e.g., 256 bits) string G(key, x). The ad-
versary sees a sequence (x1, a1), (x2, a2), . . ., (xq, aq)

of pairs of inputs and their corresponding outputs ai =
G(key, xi). The adversary breaks the key generation
function G if she can find an input x, not included
among x1, . . . , xq, together with its corresponding valid
output a = G(key, x). In this paper, our security model
is based on the chosen message attacks. That is, the
adversary is allowed to choose the sequence of inputs
x1, x2, . . . , xq. Note that, the other commonly used ad-
versary model is the known message attacks where the
adversary is not allowed to choose the sequence of mes-
sages. The model of chosen message attack is stronger
than the known message attack model. In particular,
we will use the following model which is adapted from
the security model for message authentication code
(MAC) [8].

Definition 1 A key generation function G is (ε, t, q, L)-
secure if any adversary that is not given the key key,
is limited to spend total time t, and sees the values of
G(key, ·) on q inputs x1, x2, . . . , xq of its choice, each
of length at most L, cannot generate the output for an
input x (�= x1, . . . , xq) with a probability better than ε.

In the following, we will present our information
coding scheme with a secure key generation function
G as defined in Definition 1. In the next sections, the
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construction of G based on secure hash functions H
(e.g., SHA-256) will be presented and exact analysis
techniques [7, 8] will be used to relate the hardness of
breaking our information coding scheme to the crypto-
graphic strength of the underlying hash functions.

Let key be the ephemeral session key establishment
for the secure communication between the sender and
the receiver. First, a secure key generation function G
is used to generate the message authentication key b =
G(key, “HMACKEY”).

We may assume that the basic data blocks are el-
ements from a finite field Fp. Let (k, n) be an ap-
propriately chosen pair of integer parameters, which
could be configured for specific applications based on
the network capacity and reliability requirements as
described in Section 6.

Assume that we have a message flow m1, m2, m3, · · ·
for delivery. We group these messages into blocks of k
and each group will be assigned a sequence number seq
and will be delivered as one group. In other words, the
messages m1, · · · , mk will be put into one group and the
messages mk+1, · · · , m2k will be put into another group.

For each group with the sequence number seq,
the coefficient matrix is generated by letting ai, j =
G(key, i|| j||seq) where 1 ≤ i ≤ n, 1 ≤ j ≤ k, and || is
the concatenation operation. Note that this coefficient
matrix is only valid for this group of messages with the
sequence number seq.

Assume that we have one group of messages
(m1, . . . , mk) ∈ Fk

p for delivery. Let

y1 = a1,1m1 + . . . + a1,kmk

· · ·
yn = an,1m1 + . . . + an,kmk (1)

The encoded vector for this group of messages is
(y1, . . . , yn) (n ≥ k). Using the message authentication
key b , the sender will generate the message authentica-
tion tags (e.g., using the HMAC scheme [7]) for each of
these n messages, and deliver these n encoded messages
together with their authentication tags to the receiver.1

The receiver will be able to recover the original
message vector (m1, . . . , mk) as long as it can receive
at least k un-corrupted packets (any k packets will be
OK and the order is not important). For example, if the
receiver node collects k packets yi1 , . . . , yik , then with

1The order of the encoded messages are not important.

high probability she could recover the original mes-
sage as

⎛
⎜⎜⎝

m1

m2

. . .

mk

⎞
⎟⎟⎠ =

⎛
⎝

ai1,1 · · · ai1,k

· · · · · · · · ·
aik,1 · · · aik,k

⎞
⎠

−1
⎛
⎜⎜⎝

yi1
yi2
. . .

yik

⎞
⎟⎟⎠ (2)

As an example, let n = 4 and k = 3. We can use four
UDP packets to deliver the encoded information and
we can tolerate one packet loss. In other words, if the
UDP packet loss is at most 25%, we have achieved reli-
able communication channels using the UDP protocol.

In the following, we use a simple explanation with
k = 3 to illustrate the advantages of the information
coding method.

– If there is only one path, and the information cod-
ing method is not exploited, then we need three
time unit to deliver the three UDP packets without
reliability.

– Let n = 4 and assume that there is only one path.
Then we can use four UDP packets to deliver
the encoded information and we can tolerate one
packet loss. At the same time, we achieve per-
fect message privacy without using any encryption
method to avoid the overhead. In other words,
if the UDP packet loss is at most 25%, we have
achieved reliable communication channels using
the UDP protocol.

– Let n = 4 and assume that there are two disjoint
routing paths. Then our above analysis shows that
we can achieve reliable and private packet delivery
within two time units with UDP packet if the packet
loss is at most 25%.

– In the experiment of the ITP protocol, the com-
mand channel UDP packets are delivered at the
frequency of 1000 Hz. Now assume that for the
underlying network, the UDP packet loss is at most
10%. Then our above analysis shows that with a de-
livery frequency of 1100 Hz, we can achieve perfect
private and reliable communication channels based
on UDP packets.

3.1 Relations to network coding

In a random linear network coding scheme, the inter-
mediate nodes choose random coefficients to mix the
incoming messages. Network coding scheme is opti-
mized for multicast communications. In our informa-
tion coding scheme, the source node uses key generated
coefficients to mix the messages. From network coding
point of view, our scheme could be considered as a
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private point-to-point version of network coding. From
information coding viewpoint, network coding is kind
of hop to hop information coding.

The major cost for the information coding and de-
coding comes from the encoding equation (1) and de-
coding equation (2). In particular, if the underlying field
Fp is larger (e.g., |p| = 160), then the information cod-
ing and decoding will be very expensive for real time
communications. In practice, we can use small integers
(e.g., 8-bit integers) coefficients for linear combinations
on the field Fp. For example, we may choose ai from
{0, · · · , 255} and each message is 160 bits (that is, an
element from the field F2160 . In particular, the decoding
coefficients matrix in the Eq. 2 could be efficiently cal-
culated with table look-ups. Our experiments show that
with this technique, the decoding and encoding costs
are negligible in real-time communications. It should be
noted that similar techniques have been developed for
network coding in [17].

When we use information coding over small integers
of 8 bits, (n, k) should be chosen in such a way that 8nk
is large enough (e.g., 128) to avoid exhaustive search
attacks.

4 Secure key generation functions

Cryptographic hash functions (e.g., SHA-256) usually
do not use any cryptographic keys. Extensive research
has been done to design Message Authentication Code
(MAC) with keyed cryptographic hash functions. For
example, in [7], NMAC and HMAC constructions were
designed to use the underlying hash functions as a
“black-box” in a way that the hardness of forging an au-
thenticated message can be related to the cryptographic
strength of the underlying hash function.

For the convenience of exact analysis, we will use
the HMAC-style constructions [7] for our secure key
generation functions. Most existing cryptographic hash
functions (e.g., SHA-256 and MD5) are based on the it-
erated construction. The iterated construction is based
on a basic component called compression function
which processes short fixed-length inputs, and is then
iterated to hash arbitrarily long inputs. A compression
function f accepts two inputs: an internal state variable
of length l-bits and a block of data of length b -bits. For
SHA-256, we have l = 256 and b = 512.

An iterated hash function is defined as follows. First
an l-bit IV is fixed. Let x = x1x2x3 · · · xn be the input
where xi’s are blocks of length b each and xn+1 =
|x| be the message length. The output of the iterated
hash function H on x is hn+1 where h0 = IV and hi =
f (hi−1, xi) for i = 1, 2, · · · , n + 1.

Based on the iterated hash functions, the authors in
[7] designed hash based message authentication func-
tion HMAC(key, x) as the leftmost t bits of H(key ⊕
opad,H(key ⊕ ipad, x)), where opad and ipad are two
fixed b -bits constants, and t is pre-determined parame-
ter (e.g., t often takes the value of 64 when HMAC is
used with MD5). Our secure key generation function is
essentially the HMAC function. We call it key gener-
ation function and use a different notation G since our
emphasis here is on key generation instead of message
authentication and we do not need to truncate the out-
puts of the external-layer hash function. In particular,
let H be a hash function which takes arbitrary length
inputs and outputs l-bits strings. Then the secure key
generation function is defined as:

G(key, x) = H(key ⊕ opad,H(key ⊕ ipad, x))

where ipad is “the byte 0x36 repeated b/8 times” and
opad is “the byte 0x5C repeated b/8 times” which is
similar to the HMAC standard.

The authors in [7] show that their HMAC construc-
tion is secure if the underlying hash function is collision
resistant and if the keyed compression f is a secure
MAC on messages of b bits, where the keyed compres-
sion function fk is defined as fk(x) = f (k, x) for |k| = l
and |x| = b . For the security model in Definition 1, we
could get the following theorem.

Theorem 1 (Adapted from Bellare et al. [7]) If the
keyed compression function f is an (ε, q, t, b)-secure
MAC on messages of b bits, and H is collision-resistant,
then G is an (ε, t, q, L)-secure key generation function.

Proof This follows from [7, Theorem 4.1] and the dis-
cussion in [7, Section 5.2]. ��

5 Security analysis of information coding scheme

In order to relate the hardness of our information cod-
ing scheme to the cryptographic strength of the under-
lying hash function, we first show that if the underlying
hash function H is collision resistant, then it is hard for
the attacker to generate a linear combination of outputs
of the key generation function G on two inputs. Notice
that this condition is different from output generation
for the key generation function since the attacker may
not need to generate the outputs for two inputs in order
to generate a linear combination of them somehow.

Lemma 1 If G is a (ε, t, q, L)-secure key generation
function, then for any adversary that is not given the
key key, is limited to spend total time t − 1, and sees
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the values of the function G(key, ·) computed on q − 1
inputs x1, x2, . . . , xq, xq−1 of its choice, each of length at
most L, cannot f ind a tuple (γ1, γ2, γ3, x, x′) for which
|γ1| + |γ2| �= 0 and γ1G(key, x) + γ2G(key, x′) = γ3 with
probability better than ε. Notice that here, the adver-
sary does not need to f ind the values of G(key, x) or
G(key, x′).

Proof Let us fix the parameters q, t, L first. For a
contradiction, we assume that there is an attacker Aγ

with success probability ε to generate a linear equation
γ1G(key, x) + γ2G(key, x′) = γ3 after q − 1 queries on
G(key, ·) at its own choice of the inputs. In the fol-
lowing, we will design an adversary AG that forges the
output of G(key, ·) on an input by spending q queries
and time t with a success probability of ε. This shows
that any adversary that tries to generate the above
mentioned linear equation with the above resources has
a probability of success of at most ε. This proves the
theorem.

We construct AG by oracle access to Aγ . Note
that Aγ works as follows. It queries the key gen-
eration function G adaptively on inputs x1, . . . , xq−1

and gets the responses G(key, x1), . . ., G(key, xq−1).
Note that the choice of xi by Aγ may depend on the
choices of x1, . . . , xi−1 and the responses G(key, x1),
. . ., G(key, xq−1). It finally outputs (γ1, γ2, γ3, x, x′).
If x �= xi, x′ �= xi for i = 1, 2, . . . , q − 1, |γ1| + |γ2| �= 0,
and γ1 Fk(m) + γ2 Fk(m′) = γ3 then the attack succeeds,
otherwise it fails.

The goal of AG is to forge G(key, ·), by query-
ing G(key, ·) on inputs that AG chooses. We need to
describe how AG chooses the messages, how it gets
responses, and how it outputs a message x and an
authentication tag on it.

AG first activates Aγ which produces queries to
the function G(key, ·) that will be answered by AG
via oracle queries to G(key, ·) again. In particular, Aγ

adaptively chooses messages x1, . . . , xq−1. For each of
the messages xi, AG queries G(key, ·) for the answer
G(key, mi). Aγ finally outputs (γ1, γ2, γ3, x, x′). We dis-
tinguish the following cases:

1. Aγ fails the attack. That is, x = xi or x′ = xi for
some i = 1, 2, . . . , q − 1 or γ1 = γ2 = 0. In this case,
AG fails to output the forgery.

2. x �= xi and x′ �= xi for all i = 1, 2, . . . , q − 1 and
γ1 = 0 or γ2 = 0. Without loss of generality, we as-
sume that γ1 = 0. In this case, AG outputs (x, γ3/γ1)

as the forgery.
3. x �= xi, x′ �= xi for all i = 1, 2, . . . , q − 1 and γ1γ2 �=

0. In this case, AG queries G(key, ·) for the

answer G(key, x) and outputs
(

x′, γ3−γ1G(key,x)

γ2

)
as

the forgery.

Now we analyze the success probability ε of the
above algorithm AG . AG fails whenever Aγ fails. That
is, Aγ fails to output a successful tuple (γ1, γ2, γ3, x, x′)
for which γ1G(key, x) + γ2G(key, x′) = γ3. Thus the fail-
ure probability of AG is bounded by the failure proba-
bility ε of Aγ . ��

Now we are ready to show the exact security of the
information coding scheme.

Theorem 2 If G is a (ε, t, q, L)-secure key generation,
function, then for any adversary that is not given the
key key, is limited to spend total time t − nk, and sees
the values of the function G(key, ·) computed on q − nk
inputs x1, x2, . . . , xq, xq−nk of its choice, each of length
at most L, learns zero information of the messages
(m1, . . . , mk) in the information coding scheme.

Proof It should be noted that in the information coding
scheme, there are (n + 1) × k unknowns and only n
packets are delivered along the paths. These n packets
correspond to n equations. By Theorem 1, the adver-
sary may not be able to generate further (n + 1) × k − n
equations by oracle access to the secure key generation
function. Thus without the knowledge of the ephemeral
session key key, the adversary learns zero information
of the original message vector (m1, . . . , mk). ��

Corollary 1 If the keyed compression function f is an
(ε, q, t, b)-secure MAC on messages of b bits, and H is
collision-resistant, then the adversary learns zero infor-
mation of the messages (m1, . . . , mk) in the information
coding scheme.

Proof This follows from Theorems 1 and 2. ��

6 Dynamic adjustment of (n, k)

The performance of the proposed information encod-
ing scheme depends on the careful selection of k and n
values so as to bound application experienced loss ratio
as well as to respect the security requirements of the
encoding scheme. In this section, we discuss the factors
that affect the selection and dynamic adaptation of k
and n for optimal information coding.

In telesurgery, the controller constantly generates
a single message per unit time, k of these messages
are accumulated and wrapped into n code packets via
information encoding (k < n), and all n code packets
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are streamed out over the next k unit time period. The
process of k message accumulation; n packet encoding;
and their dispatch is called a “batch transmission”. A
communication session between a sender and a receiver
consists of numerous batch transmissions depending on
k. That is, for a session with m messages in total, the
number of batches would be 
m/k� for a fixed k.

The motivation behind translating k messages into
n code packets (k < n) is to ensure with probability
α that at least k of the n code packets are success-
fully transmitted through a lossy logical channel. The α

probability could be a constant or a varying parameter
depending on the loss tolerance of the application for
the next batch. The receiver can perfectly recover the
original k messages as long as it receives at least k of
the n code packets.

In the following, we analyze constraints imposed
on n and k and discuss how to balance their values
regarding the constraints.

6.1 Constraints analysis of n

In this section, we discuss how to choose a proper
n value under the requirements dictated by the ap-
plication and constraints imposed by the networking
infrastructure. In order to convey a healthy discussion
regarding the effect of the varying n values on the
application and on the networking resources, we need
to abstract the communication between the sender and
the receiver. Remember that, loss in wirelined net-
works is mostly due to congestion, however, in wireless
environments loss is mostly due to bit errors. In our
model we have a sender and a receiver communicating
through a logical channel with packet loss probability q
and packet losses are statistically independent [5, 12].
A packet is successfully transmitted with probability
p = 1 − q. Let R be a discrete random variable de-
noting the number of successfully transmitted pack-
ets out of a batch of n code packets. Then, R has
a binomial distribution with parameters n and p, i.e.,
R ∼ Binomial(n, p). Transmission of a batch of n code
packets is regarded as a “successful batch” as long as
at least k code packets make it to the receiver through
the lossy channel. Hence, probability that a batch will
be successful is calculated as:

P{Successful Batch} = P{R ≥ k}

=
n∑

i=k

(
n
i

)
pi(1 − p)n−i (3)

Given k messages and a logical channel with successful
packet transmission probability p, our objective is to
find a value n such that the probability that at least

k out of n code packets has been received is α, i.e.,
P{Successful Batch} = α. Let m be the total messages
generated by the application and 〈k〉 be the average
k, then the expected value of successfully transmitted
SSR-UDP application messages is 〈k〉 m

〈k〉α. For conven-
tional UDP, it is mp. As a result, through a careful
selection of k and n, we can achieve α reliability over a
channel providing p reliability (α > p) in the long run.
Equivalent to Eq. 3, we can work with the expression
P{Failed Batch} = 1 − α.

P{Failed Batch} = P{R ≤ k − 1}

=
k−1∑
i=0

(
n
i

)
pi(1 − p)n−i

⇒ 1 − α =
k−1∑
i=0

(
n
i

)
pi(1 − p)n−i (4)

such that p < α

Solving Eq. 4 for n would give us the proper number
of code packets needs to be sent in order to yield a
successful batch with α probability over the channel.
However, Eq. 4 does not have a closed form solu-
tion. To develop a “numerical” solution we resorted to
normal approximation2 to the binomial distribution R
along with continuity correction. Let X be a normally
distributed random variable with parameters μ and σ 2,
i.e., X ∼ Normal(μ, σ 2), such that μ = np and σ 2 =
np(1 − p). Let Z be the standard normal form of X,
i.e., Z = (X − μ)/σ . Then

P{Failed Batch} = P{R ≤ k − 1}

⇒ 1 − α ≈ P
{

X ≤ k − 1

2

}

= P

{
Z ≤ k − 1

2 − μ

σ

}

⇒ z1−α = k − 1
2 − np√

np(1 − p)
(5)

Equation 5 is obtained by replacing μ and σ with
their real values np and

√
np(1 − p), respectively. z1−α

is the left quantile function of the standard normal

2As a rule of thumb, normal approximation to the binomial
distribution improves whilst np ≥ 5 and n(1 − p) ≥ 5. Our em-
pirical results, however, show that applying continuity correction
significantly reduces the approximation error to tolerable values
for small n and large p values.
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distribution Z . Solving Eq. 5 for n results in the final
value for n in terms of k, p, and α as follows;

n = 2k − 1 + z2
1−α(1 − p)

2p

−
z1−α

√
z2

1−α(1 − p)2 + (1 − p)(4k − 2)

2p

such that 0 < α < 1 and k ≥ 1 (6)

Given that k and α are constants in Eq. 6, as p goes
to zero, i.e., packet loss probability (q = 1 − p) goes to
one, n goes to infinity. Put in other words, as the chan-
nel becomes more and more unreliable, the number of
generated code packets in order to sustain α success
rate increases without any bound. At a heavily loaded
channel with small buffering capacity as n increases, p
will decrease which in turn cause n to increase and so
on. We take care of this potential ill-behavior (spinning
effect) in our algorithm by reducing k (which impli-
citly reduces n) as we experience consecutive decre-
ments in p.

6.2 Constraints analysis of k

In this section, we discuss how to adjust k with respect
to the application requirements and resource utiliza-
tion. Since the number of packets should be an integer,
n in Eq. 6 is rounded up and this introduces traffic waste
with an expected value of 0.5 packet/batch. For a ses-
sion with m application messages, if we use k = 1, then
it takes m batches to complete data transfer resulting in
a waste of m/2 packets, i.e., 50% unnecessary increase
in traffic load into the network.

The above analysis suggests that increasing k reduces
waste as it decreases the number of batches during
a session. However using very large k values intro-
duces two issues: (1) real-time data have an application-
dependent delay threshold and increasing k by accumu-
lating more messages will likely to increase the delay
significantly as discussed in Section 7.1, and (2) as k
increases, n also increases and sending large batches
might potentially fill an intermediate queue and cause
more packet drops. In our algorithm we dynamically
adjust the value of k based on the real-time delay
constraints of the application and observed loss rate
of the channel. To encode a group of k packets in
our information coding scheme, we need to generate a
secret coefficient matrix with kn elements, each of the
matrix elements consists of 8 bits. Thus an exhaustive
search of this secret coefficient matrix takes time 28kn.
In order to achieve RSA-1024 level of security (which
is approximately 80 bits security) we require 8kn ≥ 80

(i.e., kn ≥ 10). Given that n ≥ k + 1, this requirement
translates into k(k + 1) ≥ 10 giving us a lower bound
on k, as k ≥ 3. In our algorithm, we explicitly check that
k ≥ 3 and hence ensure that this security requirement is
always satisfied.

In summary, n is bounded below by k and optimized
with respect to p and α, and k bounded below by
3. Asymptotically, n and p are inversely proportional,
i.e., n ∝ p−1. Moreover, decreasing k decreases com-
munication delay but contributes to waste traffic. On
the other hand, increasing k increases communication
delay and potentially decreases p.

Algorithm 1 dynamically controls (k, n) values. We
assume that there are two channels; namely a data
channel from the sender to the receiver and a feedback
channel in the reverse direction. The sender receives
the success fraction of the packets that are sent in a
batch through the feedback channel. Algorithm 1 is
executed after each feedback message to calculate the
next values of k and n.

Algorithm 1 Dynamic adaptation of k, n
Input: k { current value of k }
Input: α { application reliability requirement }
Input: pnext { estimated packet success probability for the next batch }
Input: plast { estimated packet success probability for the previous (last)

batch }
Input: �p0 { previous amount of change in packet success probability }
Input: dnext { estimated channel delay for the next batch }
Input: dmax { maximum tolerable real time application delay }
Input: dimsg { delay between generation of two application messages }
Output: k, n { 3 ≤ k < n }
1 �p1 ← pnext − plast { current amount of change in packet success

probability}
2 if �p0 < 0 and �p1 < �p0 then
3 decrease k
4 else
5 if |�p1| ≤ E1 then
6 do not change k
7 else if �p1 ≥ 0 then
8 increase k
9 else

10 decrease k
11 end if
12 end if
13 denc ← estimate encoding delay
14 ddec ← estimate decoding delay
15 kmax ← θ((dmax − denc − dnext(1 + E2) − ddec + dimsg)/dimsg)

16 if k > kmax then
17 k ← kmax
18 end if
19 n ← calculate using Eq. 6
20 return k, 
n�

The algorithm controls n by changing k in order to
preserve a successful batch transmission with α proba-
bility. If there are two consecutive negative changes in
the amount of packet success probability p, we antici-
pate growing unreliability in the channel and decrease
k as suggested at lines 2 and 3 of Algorithm 1. On
the other hand, if the current reliability change is not
significant we do not update the value of k; if the re-
liability has significantly increased we utilize the chan-
nel by raising k; and if the reliability has significantly
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diminished, we avoid from more potential code packet
losses as well as the spinning effect by decreasing k as
demonstrated at lines 5–11. k is set to 3 at the beginning
of the communication session. In our experiments we
incremented k by 20% and decremented it by 40% each
time. Compared to additive increase multiplicative de-
crease model, 20–40% increment-decrement model uti-
lizes the channel more aggressively. Lines 13 and 14
requires estimating the encoding and decoding delays
in terms of the physical time, respectively. Note that
encoding/decoding delay depends on many factors in-
cluding implementation, programming language pref-
erence, CPU power, and whether the machine has a
dedicated crypto hardware. At lines 15–18, we check
whether the suggested k violates real time nature of the
application and re-adjust its value in case it does. The
factor 0 < θ < 1 lets us gain some room in terms of time
and stream the batch over that time instead of sending
it as a burst. θ is set to 0.6 in our simulations. At line 19
we calculate the value of n using Eq. 6.

Finally, the algorithm does not dictate any method
for calculating pnext (estimated packet success prob-
ability) and dnext (estimated channel delay) for the
next batch. One can use exponential moving average,
last observation, or the highest observed value which
could be obtained through feedback messages [5, 9, 36].
Nevertheless, the error in these estimations affects op-
timization of k and n.

Note that, both delay and loss probabilities are based
on varying channel properties as well as the estimation
that we do for the next batch before dispatching it.
Even if in the case of constant channel loss probability
model (Section 7.2), setting the packet loss probabil-
ity to a fixed value does not necessarily mean that
each batch experiences the same amount of loss. Some
batches may experience a few packet losses while some
other batches may not experience any loss at all. More-
over, estimating the loss probability of the next batch
is based on historical data which always possesses a
random amount of estimation error. Hence, another
piece of randomness comes from the estimation. As a
result, having a constant value of pnext during an entire
SSR-UDP session is negligibly small.

7 Performance evaluations

7.1 Theoretical analysis of information coding
performance

In this section, we briefly discuss the theoretical per-
formance of our solution against other solutions such
as TLS and DTLS. The ephemeral session key estab-

lishment procedures for our scheme and DTLS are ses-
sion key establishment based on public key certificates.
Thus they have approximately the same performance.
Furthermore, the ephemeral session key is established
only once per session and will not have too much impact
on the real time performance.

In the DTLS/TLS protocol, the communication con-
tent is encrypted via symmetric ciphers such as AES or
stream ciphers (for TLS only). In our scheme, both the
sender and the receiver need to generate the coefficient
matrix via the secure hash function and carry out n
linear operations for the sender and k linear operations
for the receiver in the field Fp as specified in the Eqs.
1 and 2. Furthermore, the receiver needs to carry out a
k × k matrix inversion over the small integers of 8 bits
as specified in the Eq. 2. For any given sequence num-
ber seq, both the sender and the receiver can compute
the values of αi, j = G(key, i|| j||seq) for 1 ≤ i ≤ n and
1 ≤ j ≤ k in advance. In our scheme, the values of (n, k)

could be dynamically adjusted during the protocol exe-
cution based on network performance. However, both
the sender and the receiver could choose a reasonable
large (n0, k0) and pre-compute the values of αi, j for all
1 ≤ i ≤ n0 and 1 ≤ j ≤ k0 in advance. Then, in the real-
time execution of the protocol with n ≤ n0 and k ≤ k0,
both the sender and the receiver have all the required
values of αi, j in hand. With these pre-computations,
the real time required operations for the sender is n
linear operations and the operations for the receiver is
k linear operations and a k × k matrix inversion.

AES encryption/decryption operations are based on
128-bit blocks. For each AES encryption/decryption
operation, we need to carry out one key expansion
(scheduling) and several rounds of iterative cipher
operations. For the CBC mode, the key expansion
(scheduling) is done once for a given key though for
other modes such as counter mode, the key expansion
(scheduling) needs to be done for each 128-bit block of
data. For the reason of convenience, in our following
comparison, we assume that DTLS (or TLS) uses AES-
128 with CBC mode.

For AES-128, each encryption includes 10 rounds
and each round includes four steps: substitute bytes, shift
rows, mix columns, and add round keys. If we ignore
the fast operation shift rows, AES-128 needs to carry
out 480 linear operations (160 mix-columns, 160 add-
round-keys, and 160 substitute bytes which is S-Box
look-up) over the finite field F28 for each encryption
(decryption) of a 128-bit block.

AES-128 needs to carry out approximately 480 linear
operations over the finite field F28 for each encryp-
tion (decryption) of a 128-bit block. For our infor-
mation coding scheme, the performance depends on
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packet size and the choice of (n, k). For the reason of
convenience for comparison, we assume that each
packet is 128 bits (in practice, we could always divide
big size packets into small packets of 128 bits) and
the αi, j belongs to the finite field F28 . With these as-
sumptions, for k packets of 128-bit size data, the sender
needs to carry out 2nk linear operations over F2128 , and
the receiver needs to carry out 2k2 linear operations
over F2128 and a k × k matrix inversion over F28 . For
the k × k matrix inversion, the trivial Gaussian Elimi-
nation method takes k3 operations, Strassen algorithm
takes less than 5k2.807 operations, and Commpersmith-
Winograd algorithm takes O(k2.376) operations over
F28 .

There are other fast methods such as Strassen al-
gorithm [40] which takes less than 5k2.807 operations
over F28 and the fastest Commpersmith-Winograd [13]
algorithm which takes O(k2.376) operations over F28 .

For a modular operation αx with x ∈ F2128 and α ∈
F28 , we can write it as α(x15215×8 + · · · + x128 + x0)

where xi ∈ F28 . Thus each linear operation over F2128

can be approximately counted as 35 operations over
F28 . For fast integer multiplication implementation
package such as MIRACL [38], it is feasible to achieve
the above approximation. That is, we can carry out one
linear operation over F2128 at the cost of 35 operations
over F28 .

In Table 1, we list the comparison data for several ex-
amples with the above assumption using various values
of k (3, 5 and 7) that obtain a reasonable delay bound
(less than 150ms one-way), and various values of n that
represent up to 50% redundancy. The AES with FEC
column presents the numbers of operations over F28

plus the estimated FEC overhead for each of the sender
and the receiver based on Raptor coding which is one
the fastest coding technique with a computation com-
plexity of n ∗ packetsize [39], the total of Info-Coding
Sender represents the approximate total numbers of

Table 1 Performance comparison of DTLS (AES based) and
info-coding for k data messages in terms of the number of
operations

(n, k) Redundancy AES Info-coding Info-coding
% with FEC sender receiver

(4,3) 25 2432 840 657
(5,3) 40 3040 1050 657
(6,3) 50 3648 1260 657
(6,5) 16 3648 2100 1875
(7,5) 28 4256 2450 1875
(8,5) 37 4864 2800 1875
(8,7) 12 4864 3920 3773
(9,7) 22 5472 4410 3773
(10,7) 30 6080 4900 3773

Table 2 Normalized cost comparison (operations/redundancy)
of DTLS (AES based) and info-coding

Redundancy AES with Info-coding
range FEC cost cost

k = 3 25–40% 41 14
k = 3 40–50% 61 21
k = 5 16–28% 51 29
k = 5 28–37% 68 39
k = 7 12–22% 61 49
k = 7 22–30% 76 61

linear operations over F28 , and the total Info-Coding
Receiver represents the approximate total numbers of
linear operations over F28 .

Tables 2 and 3 show the significant advantage of
our approach over AES over FEC. In particular,
Table 3 shows when k = 3 and the redundancy in-
creases from 25% to 50%, AES results in 59.8% in-
crease in computational overhead because the number
of AES operations increases from 41 to 61 per unit
redundancy (1%), as shown in Table 2. However, our
coding approach shows that just 20% and 0% overhead
increase under the same conditions in the sender and
receiver sides respectively. Our analysis also shows that
the advantage of our approach decreases as both k and
n increase. However, since the buffering overhead must
be minimized for bounded delay, it is very unlikely for
TRS to use large value of k particularly in wireless
networks in order to achieve less than 150 ms end-to-
end delay.3

For the Crypto++ Library [14], benchmarks for
AES encryption/decryption were obtained for a com-
puter with AMD Opteron 8354 2.2 GHz processor
under Linux. The library was compiled with GCC 4.1.2
using -O3 optimization, and x86-64/MMX/SSE2 assem-
bly language routines were used for integer arithmetic
(see [14] for details). With that configuration, AES
encryption/decryption speed is 102 MB per second. If
we take the microsecond (μs = 10−6 s) on the above
configured Linux computer as the unit time, then we
can carry out 102 Bytes AES encryption (or 3060
F28 field operations) in one unit time. Based on the
analysis in previous paragraphs, for (n, k)-based infor-
mation coding, the sender could process 3060×16

35×2n = 699
n

bytes data per unit time and the receiver could process
3060×16
k2+70k = 48960

k(k+70)
bytes data per unit time. For example,

with the above Linux configuration, and n = 4, k = 3,
the sender could process 175MB data per second and
the receiver could process 223MB data per second. For

3Note that each packet in TRS requires at least 1ms to be
produced.
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Table 3 Comparison of overhead percentage of DTLS (AES
based) and info-coding for k data messages

AES Info-coding
overhead % overhead %

k = 3 59.8 20.0
k = 5 66.5 37.9
k = 7 75.0 60.3

n = 9, k = 7, the sender could process 78MB data per
second and the receiver could process 91MB data per
second. Moreover, Table 4 shows sample benchmarks
using the above (n, k) combinations and the corre-
sponding processed data in MB per second.

7.2 Evaluation of secure and statistically reliable UDP

In this section we present our simulation-based evalu-
ations of SSR-UDP. Our simulation setup consists of
a sender, a receiver, and a logical channel between
them. The logical channel is subject to a random delay
and random loss model conforming to a distribution.
Because the simulated environment is straightforward
and logical channel loss and delay models can be used
to hide the complexities of the underlying infrastruc-
ture as well as traffic, we implemented a custom-build
simulator instead of using a more complicated simu-
lator package such as ns-2. We make our source code
and binary executable of SSR-UDP simulator publicly
available on our web site [1].

Our evaluation metrics include reliability, redun-
dancy, and waste and our parameters are applica-
tion demanded reliability (α), channel loss distribution,
and channel loss variance. Our experiments include a
sender sending real-time traffic to a receiver who sends
feedback information to adjust n and k. We used three
different channel loss probability and tracking mod-
els: (1) Uniform distribution with no loss estimation

Table 4 Benchmark comparison in MB/s of DTLS (AES based)
and InforCoding with Linux on AMD Opteron 8354 2.2 GHz

(n, k) AES-128 with Info-coding Info-coding
redundancy sender receiver

(4,3) 76.5 175 223
(5,3) 61.2 140 223
(6,3) 51 116 223
(6,5) 85 116 130
(7,5) 72.8 100 130
(8,5) 63.75 87 130
(8,7) 89.25 87 91
(9,7) 79.33 78 91
(10,7) 71.4 70 91

(UPNE), assuming unpredictable random channel loss,
for which we use the maximum observed loss rate as
the channel’s loss rate, (2) Triangular distribution with
regular loss estimating (TPRE) using exponentially
moving averages method assuming some persistence
in average, (3) Constant channel loss probability with
perfect loss estimation (CPPE), to represent the best
case scenario. In case of TPRE, we constantly set the
mode of the triangular distribution to the last gener-
ated random value to simulate wireless environment
losses. Although our worst case (UPNE) and base
case (CPPE) scenarios are unrealistic, we use them to
demonstrate the upper and lower bounds. We assume
the delay tolerance bound is 150 msec and RTT is
changing between [40–60] msec.

Note that, in all simulations we provide network
layer reliability, redundancy, and waste as the base
case. The network layer base case metrics refer to
the values obtained via conventional User Datagram
Protocol (UDP). Network layer metrics not only pro-
vide a reference point to SSR-UDP but also serve as
a comparison between SSR-UDP and UDP. Hari et
al. [4] and Bakre et al. [3] provide methods reducing
retransmissions to improve TCP protocol in wireless
environments. Reliable UDP (RFC 1151) is an attempt
to guarantee packet order delivery and improve quality
of service by implementing windowing, acknowledge-
ment, and flow control mechanisms on top of UDP.
Other studies suggest FEC based protocols tailored
for multimedia communications in wireless environ-
ments [31, 32]. However, SSR-UDP is the only protocol
addressing both security and reliability simultaneously
to the best of our knowledge. Therefore, comparing
SSR-UDP directly with any of the mentioned protocols
would not be a fair evaluation.

Empirical success rate analysis: In this part we ran
a set of simulations demonstrating how well we em-
pirically achieve the required application success rate
α and analyze its cost. At each simulation the sender
generates 10 million application messages with a rate
of 1 message/msec.

Figure 1a and 1b show the empirical message suc-
cess ratio and its related redundancy with respect to
the changing values of α in the interval [0.91–0.99],
respectively. In Fig. 1a SSR-UDP achieves at least the
required reliability α under all loss models. The top
line in Fig. 1a shows the empirical success rate with
UPNE. For UPNE, we modeled the channel loss with
Unif orm(0.05, 0.15) distribution with mean 0.10 and
we used the highest loss rate that we have observed at
any time as the loss estimation (1 − p) in our algorithm.
Since it takes the most dramatic action with respect to



Mobile Netw Appl

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

S
uc

ce
ss

 R
at

e

Application Reliability Requirement (α)

SSR-UDP Application Layer Message Success (CPPE)
SSR-UDP Application Layer Message Success (TPRE)
SSR-UDP Application Layer Message Success (UPNE)

SSR-UDP Network Layer Packet Success

(a)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

R
ed

un
da

nc
y 

R
at

io

Application Reliability Requirement (α)

SSR-UDP Network Layer Redundancy (CPPE)
SSR-UDP Network Layer Redundancy (TPRE)
SSR-UDP Network Layer Redundancy (UPNE)

(b)

Fig. 1 Behavior of success rate and redundancy with respect to application reliability requirement (α). a Application reliability
requirement (α) vs. success ratio. b Application reliability requirement (α) vs. redundancy

channel loss, it achieves (very close) to 100% reliability
at each application demanded reliability α. On the
other hand, Fig. 1b shows that UPNE introduces the
most redundancy into the network. The second line
presents CPPE. For this simulation the channel loss
probability is set to 10% and the algorithm optimized
k and n according to this pre-known loss rate. The
third line shows TPRE. For this simulation we modeled
channel loss probability with triangular distribution
over the range [0.05, 0.15] with mean at 0.10. Besides,
in order to reduce the batch losses due to channel
loss underestimation, we constantly introduced a 0.03
points channel loss overestimation factor. Clearly, the
demanded reliability along with the best redundancy is
achieved with CPPE. However, TPRE a more realistic

model, also attains the required reliability with a redun-
dancy changing between 30% and 44%.

The bottom line in Fig. 1a shows that since all chan-
nel models have 10% average loss rate, SSR-UDP ex-
periences 10% packet loss at the network layer. Addi-
tionally, we observed the waste (due to upper rounding
of n) to be around 4% for all models which confirms
that waste is a function of the number of batches and
our simulations have generated around 8% of the total
messages as batches.

Finally, we ran a set of simulations to see how re-
dundancy changes with a relatively high level reliabil-
ity requirement [42]. We achieved 99.9% success rate
with 79% redundancy for the above TPRE loss model.
We also observed that as the reliability requirement
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Fig. 2 Behavior of success rate and redundancy with respect to channel loss (1 − p). a Channel loss (1 − p) vs. success ratio. b Channel
loss (1 − p) vs. redundancy
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Fig. 3 Behavior of success rate, redundancy, and waste with respect to channel loss interval. a Channel loss interval vs. success ratio.
b Channel loss interval vs. redundancy

approaches to 100%, the redundancy increases exponen-
tially confirming the theoretical findings in Section 6.

Analysis of channel loss interval impact: The objective
of the simulations in this part is to analyze how we
satisfy the required application success reliability α

over a channel with different loss intervals and evaluate
its cost.

In the simulations, we have a channel with uniform,
triangular, and constant loss probabilities depending
on the loss model. While triangular and uniform loss
models use an interval, constant probability model uses
the average of the interval as parameter. The initial loss
interval is set to [0.02–0.08] and then we move this small
loss interval over a larger value range [0.02–0.27] by
0.01 points towards right. In other words, we keep the
variance fixed while incrementing the lower and upper
bounds of the loss distribution. The number of applica-
tion messages is 10 million and application demanded
reliability is set to α = 0.98 for each simulation.

Figure 2a and 2b show how the change in loss prob-
ability affects the empirically achieved α and its related
cost. In both figures each loss interval is mapped to
the midpoint of the interval on the x-axes and this
midpoint serves as the expected value of both the trian-
gular distribution with changing modes and the uniform
distribution over the interval.

Figure 2a indicates that uniform probability channel
loss with no loss estimation (UPNE), constant channel
loss probability with perfect loss estimation (CPPE),
and channel loss probability with regular (moving av-
erages) estimation (TPRE) all attain the application
required reliability α = 98%. The bottom overlapping
line shows that in the long run, SSR-UDP packets

can achieve the average success rate provided by the
channel, i.e. expected value of the channel loss. De-
pending on the channel loss rate, 5% to 24% of network
layer packets gets lost. However, the receiver always
recovers 98% of the application layer messages.

UPNE loss model achieves 210% redundancy as
presented in Fig. 2b. Remember that, UPNE does not
employ any loss estimation approach but uses the high-
est loss rate achieved as the next channel loss prob-
ability and it shows the upper limits of redundancy.
On the other extreme side, is CPPE which assumes
that the channel loss is perfectly estimated. It draws
the lower limit of redundancy between 19% and 73%
over a channel which has average loss rate up to 24%.
A more realistic case, TPRE, estimates the loss rate
with moving averages and its redundancy is between
30–86%. Although 86% redundancy might look like
too high, we should consider that it is obtained over
a channel having 24% loss rate whilst achieving 98%
reliability. Operating on a channel with less packet loss
probability or setting the demanded application relia-
bility to smaller values would reduce the redundancy.
The waste is still around 4% because the number of
batches generated is around 8% of the total application
messages.

Analysis of channel loss interval length impact: In this
part we show how success rate and redundancy gets
affected with respect to UPNE and TPRE channel
loss models with changing variance. In the simulations
we set the mean of our channel loss to 0.12. Starting
from a channel loss interval [0.11–0.13] while keeping
the mean at 0.12, we increased the interval length up
to 0.22. Since the variance effects our channel loss
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estimation, in this experiment, we omitted CPPE chan-
nel loss probability model. The required channel reli-
ability α is again set to 0.98 and 10 million application
messages are generated for each simulation.

In Fig. 3 the x-axes shows the interval length rather
than the middle point of the interval as in the previ-
ous experiment. Figure 3a shows that 98% reliability
requirement has achieved by both UPNE and TPRE.
Additionally, at the network layer both models sustain
88% packet success rate because average channel loss
rate is 0.12 for both models. Triangular distribution
with lower limit a, upper limit b , and fixed mode c has
expected value (a + b + c)/3. However, since we con-
stantly change the mode to the latest generated random
value, its mean changes to (a + b)/2 in the results.

Figure 3b also shows that with UPNE the redun-
dancy fluctuates between 120% and 110%. The reason
behind fluctuation is the maximum loss rate that has
been observed during the session. Yet, as the interval
increases it is more probable to get a high loss rate
for a batch and raise the amount of the redundant
traffic put into the network. On the other hand, TPRE
redundancy almost stays constant at 46%. Under TPRE
loss model, changes in variance causes positive and
negative channel loss estimations and in the long run
these errors in estimations compensate the effect of
each other and drag the observed metrics towards the
average.

8 Conclusion and future work

Telesurgical Robot Systems (TRSs) is an important
emerging cyber-physical technology in commercial and
military domains. Currently, TRSs are mainly deployed
on provisioned private wirelined networks with very
limited impact on security or performance. However,
the future deployment of them on various wireless
networks including satellite and ad-hoc depends on the
availability of efficient protocols to support security
and reliability of TRSs.

Dealing with packet losses in TRSs requires forward
error correction methods rather than packet retrans-
mission due to the delay critical nature of TRS ap-
plications. Privacy concerns in domains such as mili-
tary, requires utilization of the existing security metrics.
However, applying an off-the-shelf crypto technique
on FEC will introduce significant extra delay which
is unacceptable for wireless TRSs. For example, even
with a small value of k like 3 messages, AES shows an
overhead increase from 41 to 61 operations for every
1% redundancy (59.8% average increase) with the FEC
overhead. Our scheme uses information coding to en-

code a block of k application messages into n transmit-
ted packets (where n > k) using random key-generated
coefficients changing after each k application messages.
The receiver will successfully decode the messages if
at least k of them are received. The (n, k) is dynam-
ically selected based on observed network conditions
to maintain the security strength relative to the AES
key length and to ensure packet loss and delay bounds
as required by the application. The analytical proofs
show that our privacy scheme can be as strong as AES
with 128 and 256 key length, but with significantly less
delay overhead (up to 40% when k = 3 and up to 28%
when k = 5 for AES-128). In the reliability side, we
have shown that even with high variation of packet loss,
the protocol can achieve the target reliability threshold
α = 99% over a channel providing only 90% average
reliability with a reasonable redundancy ranging be-
tween 30–45%.

In our future work, we plan to extend SSR-UDP with
various packet loss models and test it on real world
wireless networks.
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