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Adaptive Integrated Image Segmentation
and Object Recognition

Bir Bhanu, Fellow, IEEE,and Jing Peng

Abstract—This paper presents a general approach to image
segmentation and object recognition that can adapt the image seg-
mentation algorithm parameters to the changing environmental
conditions. Segmentation parameters are represented by a team
of generalized stochastic learning automata and learned using
connectionist reinforcement learning techniques. The edge-border
coincidence measure is first used as reinforcement for segmen-
tation evaluation to reduce computational expenses associated
with model matching during the early stage of adaptation. This
measure alone, however, can not reliably predict the outcome
of object recognition. Therefore, it is used in conjunction with
model matching where the matching confidence is used as a rein-
forcement signal to provide optimal segmentation evaluation in a
closed-loop object recognition system. The adaptation alternates
between global and local segmentation processes in order to
achieve optimal recognition performance. Results are presented
for both indoor and outdoor color images where the performance
improvement over time is shown for both image segmentation and
object recognition.

Index Terms—Adaptive image segmentation, adaptive object
recognition, closed-loop recognition, closed-loop segmentation,
model-based recognition, learning for object recognition.

I. INTRODUCTION

A MODEL-BASED object recognition system has three key
components: image segmentation, feature extraction, and

model matching. The goal of image segmentation is to extract
meaningful objects from an input image. Image segmentation
is an important and one of the most difficult low-level image
analysis tasks [5], [10]. All subsequent tasks including feature
extraction and model matching rely heavily on the quality of the
image segmentation process.

The inability to adapt the image segmentation process to real-
world changes is one of the fundamental weaknesses of typ-
ical model-based object recognition systems. The real-world
changes are caused by variations in environmental conditions,
imaging devices, lighting conditions, time of the day, sun posi-
tion, shadows, weather conditions, etc. Despite the large number
of image segmentation algorithms available [6], [11], [23], no
general methods have been found to process the wide diversity
of images encountered in real world applications. Usually, an
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object recognition system isopen-loop. Segmentation and fea-
ture extraction modules use default values of algorithm param-
eters, and generally work as pre-processing steps to the model
matching component. These default values of algorithm param-
eters, however, generally degrade the system performance and
cannot adapt to changes in real-world applications. The default
settings of algorithm parameters are usually obtained by the
system designer by following a trial and error method. Param-
eters obtained in this way are not robust, since when the condi-
tions for which they are designed are changed slightly, these al-
gorithms generally fail without any graceful degradation in per-
formance.

The usefulness of a set of algorithm parameters in an image
analysis system can only be determined by the system’s output,
for example, recognition performance. To recognize different
objects or instances of the same object in an image, we may
need different sets of parameters locally due to the changes in
local image properties, such as brightness, contrast, etc. Also
the changing environmental conditions affect the appearance of
an image that requires the ability to adapt the algorithm pa-
rameters for multi-scenario object recognition. To achieve ro-
bust performance in real-world applications, therefore, a need
exists to apply learning techniques that can efficiently find pa-
rameter values yielding optimal results for the given recognition
task. In this paper, our goal is to develop a general approach to
model-based object recognition that has the ability to continu-
ously adapt to normal environmental variations.

The original contributions of the adaptive integrated image
segmentation and object recognition system presented in this
paper are

1) model matching confidence is used as feedback to influ-
ence the image segmentation process, thereby providing
our object recognition system with adaptability in real
world scenarios;

2) a team of generalized stochastic learning automata is used
to represent both global and local image segmentation
parameters, making faster learning possible;

3) edge-border coincidence, when combined with model
matching confidence, reduces overall computational
costs of the learning process;

4) explicit bias is introduced in a reinforcement learning
system in order to speed up the learning process for adap-
tive image segmentation.

In the remainder of Section I, we present an overview of the
approach and related research. Section II gives the details of the
approach and discusses algorithms used in this research. Sec-
tion III provides the experimental results for segmentation and
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Fig. 1. Adaptive integrated image segmentation and object recognition
system.

recognition on both indoor and outdoor color images. Finally,
Section IV presents the conclusions of the paper and future di-
rections.

A. Overview of the Approach

We develop a general approach to adaptive integrated image
segmentation and object recognition. The basicassumptionis
that we know the models of the objects that are to be recognized,
but we do not know the number of objects and their locations in
the image. Fig. 1 shows the functional structure of the adaptive
system. The system consists of two key subsystems: reinforce-
ment learning subsystem and object recognition subsystem. The
object recognition subsystem consists of three basic modules:
image segmentation, feature extraction and model matching.
The image segmentation module extracts meaningful objects
from input images. Feature extraction performs polygonal ap-
proximation of connected components. The model matching
module then carries out matching between the stored models
and the polygonal approximation of the connected components
in order to recognize model objects. This module indirectly eval-
uates the performance of the image segmentation and feature
extraction processes by generating a real valued matching con-
fidence indicating the degree of success. This real valued con-
fidence is then used as feedback to a reinforcement learning
subsystem to drive adaptation for image segmentation parame-
ters. The goal is to adaptively compute segmentation parameters
that, when applied to the segmentation algorithm, maximize the
matching confidence for the given recognition task.

It is important to note that since significant differences in
characteristics exist between an image and its subimages, op-
erating parameters of algorithms need to be tuned to these dif-
ferences to achieve optimal performance of segmentation and
model matching. For example, to recognize two objects in an
image or a single object at different locations, it is often diffi-
cult, if not impossible, to extract and recognize objects with a
single fixed set of parameters of a given algorithm. It is essential
to localize computation to meet each individual requirement. In
order to achieve this objective our system performs both global
and local adaptation. The global adaptation process finds seg-
mentation parameters that are likely to result in the recognition
of model objects from the entire image while the local process
computes parameters that are best suited for selected subimages.

In this way, our system is highly adaptive to variations within an
image.

The particular framework adopted in this paper is reinforce-
ment learning, which closes the loop between model matching
and image segmentation. There are good reasons for using rein-
forcement learning in our image processing and analysis system.
First, reinforcement learning requires knowing only the good-
ness of the system performance rather than the details of algo-
rithms that produce the results. It is natural to use matching con-
fidence as reinforcement.Second, convergence is guaranteed for
several reinforcement learning algorithms.Third, reinforcement
learning performs efficient hill-climbing in a statistical sense
without excessive demand for computational resources. Further-
more, it can generalize over unseen images.Fourth, reinforce-
ment learning can systematically assign credit to different levels
in a multi-level image processing and analysis system.

The adaptive integrated image segmentation and object
recognition system is designed to befundamentalin nature and
is not dependent on any specific image segmentation algorithm
or type of input images. In order to represent segmentation
parameters suitably in a reinforcement learning framework,
the system only needs to know the segmentation parameters
and their ranges. In our approach, a binary encoding scheme is
used to represent the segmentation parameters. While the same
task could be learned in the original parameter space, for many
types of problems, including image segmentation, the binary
representation is expected to learn much faster [20]. In this
sense, our system is independent of a particular segmentation
algorithm used. Of course, different segmentation algorithms
are designed and well suited for different kinds of images in
various bands of the electromagnetic spectrum. For example,
the Phoenixalgorithm used in this paper is designed for the
segmentation of color images.

B. Related Work

There is no published work on reinforcement learning inte-
grated image segmentation and object recognition using mul-
tiple feedbacks. The adaptive parameter control of segmenta-
tion algorithm and the adaptive selection and combination of
different algorithms in a learning integrated system areunsolved
problems in the field of image processing and computer vision
[1]. Most threshold selection techniques in image processing
and computer vision do not involve any learning to improve fu-
ture performance with experience.

In [8], Burgeset al. describe a method for coupling recog-
nition and segmentation by the principle of heuristic over seg-
mentation. The basic idea is that a segmentation algorithm gen-
erates a graph that summarizes a large number of segmentation
hypotheses that are scored by a recognition algorithm. A glob-
ally optimal decision is then made that combines uncertainties
in segmentation and recognition. Each time a new input comes
in a over segmented hypothesis graph must be generated and
traversed in order to classify the input. In contrast, the system
presented in this paper uses a learned mapping to compute seg-
mentation parameters for a given input to achieve optimal model
matching. In addition, the learning of mapping in our system is
driven completely by the matching confidence, whereas their
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graph generation is largely based on heuristics. In another work
[15], graph generation is actually learned by minimizing global
errors that take into account both segmentation hypotheses and
recognition scores. In [2], a method is described for fitting seg-
mentation parameters to maximize the likelihood of a model of
an object. In comparison, our system attempts to maximize a
classification (conditional) probability.

Bhanu and Lee [5] presented an image segmentation system
which incorporates a genetic algorithm to adapt the segmenta-
tion process to changes in image characteristics caused by vari-
able environmental conditions. In their approach, multiple seg-
mentation quality measures are used as feedback. Some of these
measures require ground-truth information which may not be al-
ways available. Peng and Bhanu [20] presented an approach in
which a reinforcement learning system is used to close the loop
between segmentation and recognition, and to induce a mapping
from input images to corresponding segmentation parameters.
Their approach is based on global image segmentation which is
not the best way to detect objects in an image; we need the capa-
bility of performing segmentation based on local image proper-
ties (local segmentation). Another disadvantage of their method
is its time complexity that makes it problematic for practical ap-
plication of computer vision. Also, the technique introduced in
[21] is primarily concerned with multi-stage computer vision
systems. Here we are addressing issues facing adaptive image
segmentation in single stage systems that use multiple perfor-
mance measures, and that exploit local image properties.

For object recognition applications, the efficiency of the
learning techniques is very important. How to add bias, a prior
or domain knowledge in a reinforcement learning based system
is an important topic of research in reinforcement learning [9],
[16], [26]. For theRATLE system, Maclin and Shavlik [16]
accept “advice” expressed in a simple programming language.
This advice is compiled into “knowledge-based” connectionist

-learning network. They show that advice-giving can speed
up -learning when the advice is helpful (though it need not
be perfectly correct). When the advice is harmful, back prop-
agation training quickly overrides it. Dorigo and Colombetti
[9] show that by using a learning technique called learning
classifier system (LCS), an external trainer working within
a RL framework can help a robot to achieve a goal. Thrun
and Schwartz [26] have discussed methods for incorporating
background knowledge into a reinforcement learning system
for robot learning.

In our approach, the edge-border coincidence is used to lo-
cate an initial good point from which to begin the search through
weight space for high matching confidence values. Although as
a segmentation evaluation measure the edge-border coincidence
is not as reliable as the matching confidence, lower edge-border
coincidence values always result in poor model matching. Like-
wise, higher edge-border coincidence values suggest with high
probability that the current set of segmentation parameters is in
a close neighborhood of the optimal one. It is an inexpensive
way to arrive at an initial approximation to a set of segmenta-
tion parameters that gives rise to the optimal recognition perfor-
mance. The control switches between global and local segmen-
tation processes to optimize recognition performance. To fur-
ther speed-up the learning process the reinforcement learning

is biased when the model matching confidence is used as the
reinforcement signal (note that the reinforcement learning is
unbiasedinitially when the edge-border coincidence is used as
the reinforcement signal). We achieve better computational ef-
ficiency of the learning system and improved recognition rates
compared to an earlier system [20].

II. TECHNICAL APPROACH

Our goal is to adaptively compute segmentation parameters
using matching confidence as feedback to optimize its perfor-
mance for a given recognition task. However, this feedback in-
volves expensive computation of feature extraction and model
matching. In order to minimize this computation edge-border
coincidence is first used to obtain an initial estimate of the pa-
rameters. While the edge-border coincidence alone may not re-
liably predict the outcome of model matching, it is simple to
compute, thereby improving overall efficiency without causing
performance degradation.

The adaptive segmentation process in our system has two
distinct phases: global and local. While global segmentation is
performed for the entire image, local segmentation is carried
out only for selected subimages. For a set of input images, the
system takes inputs sequentially. This is similar to human vi-
sual learning process, in which the visual stimuli are presented
temporally in a sequential manner. For the first input image, the
system having no accumulated experience begins learning with
a set of random weights. For each input image thereafter, the
learning process starts from the set of weights that are obtained
based on all the previous input images. The following are the
main steps of our learning algorithm:

Initial Approximation: A network of Bernoulli units is
used to represent segmentation parameters. The edge-border
coincidence is used as a direct segmentation evaluation during
earlier stages of adaptation to drive weight changes without
going through the expensive feature extraction and model
matching. Once the edge-border coincidence has exceeded
a given threshold, the weight changes will be driven by the
matching confidence, which requires more expensive computa-
tion of feature extraction and model matching. Fig. 2 illustrates
the blocks needed for the computation of the edge-border
coincidence as reinforcement and for parameter adaptation.

Global Segmentation Adaptation:Unlike initial approxi-
mation, the global segmentation adaptation process relies on
model matching to provide indirect evaluation of segmentation
performance. We assume that we have a prior knowledge of
approximate size of objects of interest in the images. After
segmentation, the connected components that pass through the
size filter based on the expected size of objects of interest in
the image, we perform feature extraction and model matching.
The highest matching confidence is taken as reinforcement to
the learning system. Fig. 3 shows the main steps needed for
model matching computation and for parameter adaptation.
If the highest matching confidence level is above a given
switching theshold and a given maximum number of iterations
has not been reached, we focus image segmentation and model
matching on the connected component and switch to the local
adaptation process.
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Fig. 2. Direct segmentation evaluation using edge-border coincidence.

Fig. 3. Indirect segmentation evaluation.

Local Segmentation Adaptation:Once a connected compo-
nent has been extracted from the input image, local adapta-
tion begins to find the best fit segmentation parameters for the
subimage. It starts from the current estimate of weights that re-
sulted from global adaptation. Similar to global adaptation, the
matching confidence is used to update local weights until the
confidence exceeds an acceptable level in which case the adap-
tation process for the current input subimage is terminated, or a
given maximum number of iterations has been reached in which
case the control switches from local to global and the global
adaptation process continues from the point where we switched
to the local adaptation process.

A. Phoenix Image Segmentation Algorithm

Since we are working with color imagery in our experiments,
we have selected thePhoenixsegmentation algorithm [14],
[19] developed at Carnegie-Mellon University and SRI Inter-
national. ThePhoenixsegmentation algorithm has been widely
used and tested. It works by recursively splitting regions using
histogram for color features.Phoenixhas seventeen different
control parameters, fourteen of which are adjustable. The four
most critical ones (see Table I) that affect the overall results of
the segmentation process are selected for adaptation:Hsmooth,
Maxmin, Splitmin, and Height. Hsmoothis the width of the
histogram smoothing window.Maxminis the lowest acceptable
peak-to-valley height ratio.Splitmin represents the minimum
area for a region to be automatically considered for splitting.
Height is the minimum acceptable peak height as a percentage
of the second highest peak. Each parameter has 32 possible
values. The resulting search space issample points. Each of

TABLE I
SAMPLE RANGES FORSELECTED PHOENIX PARAMETERS

thePhoenixparameters is represented using 5 bit binary code,
with each bit represented by one Bernoulli unit. To represent
four parameters, we need a total of 20 Bernoulli units. A brief
description ofPhoenixis given in Appendix A. More details
aboutPhoenixare given in the report by Laws [14] and related
papers [19], [24].

B. Edge-Border Coincidence

Given that feature extraction and model matching are com-
putationally expensive processes, it is imperative that initial ap-
proximation be made such that overall computation can be re-
duced. In order to achieve this objective, we introduce a direct
feedback signal that measures the image segmentation quality.
There is a large number of segmentation quality measures that
have been proposed [5]. The segmentation evaluation metric
that we have selected is theedge-border coincidence(EBC) [5],
[18]. It measures the overlap of the region borders in the seg-
mented image relative to the edges found using an edge detector,
and does not depend on any ground-truth information about the
objects to be recognized. In our approach, we use theSobel
edge operator [23] to compute the necessary edge information.
Edge-border coincidence is defined as follows. Letbe the set
of pixels extracted by the edge operator after thresh-
olding and be the set of pixels found on the region
boundaries obtained from the segmentation algorithm

and

Then EBC is defined as

(1)

where computes the number of elements of its argument
and

and

Fig. 4(b) shows the Sobel edge image of an experimental indoor
color image given in Fig. 4(a). The region boundaries obtained
using thePhoeniximage segmentation algorithm are shown in
Fig. 4(c). The parameters of thePhoenixalgorithm that are used
include:Hsmooth , Maxmin , Splitmin ,
Height . In this example, EBC for the segmented image
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Fig. 4. Edge-border coincidence (EBC): (a) input image, (b) Sobel edge
magnitude image (threshold= 200), and (c) boundaries of the segmented
image.

is 0.6825. EBC measures, to the extent possible, the quality of
the segmentation process. Matching confidence, the recognition
system’s output, indicates the confidence of the model matching
process, and indirectly measures the segmentation quality of the
recognized object. It is possible that EBC is high while matching
confidence level is low, or EBC is low while matching confi-
dence is high. Fig. 5(a) shows that EBC, when measuring seg-
mentation quality for the whole image, does not correlate well
with matching confidence. On the other hand, EBC does corre-
late with the matching confidence when applied to subimages,
as shown in Fig. 5(b). However, the model matching confidence
is arguably the only measure that can conclusively evaluate the
performance of the segmentation process.

Although EBC does not correctly predict the matching con-
fidence, for our purpose it is sufficient to drive initial estimates.
Moreover, low EBC values indicate that the segmentation is un-
likely to result in good recognition performance. As such, the
system repeats the initial estimation process using EBC as the
only reinforcement signal until it exceeds a prespecified level.
At that time, the segmentation performance will be determined
completely by model matching.

C. Reinforcement Learning for Image Segmentation

Reinforcement learningis the problem faced by an agent that
must learn behavior through trial-and-error interactions with a
dynamic environment. It is appropriately thought of as a class
of problems, rather than as a set of techniques [13], [25]. This

type of learning has a wide variety of applications, ranging from
modeling behavior learning in experimental psychology to
building active vision systems. The termreinforcementcomes
from studies of animal learning in experimental psychology.
The basic idea is that if an action is followed by a satisfactory
state of affairs or an improvement in the state of affairs, then the
tendency to produce that action is reinforced. Reinforcement
learning is similar to supervised learning in that it receives a
feedback to adjust itself. However, the feedback isevaluative
in the case of reinforcement learning. In general, reinforcement
learning is more widely applicable than supervised learning
and it provides a competitive approach to building autonomous
learning systems that must operate in real world. For a compre-
hensive overview of this subject, the reader is referred to [25].

The particular class of reinforcement learning algorithms em-
ployed in each (global/local) region for our object recognition
system is the connectionist REINFORCE algorithm [27], where
units in such a network areBernoulli quasilinear units, in that
the output of such a unit is either 0 or 1, determined stochas-
tically using the Bernoulli distribution with parameter

, where is the logistic function

(2)

and is the weighted summation of input values
to that unit. For such a unit, shown in Fig. 6, represents its
probability of choosing 1 as its output value.

In the general reinforcement learning paradigm, the network
generates an output pattern and the environment responds by
providing the reinforcementas its evaluation of that output pat-
tern, which is then used to drive the weight changes according
to the particular reinforcement learning algorithm being used
by the network. REINFORCE has the following generic update
rule

(3)

where
learning rate factor;
immediate reinforcement;
baseline;
density function for randomly generating output pat-
terns.

For the Bernoulli quasilinear units used in this research, the
above weight updating rule (3) is reduced to

(4)

where
input to each Bernoulli unit;
output of the th Bernoulli unit;
internal parameter to a Bernoulli random number gen-
erator.

It can be shown [27] that, regardless of howis computed,
whenever it does not depend on the immediately received re-
inforcement value , and when is sent to all the units in the
network, such an algorithm satisfies

(5)
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Fig. 5. Edge-border coincidence versus matching confidence for recognizing the cup in the image shown in Fig. 2(a). (a) Global image and (b) subimage.

Fig. 6. Bernoulli semilinear unit.

where denotes the expectation operator. Hererepresents
the weight matrix of the network, that is, denotes theth
input weight to the th unit in the network, and is the
change of the weight matrix. A reinforcement learning algo-
rithm satisfying the above equation has the convergence prop-
erty that the algorithm statistically climbs the gradient of ex-
pected reinforcement in weight space. For adapting parameters
of the segmentation algorithm, it means that the segmentation
parameters change in the direction along which the expected
edge-border coincidence and/or matching confidence increases.
It should be noted that the algorithm is scale variant in that the
rate of convergence decreases with increasing weight space.

The specific algorithm we use here has the following form:
At the th time step, after generating output and receiving
reinforcement , i.e., EBC or the confidence level indicating
the matching result, increment each weight by

(6)

where , the learning rate, and, the weight decay rate, are pa-
rameters of the algorithm. The term is called
the reinforcement factorand theeligibility
of the weight [27]. Generally, the eligibility of a weight in-
dicates the extent to which the activity at the input of the weight
was connected in the past with unit output activity. Note that
this algorithm is a variant of the one described in (4), whereis
replaced by and by .

is the exponentially weighted average, ortrace, of prior
reinforcement values

(7)

with . The trace parameterwas set equal to 0.9 for all
the experiments reported here. Similarly is an average of
past values of computed by the same exponential weighting
scheme used for. That is

(8)

Note that (5) does not depend on the eligibility. Note also that
in (4) is the theoretical mean of , whereas in (6) and

(8) is the actual estimate. Empirical study has shown superior
performance with this form of weight update [28]. Note that a
team of 20 Bernoulli units represents the four image segmenta-
tion parameters selected for learning. Each bit of a parameter is
independent of each other.

D. “Biased” Reinforcement Learning

In the RL algorithm as described in Section II-C, each of the
bits encoding segmentation parameters chooses its output inde-
pendently according to

with probability
with probability

(9)

It is “unbiased” in that the output of a bit is governed solely by
the Bernoulli probability distribution. The advantage of this al-
gorithm is that rapid changes in output values allow giant leaps
in the search space, which in turn enables the learning system
to quickly discover suspected high pay-off regions. However,
once the system has arrived at the vicinity of a local optimum, as
will be the case after the initial estimation, changes in the most
significant bit will drastically alter the parameter value, often
jumping out of the neighborhood of the local optimum. Ideally,
once the learning system discovers that it is within a possible
high pay-off region, it should attempt to capture the regularities
of the region. This then biases future search toward points within
it. The challenge, of course, is to have a learning algorithm that
allows the parameters controlling the search distribution to be
adjusted so that this distribution comes to capture this knowl-
edge. The algorithm described here shows some promise in this
regard.

Suppose that a parameter is represented byBernoulli units
of which are deemed significant. Here a unit is significant if
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Fig. 7. Matching confidence history of three runs of the biased and unbiased
RL algorithms on the image shown in Fig. 4(a). (a) Biased, (b) unbiased, and
(c) average of these runs.

a change in its value causes a large change in parameter values.
In order to force parameters to change slowly, after initial esti-
mation, we apply abiasedRL algorithm in which the most
significant units of a parameter are forced to change in a “lazy”
fashion as

if
otherwise

(10)

while the remaining units update their outputs using the
same rule (9). That is, a significant bit changes its output (se-
lecting 0 or 1) in a less random fashion. Fig. 7 shows the ex-
perimental results of the two schemes on the image shown in
Fig. 4(a). In this experiment, and we only apply the
initialization followed by global learning without switching be-
tween global and local learning. The results show that the biased
RL algorithm speeds up learning by a factor of 2 to 3.

Fig. 8. (a) Boundaries of the segmented image shown in Fig. 2(a); (b)
selected regions whose areas are in the expected range (200–450 pixels); and
(c) polygonal approximation of the regions shown in (b) with fixed parameters
as specified in this section.

Fig. 9. Main algorithm for adaptive integrated segmentation and recognition.

E. Feature Extraction and Model Matching

Feature Extraction:Feature extraction consists of finding
polygon approximation tokens for each connected component
obtained after image segmentation. The polygonal approxi-
mation is implemented by calling the polygon approximation
routine in Khoros [22]. The resulting polygon approximation
is a vector image to store the result of the linear approxima-
tion. The image contains two points for each estimated line.
The polygonal approximation has a fixed set of parameters:
(a) minimal segment length for straight line . When the
estimated straight line has a length less than this threshold, it
is skipped over; (b) elimination percentage . Percentage
of line length rejected to calculate parameters of the straight
line; and (c) approximation error . Threshold Value for the
approximation error. When the calculated error is greater than
this value, the line is broken.

To speed up the learning process, we assume that we have the
prior knowledge of theapproximate area(number of pixels) of
the object, and only those connected components whose area is
comparable with the area of the model object are approximated
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Fig. 10. Initial estimation procedure.

Fig. 11. Global/local adaptation procedures.

by a polygon. For example, in our experiment on indoor images
4(a), the cup is the target object. The expected area is from 200
to 450 pixels. Fig. 8 shows the boundaries of a segmented image,
selected regions whose areas are in the expected range, and the
polygonal approximation of these regions, where segmentation
parameters are:Hsmooth , Maxmin , Splitmin

, Height .
Model Matching:Model matching employs a cluster-struc-

ture matching algorithm [7] which is based on forming the clus-
ters of translational and rotational transformations between the
object and the model. The algorithm takes as input two sets of
tokens, one of which represents the stored model and the other
represents the input region to be recognized. It then performs
topological matching between the two token sets and computes
a real number that indicates the confidence level of the matching
process. Basically, the technique consists of three steps: clus-
tering of border segment transformations; finding continuous

(a) (b)

Fig. 12. Models: (a) cup and (b) traffic sign.

sequences of segments in appropriately chosen clusters; and
clustering of sequence average transformation values. In the cur-
rent implementation this algorithm can handle models and ob-
jects of various sizes. In fact, there can be up to% change in
scale from model to object. A brief description of the algorithm
is given in Appendix B. More details about this algorithm can
be found in [7].
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Fig. 13. Row 1: input images 1–6; rows 2–4: corresponding segmentations, subimages, and recognized objects.

Fig. 14. Row 1: input images 7–12; rows 2–4: corresponding segmentations, subimages, and recognized objects.

F. Algorithm Description

This section describes the detailed implementation of our al-
gorithm. For each input image the main procedure (Fig. 9) ini-
tializes (global weight matrix) and (local weight ma-
trix), and then calls proceduresInitEstimate () andRLglobal
() to adaptively compute segmentation parameters in order to
carry out optimal model matching. Learning is continuous and
on-line, and there are three distinct phases. For a given image,
learning begins with and . The initial estimation does
not involve the polygonal approximation and model matching.

is updated according to (6) using edge-border coincidence
(1) as reinforcement. The initial estimation terminates when
EBC has exceededEB1 (a threshold parameter) at which point

global adaptation begins. The main steps of initial estimation
are shown in Fig. 10.

In global adaptation, is updated using the lazy learning
strategy [(6) and (10)] driven by model matching. When the
matching confidence is sufficiently large (Switch—a threshold
parameter), local adaptation kicks in with connected compo-
nents as input whose size passes a region filter. The global adap-
tation process terminates when either a given number (Max-
Global) of iterations has been reached in which case the model
object is declared not to be present in the image, or the matching
confidence exceeds a acceptable level (Accept) in which case a
successful recognition has been achieved.

Similar to global adaptation, model matching drives the up-
date of in local adaptation. The local adaptation procedure
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Fig. 15. Row 1: input images 1–6; rows 2–5: corresponding global segmentations, subimages, segmented images, and recognized objects.

terminates when one of the following two conditions is met:
(1) the matching confidence exceedsAccept, indicating that the
connected component is the recognized model object; (2) the
number of iterations reachesMaxLocalin which case the model
object is unlikely to be extracted from the subimage and local
weight changes are discarded. The global and local procedures
are shown in Fig. 11.

It should be stated that while many procedural parameters
have been introduced to optimize four segmentation parameters,
these procedural parameters, to a large extent, do not depend on
inputs and can be simply determineda priori. In addition, the
combined search space of these procedural parameters is much
smaller than that of the four segmentation parameters. More-
over, the convergence of the algorithm to a local optimum does
not depend on some of the thresholds mentioned, such asand

[see (5)–(7)]. In practice, however, these threshold parame-
ters affect only the speed of convergence, as shown by various
empirical studies conducted by several researchers including us
[20], [28]. Clearly, [see (5)] has to be chosen sufficiently small
to prevent oscillation. The claim that good performance can be
obtained under a wide range of these parameter values is that
once the algorithm has converged, many of these values give
rise to similar segmentation performance, as verified visually.
The complexity of the method can be justified by

1) necessity to adapt segmentation to changes in image char-
acteristics caused by changes in external conditions;

2) large size of the search space ;
3) quality of the results to be shown in the next section.

Therefore, the advantages of the proposed method outweigh its
disadvantages in practical applications.

III. EXPERIMENTAL RESULTS

The system is verified on a set of 12 indoor and a set of 12 out-
door color images. The indoor images are acquired at different
viewing distances with varying lighting conditions. The outdoor
images are collected every 15 min over a 3-h period using a JVC
GXF700U color video camera. These images simulate a photo
interpretation/surveillance scenario in which the camera posi-
tion is fixed and the images exhibit significant changes over time
due to changing environmental conditions (time of the day, posi-
tion of the sun in the sky, and cloud cover). Varying light level is
the most prominent change throughout the outdoor images. Al-
though the environmental conditions also created varying object
highlights, moving shadows and many subtle contrast changes
between the objects in the image. The size of indoor images is
120 by 160 pixels, and the size of outdoor images is 120 by 120
pixels. Each image is decomposed into four images forPhoenix
segmentation—red, green, blue components, and the Y compo-
nent of YIQ model of color images. For the indoor images, the
desired object is the cup in the image, whereas the target object
is the traffic sign for the outdoor images. The expected sizes of
the cup and the traffic sign are 200 to 450 pixels and 36 to 100
pixels, respectively.

Based on the size of the object to be recognized in the image,
we divide the Y component image into 48 subimages for the in-
door images, and 36 subimages for the outdoor images. The size
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Fig. 16. Row 1: input images 7–12; rows 2–5: corresponding global segmentations, subimages, segmented subimages, and recognized objects.

TABLE II
LEARNED SEGMENTATION PARAMETERS AND MATCHING CONFIDENCEVALUES FORINDOOR IMAGES

TABLE III
LEARNED SEGMENTATION PARAMETERS AND MATCHING CONFIDENCEVALUES FOROUTDOOR IMAGES

of each subimage is 20 by 20 pixels. The standard deviations of
these subimages serve as inputs to each Bernoulli unit, i.e., each
Bernoulli unit has a total of 48 inputs (and therefore, 48 weights)
for the indoor image, and has a total of 36 inputs (36 weights) for
the outdoor image. In order to learn the four selectedPhoenix
segmentation parameters, we need 20 Bernoulli units. So there
are a total of 980 weights for the indoor images,
and 740 for the outdoor images. Note that be-

cause Bernoulli units are independent, the effective number of
free parameters is 49 for the indoor images, 37 for the outdoor
ones.

For the team of 20 Bernoulli units, the parameters, and
are determined empirically, and they are kept constant for all im-
ages. In our experiments, , EB1

, MaxGlobal , andMaxLocal . The threshold
for matching confidenceSwitch , andAccept .
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Fig. 17. (a) CPU time for five different runs on 12 indoor images and the average; (b) number of iterations for five different runs on 12 indoor images andthe
average; (c) CPU time for five different runs on 12 outdoor images; and (d) number of iterations for five different runs on 12 outdoor images.

Threshold used for extracting edges using Sobel operator is set
at 200. The parameters for feature extraction are fixed as speci-
fied in Section II-E. Fig. 12 shows the stored models for the cup
in indoor images and the traffic sign in outdoor images. Note
that during local adaptation, we extract and enlarge subimages
by a factor such that the enlarged subimages are of the same size
as the input image. The stored models are scaled by the same
factor.

A. Results on Indoor and Outdoor Images

Figs. 13–16 show the experimental results on the 12 indoor
and 12 outdoor color images. For each indoor image, its seg-
mentation using the set of learned parameters and the extracted
object that has been recognized are presented. For each out-
door image, corresponding global segmentation, subimage, seg-
mented subimage and recognized object are shown. Subimages
are computed automatically by our algorithm. For each set of
images, inputs are taken sequentially. Except for the first image,
the learning process for each image starts from the global seg-
mentation parameters learned from all the previous images. For
the first input image, weights are initialized randomly. Usually,
it takes less than 45 iterations to find a set of segmentation
algorithm parameters that produces high edge-border coinci-
dence. Tables II and III show four learned segmentation param-
eter values and matching confidence after local adaptation for
indoor and outdoor images, respectively. Accuracy of segmenta-
tion results can be observed from Figs. 13–16 and the matching
confidence in Tables II and III.

Fig. 17 shows the CPU time for the 12 indoor images and
12 outdoor images for five different runs, and the number of
iterations for each input image, which is the sum of all the iter-
ations involved in the global learning and local learning pro-
cesses. These two curves show the learning capability of the
system, i.e., the system uses less and less CPU time with ex-
perience to find a set of segmentation parameters and correctly
recognizes the object. The number of iterations decreases with
the accumulation of experience.

B. Comparison of Approaches

In this section we compare the performance of our system as
shown in Fig. 1 with an earlier approach [20]. We show the effect
of incorporating segmentation evaluation using the edge-border
coincidence into the learning system and the impact of global
and local segmentations on model matching.

The key differences between the two methods are the intro-
duction of the local segmentation process, the biasing of RL al-
gorithm, and the use of edge-border coincidence as an evalua-
tion of the segmentation performance during the early stage of
learning in order to reduce the computational expense stemming
from model matching. In the method presented in this paper the
segmentation process alternates between the whole image and
its subcomponents. The local segmentation is highly desirable
when there are multiple objects or a single object at multiple lo-
cations with different local characteristics. It can dramatically
improve the recognition performance. The biasing of RL algo-
rithm reduces computational time as illustrated in Fig. 7.
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Fig. 18. Comparison of two approaches: method 1 approach presented in
this paper, method 2 approach reported in [20]. (a) Comparison of the average
CPU time of five different runs on 12 indoor images and (b) comparison of the
accumulated average CPU time of five different runs on 12 indoor images.

In previous research [20], the matching confidence is the only
feedback that drives learning. Although it is undoubtedly the
most reliable measure, it is relatively expensive to compute. The
edge-border coincidence provides us with a cheap way to find a
good point from which to begin the more expensive search for
high matching confidence values. Fig. 18 shows the comparison
results of the two methods: method 1 (this paper) and method 2
[20]. The improvement in CPU time for method 2 and its con-
sistency for different images are very clear. Although good ini-
tial estimates may not always result in faster discovery of high
matching confidence values, the edge-border coincidence seems
to work well in practice for all the problems we have experi-
mented.

IV. CONCLUSIONS ANDFUTURE WORK

We have presented a proof-of-the-principle of a general ap-
proach for adaptive image segmentation and object recognition.
The approach combines a domain independent simple measure
for segmentation evaluation (edge-border coincidence) and do-
main dependent model matching confidence in a reinforcement
learning framework in a systematic manner to accomplish ro-
bust image segmentation and object recognition simultaneously.
Experimental results demonstrate that the approach is suitable
for continuously adapting to normal changes encountered in
real-world applications. Although the empirical evaluation in-
volves a small number of images, our system is designed to
continuously adapt in a real-time environment, such as robot

Fig. 19. Conceptual diagram of the Phoenix segmentation algorithm.

navigation, where image streams would provide sufficient in-
formation to confine free parameters in our system.

For adapting to the wide variety of images encountered in
real-world applications, we can develop an autonomous gain
control system which will allow the matching between different
classes of images taken under significantly different weather
conditions (sunny, cloudy, snowy, rainy) and adapt the parame-
ters within each class of images. We use image context to divide
the input images into several classes based on image properties
and external conditions, such as time of the day, lighting con-
dition, etc. [5]. When an image is presented, we use an image
property measurement module and the available external infor-
mation to find the stored information for this category of images,
and start learning process from that set of parameters. This will
overcome the problem of adapting to large variations between
consecutive images. It is also possible to use our approach for
classification of segmentation methods or as a testbed for new
segmentation methods, where the evaluation is conducted from
object recognition point of view. These are areas of future re-
search that we intend to pursue.

APPENDIX A
PHOENIX SEGMENTATION ALGORITHM

The Phoenix image segmentation algorithm is based on a re-
cursive region splitting technique [14]. It uses information from
the histograms of the red, green, and blue image components to
split regions in the image into smaller subregions on the basis of
a peak/valley analysis of each histogram. An input image typ-
ically consists of red, green, and blue image planes, although
monochrome images, texture planes, and other pixel-oriented
data may also be used. Each plane is called a feature or feature
plane.

Fig. 19 shows a conceptual description of the Phoenix seg-
mentation process. It begins with the entire image as a single
region. It then fetches this region and attempts to segment it
using histogram and spatial analyses. If it succeeds, the program
fetches each of the new regions in turn and attempts to segment
them. The process terminates when no region can be further seg-
mented.
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The histogram analysis phase computes a histogram for each
feature plane, analyzes it and selects thresholds or histogram
cutpoints that are likely to identify significant homogeneous
regions in the image. A set of thresholds for one feature is
called an interval set. During the analysis, a histogram is first
smoothed with an unweighted window average, where the
window width isHsmooth. It is then broken into intervals such
that each contains a peak and two valleys, called “shoulder,”
on either side of the peak. A series of heuristics is applied
to eliminate noise peaks. When an interval is removed, it
is merged with the neighbor sharing the higher of its two
shoulders.Splitmin is the minimum area for a region to be
automatically considered for splitting.

Two tests determine if an interval should be retained. First,
the ratio of peak height to the height of its higher shoulder must
be greater than or equal to theMaxmin threshold. Second, the
interval area must be larger than an absolute threshold and the
relative area, percent of the total histogram area. The second
highest peak can now be found, and peaks lower than theHeight
percent of this peak are merged. The lowest valley is then de-
termined, and any interval whose right shoulder is higher than
absmin(Phoenix’s parameter) times this valley is merged with
its right neighbor. Finally, onlyintsmax(Phoenix’s parameter)
intervals are retained by repeatedly merging intervals with low
peak-to-shoulder ratio.

The spatial analysis selects the most promising interval sets,
thresholds the corresponding feature planes, and extracts con-
nected components for spatial evaluation. The feature and the
interval set providing the best segmentation (the least noise area)
are accepted as the segmentation feature and the thresholds.

The histogram cutpoints are now applied to the feature plane
as intensity thresholds and connected components are extracted.
After each feature has been evaluated, the one producing the
least total noise area is accepted as the segmentation feature.
If no suitable feature is found, the original region is declared
terminal. Otherwise the valid patches, merged with the noise
patches, are converted to new regions and added to the segmen-
tation record. In either case, a new segmentation pass is sched-
uled. For additional details, see [14].

APPENDIX B
CLUSTER-STRUCTUREALGORITHM FOR MATCHING

The cluster-structure algorithm can be divided into the fol-
lowing main steps:

1) determine disparity matrix;
2) initial clustering;
3) sequencing;
4) final clustering;
5) transform computation.

The algorithm first computes the disparity matrix. It deter-
mines the segment length of each line and the angles between
successive lines from the set of vertices for the model and the
image input to the program. At this point, every segment in the
model will be compared against every segment in the image.
If segment lengths and successor angles are compatible, the al-
gorithm computes the rotational and translational disparity be-
tween pairs of segments. These values are stored in the disparity

matrix and are indexed by the segment numbers in the model and
the image. The algorithm continues until all segments have been
compared. It then computes the range of rotational and transla-
tional values present in the matrix, and normalizes them over
their appropriate range.

The initial clustering determines clusters from the normalized
values in the disparity matrix. At each step, the program clusters
all of the samples, recomputes the new cluster centers, and con-
tinues until none of the cluster centers change their positions.
The program then selects the cluster having the largest number
of samples. Also selected are the clusters that are within 20%
of the largest one. Each cluster is considered separately and the
final transform comes from the cluster that yields the highest
confidence level.

The sequencing step uses the samples in the current cluster
to find all sequences in the samples. This provides the critical
structural information. Samples that are not placed in any se-
quence are discarded. The program also removes sequences that
have a segment count of less than three (three segments com-
prise the basic local shape structure). It then computes the rota-
tional and translation averages of each sequence that has been
located.

Using the sequences and the sequence averages, the final clus-
tering step clusters these values to find those sequences that lead
to the same rotational and translational results. This is achieved
by using the iterative technique of clustering, evaluating, clus-
tering, etc. The program then selects the cluster that contains the
largest number of sequences and passes this cluster to the final
step.

The final step of the algorithm computes the confidence level
of the transformation determined by each cluster. The cluster
having the highest confidence level is selected as the final trans-
formation cluster. It assembles the set of matched segments in
the sequences in this cluster. The final output of the program
is the rotation and the vertical and horizontal translation nec-
essary to locate the model within the image. The program also
produces a confidence level indicating the likelihood that the
final matching is correct. For further details, see [7].
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