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Adaptive InSAR Stack Multilooking Exploiting
Amplitude Statistics: A Comparison Between

Different Techniques and Practical Results
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Abstract—Efficient estimation of the interferometric phase and
complex correlation is fundamental for the full exploitation of
interferometric synthetic aperture radar (InSAR) capabilities.
Particularly, when combining interferometric measures arising
both from distributed and concentrated targets, the interferomet-
ric phase has to be correctly extracted in order to preserve its
physical meaning. Recently, an amplitude-based algorithm for the
adaptive multilooking of InSAR stacks was proposed where it was
shown that a comparison of the backscatter amplitude statistics
is a suitable way to adaptively group and average the pixels in
order to preserve the phase signatures of natural structures in the
observed area. In this letter, different methods to compare ampli-
tude statistics will be presented, compared through simulation and
applied to real data. Based on these, recommendations are made
concerning which method to use in practice.

Index Terms—Adaptive multilooking, coherence estimation,
interferometry, radar backscatter statistics, synthetic aperture
radar (SAR).

I. INTRODUCTION

MULTILOOKING is an essential procedure for improving
the estimates coming both from interferometric phase

[1] or image correlation techniques [2]. This typically consists
of a weighted averaging of neighboring complex pixels using
a given kernel. However, this operation is always performed
under the hypothesis of statistical homogeneity of the averaged
pixels [3]. In practice, it is clear that as the size of the kernel
increases, this hypothesis will soon lose its validity. The sample
population will in fact include pixels generated by very different
scattering phenomena, such as forests, fields, and streets, and
hence possess different statistical properties. Consequently,
it becomes clear that adaptive multilooking is necessary in
order to

• limit the averaging to only those pixels that respect the
homogeneity hypothesis;

• preserve the boundaries between areas representing differ-
ent types of backscatterer.

The concept is to average a given pixel only with neighbors
that present similar scattering properties. The amplitudes of the
complex returns have been proven to be a suitable measure
for distinguishing between different areas inside an synthetic
aperture radar (SAR) image [4]; thus, they can also be used to
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select a suitable set of pixels over which to average. Algorithms
have been proposed which exploit different properties for the
adaptive averaging of interferograms. In the next sections,
we will consider an amplitude-based algorithm that has been
recently suggested [5], [6] and will compare it, through simu-
lations and application to real data, to several possible methods
for discriminating between different types of backscatterers.

II. ADAPTIVE MULTILOOKING

Suppose we have a stack of M complex SAR images coreg-
istered to subpixel accuracy and calibrated for each resolution
cell p. For each pixel, we wish to determine which of the
surrounding pixels present a similar statistical behavior. This
is possible by noting that for each pixel we can extract M
realizations of the process that generated the pixel amplitudes
by sampling the stack temporally, naturally assuming that the
process can be considered stationary over time. This set of M
observations can then be used in order to check the degree
of similarity between pixels. The algorithm will then test for
similarity between the distributions of the specified reference
pixel and those of the surrounding pixels, retaining statistically
similar pixels while discarding others. When the number of
selected pixels reaches the requested number of looks, the
interferometric phase simulated from an input Digital Elevation
Model is subtracted, and averaging is carried out. It must be
stressed that the final aim is to attain the requested number of
looks for each pixel while at the same time not compromising
quality by averaging pixels too far away from each other.
Hence, the search is constrained to an enclosed region about
the reference pixel that is set according to the characteristics of
the area by taking into account factors, such as the atmosphere
or deformation that can vary in space affecting the quality of
the coherence estimation [7].

III. PIXEL SELECTION ALGORITHMS

Determining whether random processes follow the same dis-
tribution is a common problem in statistics, where it is usually
referred to a goodness-of-fit testing, and many methods have
been developed [17]. The problem can be generally defined in
a hypothesis-testing framework as a test of the null hypothesis,
H0 : Fp = Fq , that the two distributions Fp and Fq are equal,
versus the alternative, H1 : Fp �= Fq, that they are not [16].
For the specific problem of adaptive multilooking, we have
selected four typical goodness-of-fit testing approaches for
discriminating between the different amplitude distributions,
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namely: the Kullback–Leibler divergence, the Kolmogorov–
Smirnov test, the Anderson–Darling test, and the Generalized
Likelihood Ratio Test (GLRT). The first three approaches are
nonparametric which means that no assumptions about the dis-
tributions are made, while the last is parametric, in which case
certain assumptions about the distributions, specified later, are
made. In general, nonparametric approaches offer more robust
behavior which means that they perform acceptably over a
wide range of distributions. Parametric approaches, on the other
hand, are expected to perform better when the assumptions hold
but are less robust and hence may perform poorly in other cases.
Next, we briefly introduce these techniques before comparing
them through simulations.

A. Kullback–Leibler Divergence

This quantity, coming from information theory, provides a
measure of similarity between two given probability density
functions (pdfs). In practice, it can be defined as the average
amount of information needed to explain the distribution fp(xi)
given fq(xi) [14]. Considering two pixels p and q located
within the region of interest, where fp(xi) and fq(xi) are the
amplitude pdfs, the divergence can be written as

DKL(fp‖fq) =
∑
i

fp(xi)lnfp(xi)−
∑
i

fp(xi)lnfq(xi)

=H(fp)−H(fp, fq) (1)

where H(fp) is the entropy of fp; and H(fp, fq) is the joint
entropy between fp and fq . By setting a threshold, we can set
a level of similarity that the pixels must satisfy in order to be
included in the averaging. The main problem lies in estimating
the pdfs that will be used to discriminate between the pixels. In
order to keep the procedure as simple as possible, the histogram
was chosen as the estimator for the pdf [15]. Thus, from the
M amplitude samples, the normalized histograms hi and ki
are the estimators of fp(xi) and fq(xi), respectively, and the
divergence estimator becomes

D̂KL(fp‖fq) =
N∑
i=1

hilnhi −
N∑
i=1

hilnki (2)

where N is the number of histogram bins chosen according to
Sturges’ [9] rule

N = 1 + log2M. (3)

The main advantage in using this kind of method is its complete
independence from the type of distribution. However, we must
consider that the estimator D̂KL(fp‖fq) is biased, and its
variance is strongly dependent on the number of histogram bins
and the distribution. This means that setting parameters, such
as the bin range, becomes complicated and pixel-dependent
making the procedure difficult to automate in an operational
context.

B. Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test is one of the most popular
nonparametric goodness-of-fit tests [5], [6], [16], [17]. It is
based on a measure of the maximum distance between the

cumulative distribution functions (cdfs). In our case the two-
sample Kolmogorov–Smirnov statistic is

DKS = max
x

∣∣∣F̂p(x)− F̂q(x)
∣∣∣ (4)

where F̂p(x) and F̂q(x) are the empirical cdfs of the pixel
amplitudes at p and q, respectively. The two empirical cdfs
converge almost surely to the true ones, Fp and Fq, and the
null hypothesis will be rejected with level α if√

M

2
DKS > Kα (5)

where Kα is the α percentile of the Kolmogorov distribution.

C. Anderson–Darling Test

The Anderson–Darling two-sample test is another nonpara-
metric test used to compare two sets of samples [10], [11],
[17]. Like the Kolmogorov–Smirnov statistic, it is based on the
distance between cdfs. The test statistic A2

M,M is defined as

A2
M,M =

M

2

∑
x∈{xp,i,xq,i}

(
F̂p(x)− F̂q(x)

)2

F̂pq(x)
(
1− F̂pq(x)

) (6)

where F̂pq(x) is the empirical cdf of the pooled distribution
obtained by combining the two independent data sets, xp,i

and xq,i, i = 1, . . . ,M , into a single one, x = {xp,i, xq,i}.
Compared to the Kolmogorov–Smirnov statistic, A2

M,M puts
more weight on the tails of the distributions, thereby increasing
sensitivity to changes in this region. This ability is important
in radar applications where the tails of the distribution, which
influence the higher order moments, play an important role. In
contrast, the Kolmogorov–Smirnov statistic weights the distri-
butions uniformly and is known to be less sensitive to changes
in the tails.

D. GLRT

The last method considered is GLRT [16] whose test statistic
is given by the ratio of the pdfs of the pooled data sets evaluated
at the maximum likelihood estimate (MLE) of the parameters
conditioned on the alternative and null hypotheses. For the case
of Rayleigh-distributed amplitudes, the second-order moment
parameterizes the distributions, and the hypothesis test becomes

H0 : σ2 =σ2
p = σ2

q

H1 : σ2
p �=σ2

q (7)

which means that under the null hypothesis, the data sets are
best described as having the same Rayleigh parameter, while
under the alternative hypothesis, they are best described as hav-
ing different parameters. Given that the MLE for the Rayleigh
parameter of a data set xi, i = 1, . . . ,M , is the sample second-
order moment

σ̂2 =
1

M

M∑
i=1

x2
i (8)

the test statistic becomes

T = 2Mln(σ̂2)−Mln
(
σ̂2
p

)
−Mln

(
σ̂2
q

)
(9)
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Fig. 1. Detection rates for the (dotted) Kullback–Leibler divergence, (dashed) Kolmogorov–Smirnov test, (solid) Anderson–Darling test, and (dashed/dot) GLRT.
The three cases are, respectively, the Rayleigh-distributed case, the K-distributed case varying the shape, and the K-distributed case varying the scale .The colors
indicate the number of samples M . (a) Rayleigh. (b) K-shape. (c) K-scale.

where σ̂2 is estimated from the pooled sample according to (8)
and can be written as

σ̂2 =
σ̂2
p + σ̂2

q

2
. (10)

IV. SIMULATIONS

The stack size M will clearly play an important role in how
well pixels can be classified since the power of the tests in-
creases with sample size. Hence, in the following performance
analysis, the impact of M is always considered. For all simu-
lations, the test thresholds were set to maintain a false alarm
rate of PFA = 5% under the null hypothesis, and the power of
the test, PD, or the probability of correctly deciding that the
data sets follow different distributions, was plotted as certain
distributional parameters were varied. Finally, the number of
Monte Carlo simulations used to evaluate the performance was
always 10 000.

In the first simulation, the data sets were Rayleigh dis-
tributed, which can be regarded as typical for nominal acqui-
sitions of natural areas with distributed scatterers. Fig. 1(a)
shows PD versus the ratio of the Rayleigh parameters. The
discriminating power between different Rayleigh distributions

is good with all methods, as shown in Fig. 1(a). As expected, the
parametric GLRT performs best because the Rayleigh assump-
tion is fulfilled. Among the nonparametric tests, the Anderson–
Darling statistic yielded the best discriminating power, even if
for small stack sizes the performance is quite similar for all the
nonparametric tests.

The second simulation examines how the methods behave
in the case of non-Rayleigh-distributed amplitudes. This is
important in determining the robustness of the GLRT when
the Rayleigh assumption is no longer fulfilled. For this pur-
pose, K-distributed amplitudes were generated, wherein two
separate simulations, first the shape in Fig. 1(b) and then the
scale parameters in Fig. 1(c), were varied [8], [12], [13]. The
amplitudes ρ were generated as the square root of the product of
two Gamma random variables that represent the clutter present
and radar cross sections (RCSs) of the reflectors inside the
resolution cell [8]

ρ =
√

Γ(L, θcl)Γ(k, θRCS) (11)

where L is the shaping factor of the clutter that corresponds
to the number of looks; k is the shaping factor of the RCSs;
and θcl and θRCS are the two scaling factors. For single-look
complex images, L can be fixed to one. As expected, Fig. 1(b)
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Fig. 2. Effect of stack size on the GLRT and Anderson–Darling test for coherence estimation of a field for the same interferogram as in Fig. 3 but over a different
area. From left to right: (a) GLRT, ten images; (b) Anderson–Darling test, ten images; (c) GLRT, 99 images; and (d) Anderson–Darling test, 99 images.

Fig. 3. Comparison between the (a) incoherent mean and the multilooked interferometric phase obtained using an (b) 8 × 25 boxcar kernel and a (c) 200-look
adaptive kernel. The interferogram is an ERS-1/2 interferogram with a temporal separation of 35 days and a normal baseline of 107 m.

shows that the GLRT is less powerful at detecting changes in
the shape of the distribution. However, Fig. 1(c) shows that
it can distinguish very well between scale families, where the
shape parameter is constant and only the scale parameter varies.
Hence, the GLRT with the assumption of Rayleigh amplitudes
is a useful approximation, particularly for small stack sizes,
where it outperforms all other methods, such as for M = 10
in Fig. 1(c). The tradeoff is the aforementioned reduced power

within scale families. Among the nonparametric tests, the
Anderson–Darling statistic is the most powerful at detecting
changes in the shape parameter and second most powerful, after
the GLRT, at detecting changes with a scale family. The good
performance of the GLRT within scale families for small stack
sizes can be explained by the fact that with only a few samples
it is difficult to obtain a good estimate of the distribution on
which the nonparametric tests rely.
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V. EXPERIMENTS WITH InSAR STACKS

All algorithms have been implemented in C++ for exper-
iments with interferometric SAR (InSAR) stacks. The test
stack consists of 99 ERS-1/2 images of an area surrounding
Amsterdam which presents several types of backscatterer in-
cluding fields, highways, and towns. Processing was carried
out with 200 looks using both adaptive and standard boxcar
multilooking, and the results are shown in Fig. 3. As expected,
the adaptive algorithm is able to follow the features of the scene
as soon as the contrast is sufficient. Therefore, it is possible
to obtain a very accurate coherence estimate with little loss
of resolution. Looking at very dark areas, such as the airport
runway, it is clear that the quality of the interferometric phase
is enhanced by averaging only over homogeneous pixels. In
these dark areas, the backscattered power is rather low, around
−16 dB; however, as long as it is possible to average over a
sufficient number of homogeneous pixels, the phase informa-
tion can be extracted.

It is also interesting to compare the effects of the dif-
ferent pixel selection algorithms from the previous section.
Figs. 2 and 3 show a comparison between the GLRT and
Anderson–Darling statistics for stack sizes of 10 and 99 images.
As expected, the figures show that a nonparametric method like
the Anderson–Darling test is in general better given a large
stack. However, when only 10 of the 99 available acquisitions
are processed, the GLRT appears to provide much sharper
features in the coherence. In other experiments not shown
here, it was found that in some areas, where probably the
Rayleigh hypothesis is fully satisfied, the GLRT resulted in
interferograms with much sharper features, regardless of the
dimension of the stack used.

Finally, regarding the computational complexity, experiments
with InSAR stacks have shown that all methods presented here
require approximately the same amount of processing time.

VI. CONCLUSION

In this letter, different methods of selecting statistically sim-
ilar pixels based on their amplitude distribution for the pur-
pose of adaptive multilooking have been presented. From the
simulations and experiments with InSAR stacks the following
conclusions can be drawn:

• Amplitudes statistics are a good indicator for distinguish-
ing between different scattering phenomena in order to
preserve the phase signature of natural structures.

• Nonparametric methods are recommended when it is not
possible to make assumptions about the statistical proper-
ties of the amplitudes. Of the three nonparametric tests,
Anderson–Darling was the most powerful. In comparison
to the parametric GLRT, it was also more powerful at
detecting changes in the shape of a distribution. However,
within scale families and especially with small stack sizes,
the GLRT was significantly more powerful.

• Different backscatter processes possess different interfer-
ometric phases that, even in the case of very low power,
nevertheless contain good phase information which can
be accurately recovered after sufficient averaging over

homogeneous pixels. This points more to a deterministic
rather than a stochastic relationship between the backscat-
ter amplitude distribution and the location of the phase
center within a resolution cell for distributed scattering
processes in SAR, i.e., the phase centers of resolution cells
over homogeneous regions are the same.

In this letter, the parametric GLRT was based on the Rayleigh
distribution which is the simplest model for natural scatterers.
Even so, it was seen that this approach does have advantages
over the more general nonparametric ones for small stacks. A
possible subject for future work is then to investigate if a GLRT
based on more all-encompassing parametric models, such as the
K, generalized K, or generalized Bessel function K distributions
[18] sufficiently improve performance to the point that it is
worthwhile including them in an operational system despite the
increase in complexity.
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