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Adaptive Integrated Image Segmentation
and Object Recognition

Bir Bhany Fellow, IEEE,and Jing Peng

Abstract—This paper presents a general approach to image object recognition system @en-loop Segmentation and fea-
segmentation and object recognition that can adapt the image seg- ture extraction modules use default values of algorithm param-
mentation algorithm parameters to the changing environmental eters, and generally work as pre-processing steps to the model

conditions. Segmentation parameters are represented by a team tchi t Th default val f alqorith
of generalized stochastic learning automata and learned using Matching component. 1 hese aefault vajues o algorithm param-

connectionist reinforcement learning techniques. The edge-border €ters, however, generally degrade the system performance and
coincidence measure is first used as reinforcement for segmen-cannot adapt to changes in real-world applications. The default

tation evaluation to reduce computational expenses associatedsettings of algorithm parameters are usually obtained by the
with model matching during the early stage of adaptation. This system designer by following a trial and error method. Param-

measure alone, however, can not reliably predict the outcome t btained in thi t robust. si hen th di
of object recognition. Therefore, it is used in conjunction with eters obtained in this way are not robust, since when the condi-

model matching where the matching confidence is used as a rein- tions for which they are designed are changed slightly, these al-
forcement signal to provide optimal segmentation evaluation in a gorithms generally fail without any graceful degradation in per-
closed-loop object recognition system. The adaptation alternates formance.

between global and local segmentation processes in order 10 rpe sefyiness of a set of algorithm parameters in an image
achieve optimal recognition performance. Results are presented

for both indoor and outdoor color images where the performance analysis system can only be determined by the system’s output,
improvement over time is shown for both image segmentation and for example, recognition performance. To recognize different
object recognition. objects or instances of the same object in an image, we may
Index Terms—Adaptive image segmentation, adaptive object N€€d different sets of parameters locally due to the changes in
recognition, closed-loop recognition, closed-loop segmentation,local image properties, such as brightness, contrast, etc. Also
model-based recognition, learning for object recognition. the changing environmental conditions affect the appearance of
an image that requires the ability to adapt the algorithm pa-
rameters for multi-scenario object recognition. To achieve ro-
bust performance in real-world applications, therefore, a need
MODEL-BASED object recognition system has three kegxists to apply learning techniques that can efficiently find pa-
components: image segmentation, feature extraction, aagheter values yielding optimal results for the given recognition
model matching. The goal of image segmentation is to extragkk. In this paper, our goal is to develop a general approach to
meaningful objects from an input image. Image segmentatigfbdel-based object recognition that has the ability to continu-
is an important and one of the most difficult low-level imageusly adapt to normal environmental variations.
analysis tasks [5], [10]. All subsequent tasks including feature The original contributions of the adaptive integrated image

extraction and model matching rely heavily on the quality of thgegmentation and object recognition system presented in this
image segmentation process. paper are

The inability to adapt the image segmentation process to real-
world changes is one of the fundamental weaknesses of typ-
ical model-based object recognition systems. The real-world
changes are caused by variations in environmental conditions, world scenarios:

Imaging devices, lighting cor'u'd|t|ons, time of 'the day, sun posi- 2) ateam of generalized stochastic learning automata is used
tion, shadows, weather conditions, etc. Despite the large number to represent both global and local image segmentation

of image segmentation algorithms available [6], [11], [23], no parameters, making faster learning possible;

general methods have been found to process the wide diversitys) edge-borde’r coincidence. when combined’with model

of images encountered in real world applications. Usually, an matching confidence, re’duces overall computational

costs of the learning process;
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1) model matching confidence is used as feedback to influ-
ence the image segmentation process, thereby providing
our object recognition system with adaptability in real
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Matching Confidence (Reinforcement) In this way, our system is highly adaptive to variations within an

image.
Object - The particular framework adopted in this paper is reinforce-
Recognition ment learning, which closes the loop between model matching
Subsystem - and image segmentation. There are good reasons for using rein-
Re{'gg;;g;‘ge“‘ forcementlearning in ourimage processing and analysis system.
Subsystem First, reinforcement learning requires knowing only the good-

ness of the system performance rather than the details of algo-
rithms that produce the results. It is natural to use matching con-
fidence as reinforcemergecongdconvergence is guaranteed for
several reinforcement learning algorithniird, reinforcement
learning performs efficient hill-climbing in a statistical sense
Fig. 1. Adaptive integrated image segmentation and object recognitigfithout excessive demand for computational resources. Further-
system. more, it can generalize over unseen imadesirth, reinforce-
ment learning can systematically assign credit to different levels

recognition on both indoor and outdoor color images. Finallin a multi-level image processing and analysis system.
Section IV presents the conclusions of the paper and future di-The adaptive integrated image segmentation and object
rections. recognition system is designed tofo@damentain nature and
is not dependent on any specific image segmentation algorithm
or type of input images. In order to represent segmentation
parameters suitably in a reinforcement learning framework,

We develop a general approach to adaptive integrated imdlge system only needs to know the segmentation parameters
segmentation and object recognition. The basisumptioris and their ranges. In our approach, a binary encoding scheme is
that we know the models of the objects that are to be recognizeded to represent the segmentation parameters. While the same
but we do not know the number of objects and their locations iask could be learned in the original parameter space, for many
the image. Fig. 1 shows the functional structure of the adaptiyges of problems, including image segmentation, the binary
system. The system consists of two key subsystems: reinforogpresentation is expected to learn much faster [20]. In this
ment learning subsystem and object recognition subsystem. Be@ise, our system is independent of a particular segmentation
object recognition subsystem consists of three basic modulakyorithm used. Of course, different segmentation algorithms
image segmentation, feature extraction and model matchiage designed and well suited for different kinds of images in
The image segmentation module extracts meaningful objegtgious bands of the electromagnetic spectrum. For example,
from input images. Feature extraction performs polygonal affie Phoenixalgorithm used in this paper is designed for the
proximation of connected components. The model matchisggmentation of color images.
module then carries out matching between the stored models
and the pongona} approximat.ion of thg connectgd COMPONERIS pjatead Work
in order to recognize model objects. This module indirectly eval-
uates the performance of the image segmentation and featur€here is no published work on reinforcement learning inte-
extraction processes by generating a real valued matching cgrated image segmentation and object recognition using mul-
fidence indicating the degree of success. This real valued cdiple feedbacks. The adaptive parameter control of segmenta-
fidence is then used as feedback to a reinforcement learnti@n algorithm and the adaptive selection and combination of
subsystem to drive adaptation for image segmentation parardiferent algorithms in a learning integrated systemuarsolved
ters. The goal is to adaptively compute segmentation paramefansblems in the field of image processing and computer vision
that, when applied to the segmentation algorithm, maximize tfl§. Most threshold selection techniques in image processing
matching confidence for the given recognition task. and computer vision do not involve any learning to improve fu-

It is important to note that since significant differences iture performance with experience.
characteristics exist between an image and its subimages, odn [8], Burgeset al. describe a method for coupling recog-
erating parameters of algorithms need to be tuned to these dition and segmentation by the principle of heuristic over seg-
ferences to achieve optimal performance of segmentation andntation. The basic idea is that a segmentation algorithm gen-
model matching. For example, to recognize two objects in @nates a graph that summarizes a large humber of segmentation
image or a single object at different locations, it is often diffihypotheses that are scored by a recognition algorithm. A glob-
cult, if not impossible, to extract and recognize objects withally optimal decision is then made that combines uncertainties
single fixed set of parameters of a given algorithm. It is essentialsegmentation and recognition. Each time a new input comes
to localize computation to meet each individual requirement. In a over segmented hypothesis graph must be generated and
order to achieve this objective our system performs both gloliedversed in order to classify the input. In contrast, the system
and local adaptation. The global adaptation process finds spgesented in this paper uses a learned mapping to compute seg-
mentation parameters that are likely to result in the recognitiomentation parameters for a given input to achieve optimal model
of model objects from the entire image while the local processatching. In addition, the learning of mapping in our system is
computes parameters that are best suited for selected subimagy@dgen completely by the matching confidence, whereas their

A. Overview of the Approach
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graph generation is largely based on heuristics. In another wiskbiased when the model matching confidence is used as the
[15], graph generation is actually learned by minimizing globakinforcement signal (note that the reinforcement learning is

errors that take into account both segmentation hypotheses andiasednitially when the edge-border coincidence is used as

recognition scores. In [2], a method is described for fitting sethe reinforcement signal). We achieve better computational ef-

mentation parameters to maximize the likelihood of a model 6€iency of the learning system and improved recognition rates

an object. In comparison, our system attempts to maximizecampared to an earlier system [20].

classification (conditional) probability.

Bhanu and Lee [5] presented an image segmentation system
which incorporates a genetic algorithm to adapt the segmenta-
tion process to changes in image characteristics caused by var@ur goal is to adaptively compute segmentation parameters
able environmental conditions. In their approach, multiple segsing matching confidence as feedback to optimize its perfor-
mentation quality measures are used as feedback. Some of tiegace for a given recognition task. However, this feedback in-
measures require ground-truth information which may not be ablves expensive computation of feature extraction and model
ways available. Peng and Bhanu [20] presented an approachiatching. In order to minimize this computation edge-border
which a reinforcement learning system is used to close the loopincidence is first used to obtain an initial estimate of the pa-
between segmentation and recognition, and to induce a mappiageters. While the edge-border coincidence alone may not re-
from input images to corresponding segmentation parametdiably predict the outcome of model matching, it is simple to
Their approach is based on global image segmentation whicle@npute, thereby improving overall efficiency without causing
not the best way to detect objects in an image; we need the capaformance degradation.
bility of performing segmentation based on local image proper- The adaptive segmentation process in our system has two
ties (local segmentation). Another disadvantage of their methdistinct phases: global and local. While global segmentation is
is its time complexity that makes it problematic for practical ageerformed for the entire image, local segmentation is carried
plication of computer vision. Also, the technique introduced iaut only for selected subimages. For a set of input images, the
[21] is primarily concerned with multi-stage computer visiorsystem takes inputs sequentially. This is similar to human vi-
systems. Here we are addressing issues facing adaptive imsigg@ learning process, in which the visual stimuli are presented
segmentation in single stage systems that use multiple perfmporally in a sequential manner. For the firstinput image, the
mance measures, and that exploit local image properties.  system having no accumulated experience begins learning with

For object recognition applications, the efficiency of tha set of random weights. For each input image thereafter, the
learning techniques is very important. How to add bias, a pri@arning process starts from the set of weights that are obtained
or domain knowledge in a reinforcement learning based systé@sed on all the previous input images. The following are the
is an important topic of research in reinforcement learning [9fain steps of our learning algorithm:

[16], [26]. For theRATLE system, Maclin and Shavlik [16] Initial Approximation: A network of Bernoulli units is
accept “advice” expressed in a simple programming languagsed to represent segmentation parameters. The edge-border
This advice is compiled into “knowledge-based” connectionisbincidence is used as a direct segmentation evaluation during
Q-learning network. They show that advice-giving can speegdrlier stages of adaptation to drive weight changes without
up Q-learning when the advice is helpful (though it need nagoing through the expensive feature extraction and model
be perfectly correct). When the advice is harmful, back promatching. Once the edge-border coincidence has exceeded
agation training quickly overrides it. Dorigo and Colombetta given threshold, the weight changes will be driven by the
[9] show that by using a learning technique called learningatching confidence, which requires more expensive computa-
classifier system (LCS), an external trainer working withition of feature extraction and model matching. Fig. 2 illustrates
a RL framework can help a robot to achieve a goal. Thruhe blocks needed for the computation of the edge-border
and Schwartz [26] have discussed methods for incorporatiogincidence as reinforcement and for parameter adaptation.
background knowledge into a reinforcement learning systemGlobal Segmentation Adaptatiortnlike initial approxi-

for robot learning. mation, the global segmentation adaptation process relies on

In our approach, the edge-border coincidence is used to tnedel matching to provide indirect evaluation of segmentation
cate an initial good point from which to begin the search througterformance. We assume that we have a prior knowledge of
weight space for high matching confidence values. Although approximate size of objects of interest in the images. After
a segmentation evaluation measure the edge-border coincidesegmentation, the connected components that pass through the
is not as reliable as the matching confidence, lower edge-bordee filter based on the expected size of objects of interest in
coincidence values always result in poor model matching. Likthe image, we perform feature extraction and model matching.
wise, higher edge-border coincidence values suggest with hifihe highest matching confidence is taken as reinforcement to
probability that the current set of segmentation parameters idle learning system. Fig. 3 shows the main steps needed for
a close neighborhood of the optimal one. It is an inexpensiw@del matching computation and for parameter adaptation.
way to arrive at an initial approximation to a set of segmenté#- the highest matching confidence level is above a given
tion parameters that gives rise to the optimal recognition perfawitching theshold and a given maximum number of iterations
mance. The control switches between global and local segméaas not been reached, we focus image segmentation and model
tation processes to optimize recognition performance. To funatching on the connected component and switch to the local
ther speed-up the learning process the reinforcement learnataptation process.

Il. TECHNICAL APPROACH
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+ Reinforcement TABLE |
SAMPLE RANGES FORSELECTED PHOENIX PARAMETERS

Edge-Border
Coincidence Parameter Sampling Formula Test Range
Hsmooth: Hsmooth = 1 + 2 * hsindex 1-63
. ; ——— hsindex € [0 : 31]
Edge Det““”“] Segmentation Reipforcement Mazmin: op = In(100) + 0.05 » mmindex | 100 — 471
’ Subsystem mmindex € [0 : 31] Mazmin = exp(ep) + 0.5
¥ Splitmin: Splitmin = 9 + 2 * smindex 9-71
smindex € [0 : 31]
Height: Height = 1 + 2 * htindex 1-63
htindex € [0 : 31]

Fig. 2. Direct segmentation evaluation using edge-border coincidence.
the Phoenixparameters is represented using 5 bit binary code,

1 Reinforcement with each bit represented by one Bernoulli unit. To represent
Model four parameters, we need a total of 20 Bernoulli units. A brief
Matching description ofPhoenixis given in Appendix A. More details

aboutPhoenixare given in the report by Laws [14] and related

Object Feature, papers [19], [24].
Model! Computation
: B. Edge-Border Coincidence

Reinforcement . . .
SL%arnéng Given that feature extraction and model matching are com-
ubsystem . . e . L.
GlobalLocal Weights) putationally expensive processes, it is imperative that initial ap-

proximation be made such that overall computation can be re-

duced. In order to achieve this objective, we introduce a direct

feedback signal that measures the image segmentation quality.
There is a large number of segmentation quality measures that
have been proposed [5]. The segmentation evaluation metric
that we have selected is tedge-border coincidend&BC) [5],

Local Segmentation Adaptatio@nce a connected Compo_[18]. It measures tr_le overlap of the region _borders in the seg-
nent has been extracted from the input image, local adap@&ented image relative to the edges found using an gdge detector,
tion begins to find the best fit segmentation parameters for tRBd does not depend on any ground-truth information about the
subimage. It starts from the current estimate of weights that RRIECtS t0 be recognized. In our approach, we useSiieel
sulted from global adaptation. Similar to global adaptation, tf19€ operator [23] to compute the necessary edge information.
matching confidence is used to update local weights until tfgl9€-order coincidence is defined as follows. Edde the set
confidence exceeds an acceptable level in which case the ad¥Rixels (i, y,:) extracted by the edge operator after thresh-
tation process for the current input subimage is terminated, of'§ind ands be the set of pixelgz,;, y4;) found on the region
given maximum number of iterations has been reached in whigfundaries obtained from the segmentation algorithm
case the control switches from local to global and the global
adaptation process continues from the point where we switched
to the local adaptation process. = {1 Up1) s (Tp s Upe)s - -5 (Tps Ups )}

and

Fig. 3. Indirect segmentation evaluation.

E= {plap2a e apE}

A. Phoenix Image Segmentation Algorithm
g g g SI{QI?QQ?"'?QS}

Since we are working with color imagery in our experiments, = (212 Y0)s (s Yas) CIRTN
- q12 991/ q2r9492/7 " qs»94s /S

we have selected thPhoenix segmentation algorithm [14],

[19] developed at Carnegie-Mellon University and SRI IntefFhen EBC is defined as

national. ThePhoenixsegmentation algorithm has been widely

used and tested. It works by recursively splitting regions using EBC =n(ENS)/n(E) 1)

histogram for color feature®?hoenixhas seventeen different h . tes th ber of el ts of it i
control parameters, fourteen of which are adjustable. The fovﬁ/rere”( ) computes the number of elements of its argumen
most critical ones (see Table ) that affect the overall results %r]ad

the segmentation process are selected for adaptétgmooth, ENS ={(z,y)|(z,y) € Eand(z,y) € S}.

Maxmin, Splitmin and Height Hsmoothis the width of the

histogram smoothing windowlaxminis the lowest acceptable Fig. 4(b) shows the Sobel edge image of an experimental indoor
peak-to-valley height ratioSplitmin represents the minimum color image given in Fig. 4(a). The region boundaries obtained
area for a region to be automatically considered for splittingsing thePhoeniximage segmentation algorithm are shown in
Heightis the minimum acceptable peak height as a percentdgig. 4(c). The parameters of tRhoenixalgorithm that are used

of the second highest peak. Each parameter has 32 possibbtude: Hsmooth = 7, Marmin = 128, Splitmin = 47,

values. The resulting search spacgssample points. Each of Height = 60. In this example, EBC for the segmented image
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type of learning has a wide variety of applications, ranging from
modeling behavior learning in experimental psychology to
building active vision systems. The tem@inforcementomes
from studies of animal learning in experimental psychology.
The basic idea is that if an action is followed by a satisfactory
state of affairs or an improvement in the state of affairs, then the
tendency to produce that action is reinforced. Reinforcement
learning is similar to supervised learning in that it receives a
feedback to adjust itself. However, the feedbackvaluative
in the case of reinforcement learning. In general, reinforcement
learning is more widely applicable than supervised learning
and it provides a competitive approach to building autonomous
learning systems that must operate in real world. For a compre-
hensive overview of this subject, the reader is referred to [25].
The particular class of reinforcement learning algorithms em-
ployed in each (global/local) region for our object recognition
system is the connectionist REINFORCE algorithm [27], where
units in such a network af®ernoulli quasilinear unitsin that
the output of such a unit is either 0 or 1, determined stochas-
tically using the Bernoulli distribution with parametgy —
f(s:), wheref is the logistic function

f(si) = 1/(1 4 exp(=si)) )

ands; = Zj wi;x; 1S the weighted summation of input values

to that unit. For such a unit, shown in Fig. @, represents its
probability of choosing 1 as its output value.

Fig. 4. Edge-border coincidence (EBC): (a) input image, (b) Sobel edge IN the general reinforcement learning paradigm, the network
magnitude image (threshole= 200), and (c) boundaries of the segmentedyenerates an output pattern and the environment responds by
Image. providing the reinforcementas its evaluation of that output pat-
tern, which is then used to drive the weight changes according

is 0.6825. EBC measures, to the extent possible, the qualitytefthe particular reinforcement learning algorithm being used

the segmentation process. Matching confidence, the recognitidnthe network. REINFORCE has the following generic update

system’s output, indicates the confidence of the model matchifije

process, and indirectly measures the segmentation quality of the 9

recognized object. Itis possible that EBC is high while matching Awij = aig(r = bij) 5 —1n(g;) 3)

confidence level is low, or EBC is low while matching confi- "

dence is high. Fig. 5(a) shows that EBC, when measuring segiere

mentation quality for the whole image, does not correlate well «;;  learning rate factor;

with matching confidence. On the other hand, EBC does corre+ immediate reinforcement;

late with the matching confidence when applied to subimagesy);;  baseline;

as shown in Fig. 5(b). However, the model matching confidenceg;  density function for randomly generating output pat-

is arguably the only measure that can conclusively evaluate the terns.

performance of the segmentation process. For the Bernoulli quasilinear units used in this research, the
Although EBC does not correctly predict the matching corabove weight updating rule (3) is reduced to

fidence, for our purpose it is sufficient to drive initial estimates.

Moreover, low EBC values indicate that the segmentation is un- Aw;; = ofr = b)(yi — pi)z; (4)

likely to result in good recognition performance. As such, the

system repeats the initial estimation process using EBC as Méere

only reinforcement signal until it exceeds a prespecified level. %7

At that time, the segmentation performance will be determined¥

completely by model matching. Pbi

input to each Bernoulli unit;

output of theith Bernoulli unit;

internal parameter to a Bernoulli random number gen-
erator.

It can be shown [27] that, regardless of hbus computed,
whenever it does not depend on the immediately received re-
Reinforcement learninig the problem faced by an agent thafnforcement value:, and whenv is sent to all the units in the

must learn behavior through trial-and-error interactions withgetwork, such an algorithm satisfies
dynamic environment. It is appropriately thought of as a class
of problems, rather than as a set of techniques [13], [25]. This E{AW | W} = oVwE{r| W} (5)

C. Reinforcement Learning for Image Segmentation
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EBC vs. Matching Subimage
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Fig. 5. Edge-border coincidence versus matching confidence for recognizing the cup in the image shown in Fig. 2(a). (a) Global image and (b) subimage.

lor0 7(t) is the exponentially weighted average ti@rce, of prior
reinforcement values
r(t) =7t — 1)+ (L—y)r(t 7
Bernoulli Random] 7( ) ,W( ) + ( 7)7( ) 0
Number Generator with 7(0) = 0. The trace parameterwas set equal to 0.9 for all
i the experiments reported here. Similaglyt) is an average of
&(S.) = 1/(1+€XP('S.)j past values of;; computed by the same exponential weighting
1 scheme used fat. That is
$,=3 WX _ _
([s=zwx ) 5i(t) = vt = 1) + (1 = 1)w(2). ®)
? Note that (5) does not depend on the eligibility. Note also that
X, p; in (4) is the theoretical mean af, whereasy; in (6) and
(8) is the actual estimate. Empirical study has shown superior
Fig. 6. Bernoulli semilinear unit. performance with this form of weight update [28]. Note that a

team of 20 Bernoulli units represents the four image segmenta-

where E denotes the expectation operator. H&Verepresents _tlon parameters selected for learning. Each bit of a parameter is

the weight matrix of the network, that i8V;; denotes thgth independent of each other.
input weight to thgith unit _in the qetwork, and\W i_s the p “Bijased”’ Reinforcement Learning
change of the weight matrix. A reinforcement learning algo- . ) . .
rithm satisfying the above equation has the convergence prop!n the RL algorithm as described in Section 11-C, each of the
erty that the algorithm statistically climbs the gradient of ex2tS €ncoding segmentation parameters chooses its output inde-
pected reinforcement in weight space. For adapting paramet‘é‘?gdently according to
of the segmentation algorithm, it means that the segmentation _ [ 1, with probabilityp; 9
parameters chqnge in the direction alpng whiph the _expected Yi= {07 with probability 1 — p;. ©)
edge-border coincidence and/or matching confidence increases. ) ) o
It should be noted that the algorithm is scale variant in that tidS “unbiased” in that the output of a bit is governed solely by
rate of convergence decreases with increasing weight spacet® Bernoulli probability distribution. The advantage of this al-
The specific algorithm we use here has the following fomg_onthm is that rapid changefs in output values allow g.|ant leaps
At the ¢th time step, after generating output) and receiving N the_ searc.h space, which in turn enables the_Iearmng system
reinforcement(), i.e., EBC or the confidence level indicating® quickly discover suspected high pay-off regions. However,
the matching result, increment each weight by once the system has arrlv_e(_j _at the_V|C|n|ty ofalocal o_ptlmum, as
will be the case after the initial estimation, changes in the most
significant bit will drastically alter the parameter value, often
Awg;(t) = afr(t) —r(t — D) (i) — 0t — 1))z, jumping out of the neighborhood of the local optimum. Ideally,
— bdw;;(¢) (6) once the learning system discovers that it is within a possible
high pay-off region, it should attempt to capture the regularities
whereq, the learning rate, and the weight decay rate, are pa-of the region. This then biases future search toward points within
rameters of the algorithm. The ter(t) — 7#(¢ — 1)) is called it. The challenge, of course, is to have a learning algorithm that
thereinforcement factoand(y;(¢) — 7;(t — 1)) theeligibility allows the parameters controlling the search distribution to be
of the weightw;; [27]. Generally, the eligibility of a weight in- adjusted so that this distribution comes to capture this knowl-
dicates the extent to which the activity at the input of the weigktige. The algorithm described here shows some promise in this
was connected in the past with unit output activity. Note thatgard.
this algorithm is a variant of the one described in (4), whdse Suppose that a parameter is represented Bgrnoulli units
replaced byr andp; by 7;. of whichm are deemed significant. Here a unit is significant if
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Three Different Runs of the Biased Scheme
Eun 11—
un 2 ....... —
09 r Run/a -

Matching Confidence

0.4 .
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Number of lerations
(a)
Three Different Runs of the Unbiased Scheme
T T T T T T T T T
Run1 ——
Run 2 J—

09 r Run 3 ----- 7

Matching Confidence

' =~
"0 10 20 30 40 S50 60 70 80 90 100
Number of lterations (C)
(b) . : : - ,
Averages of the Biased and Unbiased Schemes Fig. 8. (a)'Boundarles of the se_gmented image shown in Fig. 2_(a), (b)
T — selected regions whose areas are in the expected range (200-450 pixels); and

Ungi::gg _— (c) polygonal approximation of the regions shown in (b) with fixed parameters
09 7 as specified in this section.
2
§ 08
g A ¢ Main ()
Q
é o7 1. Let W, and W, be global and local weight matrices;
é 0.6 ] 2. Let ¢ be an input image;
0s i . 3. InitEstimate (i, W = W),
0.4 ey 4. W, = W_q§
0 10 20 30 40 50 60 70 80 90 100 5. RLglobal (i, W = W));
. , =
Number of iterations ’
¢ end Main
(c)

Fig. 9. Main algorithm for adaptive integrated segmentation and recognition.

Fig. 7. Matching confidence history of three runs of the biased and unbiased
RL algorithms on the image shown in Fig. 4(a). (a) Biased, (b) unbiased, afd Feature Extraction and Model Matching

(c) average of these runs. . . ) o
Feature Extraction:Feature extraction consists of finding

polygon approximation tokens for each connected component
a change in its value causes a large change in parameter valgggined after image segmentation. The polygonal approxi-
In order to force parameters to change slowly, after initial esthation is implemented by calling the polygon approximation
mation, we apply @iasedRL algorithm in which then most  roytine in Khoros [22]. The resulting polygon approximation
significant units of a parameter are forced to change in a “laz)§’ 3 vector image to store the result of the linear approxima-

fashion as tion. The image contains two points for each estimated line.
The polygonal approximation has a fixed set of parameters:

1, ifp; >05 (@) minimal segment length for straight line5. When the
Yi = {0, otherwise (10) estimated straight line has a length less than this threshold, it

is skipped over; (b) elimination percentagd.1. Percentage
while the remaining: — m units update their outputs using theof line length rejected to calculate parameters of the straight
same rule (9). That is, a significant bit changes its output (da@e; and (c) approximation errer0.6. Threshold Value for the
lecting 0 or 1) in a less random fashion. Fig. 7 shows the eapproximation error. When the calculated error is greater than
perimental results of the two schemes on the image showntliis value, the line is broken.
Fig. 4(a). In this experimentp = 2 and we only apply the  To speed up the learning process, we assume that we have the
initialization followed by global learning without switching be-prior knowledge of th@pproximate aregnumber of pixels) of
tween global and local learning. The results show that the biagbd object, and only those connected components whose area is
RL algorithm speeds up learning by a factor of 2 to 3. comparable with the area of the model object are approximated
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o InitEstimate (i, W)
¢ LOOP:
1. Compute segmentation parameters based on (9) and segment image i;
2. Compute r based on (1);
3. Update W using r as reinforcement according to (6);
e UNTIL r > EBI;

¢ end InitEstimate

Fig. 10. Initial estimation procedure.

e RLglobal (i, W)
en=1r=0
e While r < Accept and n < MazGlobal do
l.n=n+1;
2. Compute segmentation parameters based on (10) and segment image i;

3. Extract features (i.e., compute polygon approximation tokens) for each
blob within size constraints and perform model matching;

4. Let 7 be highest matching confidence;
5. Update W using r as reinforcement according to (6);
6. if r > Switch then
7 For each blob B and r < Accept do
8. r = RLlocal (B, W = W));
¢ end RLglobal

¢ RLlocal (i, W)
en=1r=0
e While r < Accept and n < MazLocal do
l..n=n+1;
2. Compute segmentation parameters based on (10) and segment i;

3. Extract features (i.e., compute polygon approximation tokens) for each
blob within size constraints and perform model matching;

4. Let r be highest matching confidence;

5. Update W using r as reinforcement according to (6);
e if r > Accept then W) = W;
e Return r

¢ end RLlocal

Fig. 11. Global/local adaptation procedures.

by a polygon. For example, in our experiment on indoor images
4(a), the cup is the target object. The expected area is from 200
to 450 pixels. Fig. 8 shows the boundaries of a segmented image,
selected regions whose areas are in the expected range, and the
polygonal approximation of these regions, where segmentation
parameters arefsmooth = 7, Maxmin = 128, Splitmin =
47, Height = 54.

Model Matching:Model matching employs a cluster-struc- @ (b)
ture matching algorithm [7] which is based on forming the clugig- 12. Models: (a) cup and (b) traffic sign.
ters of translational and rotational transformations between the
object and the model. The algorithm takes as input two setssafquences of segments in appropriately chosen clusters; and
tokens, one of which represents the stored model and the ottleistering of sequence average transformation values. In the cur-
represents the input region to be recognized. It then perfornesnt implementation this algorithm can handle models and ob-
topological matching between the two token sets and compujests of various sizes. In fact, there can be ufr88% change in
areal number that indicates the confidence level of the matchiscale from model to object. A brief description of the algorithm
process. Basically, the technique consists of three steps: cligssgiven in Appendix B. More details about this algorithm can
tering of border segment transformations; finding continuotre found in [7].
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Fig. 13. Row 1: input images 1-6; rows 2—4: corresponding segmentations, subimages, and recognized objects.

Fig. 14. Row 1: input images 7-12; rows 2—4: corresponding segmentations, subimages, and recognized objects.

F. Algorithm Description global adaptation begins. The main steps of initial estimation
are shown in Fig. 10.

This section describes the detailed implementation of our al-In global adaptationW , is updated using the lazy learning
gorithm. For each input image the main procedure (Fig. 9) irstrategy [(6) and (10)] driven by model matching. When the
tializes W, (global weight matrix) and¥; (local weight ma- matching confidence is sufficiently large Switch—a threshold
trix), and then calls procedurdsitEstimate () andRLglobal parameter), local adaptation kicks in with connected compo-
() to adaptively compute segmentation parameters in orderrtents as input whose size passes a region filter. The global adap-
carry out optimal model matching. Learning is continuous aridtion process terminates when either a given numiskx{
on-line, and there are three distinct phases. For a given ima@éobal) of iterations has been reached in which case the model
learning begins wittW, and W;. The initial estimation does object is declared not to be present in the image, or the matching
not involve the polygonal approximation and model matchingonfidence exceeds a acceptable lexaloep) in which case a
W, is updated according to (6) using edge-border coincidenseccessful recognition has been achieved.

(1) as reinforcement. The initial estimation terminates when Similar to global adaptation, model matching drives the up-
EBC has exceedddB1 (a threshold parameter) at which pointate ofW; in local adaptation. The local adaptation procedure
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Fig. 15. Row 1: input images 1-6; rows 2-5: corresponding global segmentations, subimages, segmented images, and recognized objects.

terminates when one of the following two conditions is meftherefore, the advantages of the proposed method outweigh its
(1) the matching confidence exceegslscept indicating that the disadvantages in practical applications.

connected component is the recognized model object; (2) the

number of iterations reach&axLocalin which case the model Ill. EXPERIMENTAL RESULTS

object is unlikely to be extracted from the subimage and local

weigr;]t changlef arleldiscarded. The global and local procedu(gggr color images. The indoor images are acquired at different
ar? S howrdnz) '9. d h hil dural viewing distances with varying lighting conditions. The outdoor
t should be stated that while many procedura paramet?ﬁages are collected every 15 min over a 3-h period using a JVC

have been introduced to optimize four segmentation parametﬁ%:mou color video camera. These images simulate a photo
these procedural parameters, to a large extent, do not depen ?é}pretation/surveillance scenario in which the camera posi-

inputs and can be simply determinadriori. In addition, the tion is fixed and the images exhibit significant changes overtime

combined search space of these procedural parameters is to changing environmental conditions (time of the day, posi-

smaller than that of the four segmentatlon parame.ters. MO[%n of the sun in the sky, and cloud cover). Varying light level is
over, the convergence of the algorithm to a local optimum do most prominent change throughout the outdoor images. Al-

not depend on some of the thresholds mentioned, sugfaad though the environmental conditions also created varying object

f [seeﬁ(S)t—(7?]. tlr? practige, fhowever, these thri’:Sh()ldbpara“.TH?''hlights, moving shadows and many subtle contrast changes
ers aflect only the speed of convergence, as Shown Dy Valls,yean the objects in the image. The size of indoor images is

empirical studies conducted by several researchers includin U3 b : . : :
. y 160 pixels, and the size of outdoor images is 120 by 120
[20], [28]. Clearly.« [see (5)] has to be chosen sufficiently smal ixels. Each image is decomposed into four image®&fayenix

to prevent oscillation. The claim that good performance can &gmentation—red green, blue components, and the Y compo-
obtained under a wide range of these parameter values is t of YIQ model (’)f color,images. For the in'door images, the

once the_ a_lgorlthm has c_onverged, many of thes_g valqes Wesired object is the cup in the image, whereas the target object
rise to S|m|Ia.r segmentation performa.nce-,-as verified wsual% the traffic sign for the outdoor images. The expected sizes of
The complexity of the method can be justified by the cup and the traffic sign are 200 to 450 pixels and 36 to 100
1) necessity to adapt segmentation to changes inimage chmxels, respectively.
acteristics caused by changes in external conditions; Based on the size of the object to be recognized in the image,
2) large size of the search spad@®); we divide the Y component image into 48 subimages for the in-
3) quality of the results to be shown in the next section. doorimages, and 36 subimages for the outdoor images. The size

The system is verified on a set of 12 indoor and a set of 12 out-
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Fig. 16. Row 1: input images 7-12; rows 2-5: corresponding global segmentations, subimages, segmented subimages, and recognized objects.

TABLE I
LEARNED SEGMENTATION PARAMETERS AND MATCHING CONFIDENCE VALUES FORINDOOR IMAGES
ImageHsmooth Maxmin Splitmin Height|ConfidencelImage/Hsmooth Maxmin Splitmin Height|Confidence
1 7 122 47 52 0.87 7 7 122 47 52 0.81
2 7 128 47 52 0.93 8 7 471 11 60 0.86
3 7 471 11 60 0.86 9 7 471 11 60 0.87
4 5 471 19 58 0.91 10 5 471 19 58 0.91
5 11 192 59 48 0.92 11 9 157 61 66 0.93
6 9 157 59 61 0.97 12 9 157 59 61 0.91
TABLE Il
LEARNED SEGMENTATION PARAMETERS AND MATCHING CONFIDENCE VALUES FOR OUTDOOR IMAGES
Image{Hsmooth Maxmin Splitmin Height|Confidence|Image/Hsmooth Maxmin Splitmin Height{Confidence
1 11 367 43 26 0.82 7 11 300 69 40 0.88
2 9 259 69 46 0.91 8 11 259 23 46 0.85
3 15 259 23 54 0.86 9 13 212 27 40 0.86
4 11 234 27 56 0.90 10 11 259 29 56 0.88
5 13 264 31 56 0.90 11 11 289 29 54 0.87
6 13 276 29 54 0.91 12 9 276 31 46 0.92

of each subimage is 20 by 20 pixels. The standard deviationscafuse Bernoulli units are independent, the effective number of
these subimages serve as inputs to each Bernoulli unit, i.e., elele parameters is 49 for the indoor images, 37 for the outdoor
Bernoulli unit has a total of 48 inputs (and therefore, 48 weightepes.
forthe indoorimage, and has a total of 36 inputs (36 weights) for For the team of 20 Bernoulli units, the parameters, andé

the outdoor image. In order to learn the four seled®denix are determined empirically, and they are kept constant for all im-
segmentation parameters, we need 20 Bernoulli units. So thages. In our experiments,= 0.02,v = 0.9,6 = 0.01, EBI =

are atotal of 980 weigh{sW = 20 x 49) for the indoor images, 0.5, MazGlobal = 20, and MaxLocal = 20. The threshold
and 740(W = 20 x 37) for the outdoor images. Note that befor matching confidenc&witch = 0.6, and Accept = 0.8.
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Fig. 17. (a) CPU time for five different runs on 12 indoor images and the average; (b) number of iterations for five different runs on 12 indoor intlages and
average; (c) CPU time for five different runs on 12 outdoor images; and (d) number of iterations for five different runs on 12 outdoor images.

Threshold used for extracting edges using Sobel operator is sefig. 17 shows the CPU time for the 12 indoor images and
at 200. The parameters for feature extraction are fixed as spdd-outdoor images for five different runs, and the number of
fied in Section II-E. Fig. 12 shows the stored models for the cutgrations for each input image, which is the sum of all the iter-
in indoor images and the traffic sign in outdoor images. No#gions involved in the global learning and local learning pro-
that during local adaptation, we extract and enlarge subimagesses. These two curves show the learning capability of the
by a factor such that the enlarged subimages are of the same sitem, i.e., the system uses less and less CPU time with ex-
as the input image. The stored models are scaled by the sgmgence to find a set of segmentation parameters and correctly
factor. recognizes the object. The number of iterations decreases with
the accumulation of experience.

A. Results on Indoor and Outdoor Images

. . ., B. Comparison of Approaches
Figs. 13-16 show the experimental results on the 12 indoor P PP

and 12 outdoor color images. For each indoor image, its segdn this section we compare the performance of our system as
mentation using the set of learned parameters and the extracieawn in Fig. 1 with an earlier approach [20]. We show the effect
object that has been recognized are presented. For each otiiacorporating segmentation evaluation using the edge-border
doorimage, corresponding global segmentation, subimage, segjncidence into the learning system and the impact of global
mented subimage and recognized object are shown. Subimaayed local segmentations on model matching.

are computed automatically by our algorithm. For each set of The key differences between the two methods are the intro-
images, inputs are taken sequentially. Except for the first imagkiction of the local segmentation process, the biasing of RL al-
the learning process for each image starts from the global sggrithm, and the use of edge-border coincidence as an evalua-
mentation parameters learned from all the previous images. Fon of the segmentation performance during the early stage of
the first input image, weights are initialized randomly. Usuallyearning in order to reduce the computational expense stemming
it takes less than 45 iterations to find a set of segmentatitmm model matching. In the method presented in this paper the
algorithm parameters that produces high edge-border coineégmentation process alternates between the whole image and
dence. Tables Il and 1l show four learned segmentation paraits- subcomponents. The local segmentation is highly desirable
eter values and matching confidence after local adaptation f@hen there are multiple objects or a single object at multiple lo-
indoor and outdoor images, respectively. Accuracy of segmentations with different local characteristics. It can dramatically
tion results can be observed from Figs. 13—16 and the matchingprove the recognition performance. The biasing of RL algo-
confidence in Tables Il and IlI. rithm reduces computational time as illustrated in Fig. 7.
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50 |- 1 formation to confine free parameters in our system.
0 1 2 3 4 5 6 7 8 8 10 11 12 13 For adapting to the wide variety of images encountered in
Images real-world applications, we can develop an autonomous gain
(b) control system which will allow the matching between different
classes of images taken under significantly different weather
Fig. 18. Comparison of two approaches: method 1 approach presente&?ﬂditions (sunny, cloudy, snowy, rainy) and adapt the parame-
this paper, method 2 approach reported in [20]. (a) Comparison of the aver&@es within each class of images. We use image context to divide
CPU time of five different runs on 12_ indqor images and (b) _compa_rison of thpe input images into several classes based on image properties
accumulated average CPU time of five different runs on 12 indoor images. - . S
and external conditions, such as time of the day, lighting con-
dition, etc. [5]. When an image is presented, we use an image
In previous research [20], the matching confidence is the orgyoperty measurement module and the available external infor-
feedback that drives learning. Although it is undoubtedly th@ation to find the stored information for this category of images,
most reliable measure, itis relatively expensive to compute. Thrd start learning process from that set of parameters. This will
edge-border coincidence provides us with a cheap way to find@ercome the problem of adapting to large variations between
good point from which to begin the more expensive search foonsecutive images. It is also possible to use our approach for
high matching confidence values. Fig. 18 shows the comparisdassification of segmentation methods or as a testbed for new
results of the two methods: method 1 (this paper) and methodegmentation methods, where the evaluation is conducted from
[20]. The improvement in CPU time for method 2 and its corebject recognition point of view. These are areas of future re-
sistency for different images are very clear. Although good insearch that we intend to pursue.
tial estimates may not always result in faster discovery of high
matching confidence values, the edge-border coincidence seems
to work well in practice for all the problems we have experi-
mented.

Y
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n
>

Fig. 19. Conceptual diagram of the Phoenix segmentation algorithm.
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APPENDIX A
PHOENIX SEGMENTATION ALGORITHM

The Phoenix image segmentation algorithm is based on a re-
cursive region splitting technique [14]. It uses information from
the histograms of the red, green, and blue image components to
split regions in the image into smaller subregions on the basis of

We have presented a proof-of-the-principle of a general appeak/valley analysis of each histogram. An input image typ-
proach for adaptive image segmentation and object recognitiaally consists of red, green, and blue image planes, although
The approach combines a domain independent simple measumnochrome images, texture planes, and other pixel-oriented
for segmentation evaluation (edge-border coincidence) and diata may also be used. Each plane is called a feature or feature
main dependent model matching confidence in a reinforcemeaéne.
learning framework in a systematic manner to accomplish ro-Fig. 19 shows a conceptual description of the Phoenix seg-
bustimage segmentation and object recognition simultaneoushentation process. It begins with the entire image as a single
Experimental results demonstrate that the approach is suitatggion. It then fetches this region and attempts to segment it
for continuously adapting to normal changes encountered uging histogram and spatial analyses. If it succeeds, the program
real-world applications. Although the empirical evaluation infetches each of the new regions in turn and attempts to segment
volves a small number of images, our system is designedtbem. The process terminates when no region can be further seg-
continuously adapt in a real-time environment, such as roboented.

IV. CONCLUSIONS AND FUTURE WORK
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The histogram analysis phase computes a histogram for eatdtrix and are indexed by the segment numbers in the model and
feature plane, analyzes it and selects thresholds or histogrdm@image. The algorithm continues until all segments have been
cutpoints that are likely to identify significant homogeneousompared. It then computes the range of rotational and transla-
regions in the image. A set of thresholds for one feature tignal values present in the matrix, and normalizes them over
called an interval set. During the analysis, a histogram is firteir appropriate range.
smoothed with an unweighted window average, where theThe initial clustering determines clusters from the normalized
window width isHsmooth It is then broken into intervals suchvalues in the disparity matrix. At each step, the program clusters
that each contains a peak and two valleys, called “shouldea/! of the samples, recomputes the new cluster centers, and con-
on either side of the peak. A series of heuristics is applig¢thues until none of the cluster centers change their positions.
to eliminate noise peaks. When an interval is removed, The program then selects the cluster having the largest number
is merged with the neighbor sharing the higher of its twof samples. Also selected are the clusters that are within 20%
shoulders.Splitmin is the minimum area for a region to beof the largest one. Each cluster is considered separately and the
automatically considered for splitting. final transform comes from the cluster that yields the highest

Two tests determine if an interval should be retained. Firgtonfidence level.
the ratio of peak height to the height of its higher shoulder mustThe sequencing step uses the samples in the current cluster
be greater than or equal to thdaxminthreshold. Second, theto find all sequences in the samples. This provides the critical
interval area must be larger than an absolute threshold and $kreictural information. Samples that are not placed in any se-
relative area, percent of the total histogram area. The secapence are discarded. The program also removes sequences that
highest peak can now be found, and peaks lower thaH¢ight have a segment count of less than three (three segments com-
percent of this peak are merged. The lowest valley is then geise the basic local shape structure). It then computes the rota-
termined, and any interval whose right shoulder is higher théional and translation averages of each sequence that has been
absmin(Phoenix’s parameter) times this valley is merged witlocated.
its right neighbor. Finally, onlyntsmax(Phoenix’s parameter) Usingthe sequences and the sequence averages, the final clus-
intervals are retained by repeatedly merging intervals with loiering step clusters these values to find those sequences that lead
peak-to-shoulder ratio. to the same rotational and translational results. This is achieved

The spatial analysis selects the most promising interval sdig, using the iterative technique of clustering, evaluating, clus-
thresholds the corresponding feature planes, and extracts dening, etc. The program then selects the cluster that contains the
nected components for spatial evaluation. The feature and theyest number of sequences and passes this cluster to the final
interval set providing the best segmentation (the least noise arg@p.
are accepted as the segmentation feature and the thresholds. The final step of the algorithm computes the confidence level

The histogram cutpoints are now applied to the feature plaokthe transformation determined by each cluster. The cluster
as intensity thresholds and connected components are extradtesting the highest confidence level is selected as the final trans-
After each feature has been evaluated, the one producing filenation cluster. It assembles the set of matched segments in
least total noise area is accepted as the segmentation feafilme.sequences in this cluster. The final output of the program
If no suitable feature is found, the original region is declared the rotation and the vertical and horizontal translation nec-
terminal. Otherwise the valid patches, merged with the noisssary to locate the model within the image. The program also
patches, are converted to new regions and added to the segmpeoduces a confidence level indicating the likelihood that the
tation record. In either case, a new segmentation pass is sctetil matching is correct. For further details, see [7].
uled. For additional details, see [14].
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