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INTRODUCTION

As its title suggests, this chapter covers a broad range of in-

teractive systems. But they all have one idea in common:

that it can be worthwhile for a system to learn something

about each individual user and adapt its behavior to them in

some nontrivial way.

An example that will be familiar to most readers is shown in

Figure 15.1. A visitor to amazon.com has just explicitly re-

quested recommendations, without having specified a partic-

ular type of product. During the user’s past visits, AMAZON

has learned something about his interests, on the basis of

items he has purchased and ratings he has made. Therefore,

the system can make recommendations that are especially

likely to appeal to this particular user.

Concepts The key idea embodied in AMAZON’s recom-

mendations and the other systems discussed in this chap-

ter is that of adaptation to the individual user. Depend-

ing on their function and form, systems that adapt to their

users have been given labels ranging from adaptive inter-

faces through user modeling systems to software agents or

intelligent agents. Starting in the late 1990s, the broader

term personalization became popular, especially in connec-

tion with commercially deployed systems. In order to be able

to discuss the common issues that all of these systems raise,

we will refer to them with a term that describes their com-

mon property explicitly: user-adaptive systems. Figure 15.2

introduces some concepts that can be applied to any user-

adaptive system; Figure 15.3 shows the form that they take

in AMAZON’s recommendations.

A user-adaptive system makes use of some type of informa-

tion about the current individual user, such as the products

that the user has bought. In the process of user model ac-

quisition, the system performs some type of learning and/or

inference on the basis of the information about the user in

order to arrive at some sort of user model, which in general

concerns only limited aspects of the user (such as her interest

in particular types of product). In the process of user model

application, the system applies the user model to the relevant

features of the current situation in order to determine how to

adapt its behavior to the user.

Note: After some changes introduced by copy-editing, this chapter will ap-
pear in: J. A. Jacko, & A. Sears (Eds.) (2007). Human-computer interaction
handbook: Fundamentals, evolving technologies and emerging applications

(2nd ed.). Mahwah, NJ: Erlbaum.

Figure 15.1. Part of a screen showing a list of recommenda-

tions generated on request by amazon.com.

(Screen shot made from http://amazon.com/ in December 2005.)
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Figure 15.2. General schema for the processing in a user-

adaptive system.

(Dotted arrows: use of information; solid arrows: production of results.)
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Figure 15.3. Overview of adaptation in amazon.com.

A user-adaptive system can be defined as:

An interactive system that adapts its behavior to individual

users on the basis of processes of user model acquisition

and application that involve some form of learning, infer-

ence, or decision making.

This definition distinguishes user-adaptive systems from

adaptable systems: ones which the individual user can ex-

plicitly tailor to her own preferences (for example, by choos-

ing options that determine the appearance of the user inter-

face). The relationship between adaptivity and adaptability

will be discussed at several places in this chapter.

Chapter Preview The next two sections of this chapter ad-

dress the question “What can user-adaptivity be good for?”

They examine in turn ten different functions that can be

served by user-adaptivity, giving examples ranging from fa-

miliar commercially deployed systems to research proto-

types. The following section discusses some usability chal-

lenges that are especially important in connection with user-

adaptive systems, challenges which have stimulated most of

the controversy that has surrounded these systems. The next

section considers a key design decision: What types of infor-

mation about each user should be collected? The final major

section looks at several distinctive aspects of the empirical

study of user-adaptive systems. The chapter concludes with

comments on the reasons why their importance is likely to

continue to grow.1

FUNCTIONS: SUPPORTING SYSTEM USE

Some of the ways in which user-adaptivity can be helpful

involve support for a user’s efforts to operate a system suc-

cessfully and effectively. This section considers five types of

support.

Figure 15.4. Partial screen shot from the intelligent email

sorting system I-EMS.

(Screen shot courtesy of Eric McCreath..)

Learned email sorting 
rules 

Learning algorithm 
that works well for this 
user 

Application of the 
learned sorting rules 

Content and time 
stamps of messages 
in the user’s email 
folders 

Most likely folder for 
each new message 

Figure 15.5. Overview of adaptation in I-EMS.

Taking Over Parts of Routine Tasks

The first function of adaptation involves taking over some

of the work that the user would normally have to perform

herself—routine tasks that may place heavy demands on

a user’s time, though typically not on her intelligence or

knowledge. Maybe the most obvious task of this sort is or-

ganizing email, which takes up a significant proportion of

the time of many office workers. This was one of the tasks

addressed by the classic early work of Pattie Maes’s group

on “agents that reduce work and information overload” (see,

e.g., Maes, 1994).

A more recent effort (Figure 15.4) is found in the prototype

“intelligent electronic mail sorter” I-EMS (McCreath, Kay,

& Crawford, 2005; see also Crawford, Kay, & McCreath,

2002; McCreath & Kay, 2003) which is designed to expedite

the tedious task of filing incoming email messages into fold-

ers. By observing and analyzing the way an individual user

files messages, the system learns to predict the most likely

folder for any new message. In the overview of messages in

1The version of this chapter in the first edition of this handbook included

a section about some of the machine learning and artificial intelligence tech-

niques that are most commonly used for user model acquisition and appli-

cation. There is no such section in this second edition, because (a) it seemed

more important to expand the material in the other sections and (b) the range

of techniques used has grown to the point where a brief summary would

have limited value. Discussions of the relevant methods will be found in

many of the works cited in the chapter.
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the user’s inbox (shown in the top part of the screen shot),

I-EMS tentatively sorts the new messages into categories that

correspond to the most likely folders. When an individual

message is being displayed, the one-line field in the middle

of the screen shows an explanation of the folder prediction.

If the user agrees with the prediction, she can click on the

“Archive” button at the top of the screen to have the message

moved into the predicted folder; to file it away in another

folder, she drags it to the icon for the folder in the left-hand

panel, just as she would with a system that did not make any

predictions.

One reason why research on systems like I-EMS has con-

tinued for so long is that the problem raises a number of

challenges. For example, since different users apply radi-

cally different principles for creating categories of email, I-

EMS supplies several different methods for learning a user’s

implicit rules, each of which may show a different degree

of success with different users. It also allows the learned

rules to operate alongside any hand-crafted rules that the

user may have defined, so that the strengths of both types

of rule can be exploited (an evaluation is discussed below

in the section on empirical methods). And since even the

best set of learned rules will sometimes incorrectly predict

how the user would classify a message, the interface must

be designed in such a way that incorrect predictions will

have minimal consequences. New approaches to the general

problem continue to appear (see, e.g., Surendran, Platt, &

Renshaw, 2005). Two systems that have been fairly widely

deployed have been SWIFTFILE (Segal & Kephart, 1999;

Segal & Kephart, 2000), which was incorporated into LO-

TUS NOTES; and POPFILE (available in early 2006 from,

http://popfile.sourceforge.net/cgi-bin/wiki.pl), a public do-

main program which is used mainly for spam filtering but

which can also learn to sort messages into a limited number

of user-specific folders.2

Another traditional task in this category is the scheduling of

meetings and appointments (Mitchell, Caruana, Freitag, Mc-

Dermott, & Zabowski, 1994; Maes, 1994; Horvitz, 1999;

Gervasio, Moffitt, Pollack, Taylor, & Uribe, 2005): By learn-

ing the user’s preferences for particular meeting types, loca-

tions, and times of day, a system can tentatively perform part

of the task of entering appointments in the user’s calendar.

The primary benefits of this form of adaptation are savings

of time and effort for the user. The potential benefits are

greatest where the system can perform the entire task with-

out input from the user. In most cases, however, the user is

kept in the loop (as with I-EMS), because the system’s ability

to predict what the user would want done is limited (cf. the

section on usability challenges below).

2For examples of approaches to support for email management that do

not involve adaptation to individual users, see, e.g., Gruen et al., 2004;

Bälter & Sidner, 2002).

Figure 15.6. Example of adaptation in SMART MENUS.

(The user accesses the “Insert” menu. Not finding the desired option, the
user clicks on the extension arrows and selects the “Field” option. When
the user later accesses the same menu, “Field” now appears in the main
section.)
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Figure 15.7. Overview of adaptation in SMART MENUS.

Adapting the Interface

A different way of helping a person to use a system more

effectively is to adapt the user interface so that it fits better

with the user’s way of working with the system. Interface

elements that have been adapted in this way include menus,

icons, and the system’s processing of signals from input de-

vices such as keyboards.

An example that will be familiar to most readers is pro-

vided by the SMART MENUS feature that has been found

in Microsoft operating systems since WINDOWS 2000. Fig-

ure 15.6 illustrates the basic mechanism: An infrequently

used menu option is initially hidden from view; it appears in

the main part of a menu only after the user has selected it for

the first time. (It will be removed later if the user does not

select it often enough.) The idea is that in the long run the

menus should contain just the items that the user accesses

frequently (at least recently), so that the user needs to spend

less time searching within menus.

Some informative studies related to SMART MENUS have

been conducted by McGrenere and colleagues. In a field

study with experienced users of WORD 2000, McGrenere,
3
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Baecker, and Booth (2002) compared the SMART MENUS of

WORD 2000 with (a) traditional static menus and (b) an al-

ternative approach to reducing the number of functions that

confront users: Their variant MSWORD PERSONAL is an

adaptable system: It provides a reasonably intuitive and con-

venient way for users to add and removemenu functions. Af-

ter working with MSWORD PERSONAL for several weeks,

most of the users in the study preferred this adaptable sys-

tem to the normal WORD 2000 with SMART MENUS, and

the users who had been classified as “feature-shy” appeared

to benefit most; but as is typical in studies like this (as will

be discussed below), quite a variety of attitudes about the rel-

ative merits of the three approaches to adapting menu con-

tent were shown by the subjects. As the authors point out,

it seems worthwhile to consider design solutions that com-

bine some degree of adaptivity and adaptability. For exam-

ple, instead of automatically adapting the menus, the sys-

tem might recommend possible adaptations on the basis of

its analysis of the user’s menu selections (cf. Bunt, Conati,

& McGrenere, 2004).

A more direct experimental comparison by Findlater and

McGrenere (2004) involving adaptive menus like SMART

MENUS is discussed in the section on empirical methods be-

low.

One promising application of both adaptable and adaptive

methods involves taking into account special perceptual or

physical impairments of individual users so as to allow them

to use a system more efficiently, with minimal errors and

frustration (cf. the chapters by Jacko et al., by Sears and

Young, and by Stephanidis & Savidis in this handbook). A

system in which the two approaches are combined is the

WEB ADAPTATION TECHNOLOGY of IBM Research (Han-

son & Crayne, 2005), which aims to facilitate web brows-

ing by older adults. With regard to most of the adaptations,

such as the reformating of multicolumn text in a single col-

umn, the system is adaptable: It provides convenient ways

for the user to request the changes. (It would in fact be diffi-

cult for a system to determine automatically whether a given

user would benefit from one-column formating.) But sev-

eral changes in the keyboard settings are achieved via au-

tomatic adaptation (see Trewin, 2004, for a more detailed

discussion). For example, the key repeat delay interval is

a parameter that determines how long a key (e.g., the left-

arrow key) has to be held down before the system starts re-

peating the associated action (e.g., moving the cursor to the

left). Some users require a relatively long key repeat de-

lay because of a tendency to hold keys down relatively long

even when they do not want repetition. But asking the user

to specify the key repeat delay is not an attractive option: It

can be time-consuming to explain what the parametermeans;

the user herself may have no idea what the best setting is

for her; trial and error with different settings can be time-

consuming and frustrating; and for some users the optimal

setting can change from day to day. The DYNAMIC KEY-

BOARD component of the WEB ADAPTATION TECHNOL-

OGY therefore includes an algorithm that analyzes a user’s

typing behavior to determine an optimal key repeat delay (as

well as other parameters); the system then adjusts the pa-

rameter in a relatively conservative fashion. Although auto-

matic adjustment of keyboard parameters could under some

circumstances make the keyboard unpredictable and hard to

use, results obtained in the context of WEB ADAPTATION

TECHNOLOGY (Trewin, 2004) revealed no problems of this

sort.

Helping With System Use

Instead of suggesting (or executing) changes to the interface

of a given application, a user-adaptive system can adaptively

offer information and advice about how to use that applica-

tion, and perhaps also perform some of the necessary actions

itself. As is discussed in the chapter by Mehlenbacher in

this handbook, there exist various tendencies that make it in-

creasingly difficult for users to attain the desired degree of

mastery of the applications that they use. A good deal of

research into the development of systems that can take the

role of a knowledgeable helper was conducted in the 1980s,

especially in connection with the complex operating system

UNIX.3 During the 1990s, such work became less frequent,

perhaps partly because of a recognition of the fundamen-

tal difficulties involved. In particular, it is often difficult to

recognize a user’s goal when the user is not performing ac-

tions that tend to lead toward that goal. The OFFICE AS-

SISTANT, an ambitious attempt at adaptive help introduced

in MICROSOFT OFFICE 97, was given a mixed reception,

partly because of the inherent difficulty of its task but espe-

cially because of its widely perceived obtrusiveness (cf. the

section on usability challenges below).

Most adaptive help systems to date have been based on the

paradigm called keyhole recognition: (passively) observing

the user and attempting to make useful inferences about her

goals and tasks. By contrast, Figure 15.8 shows an example

of an alternative approach to intelligent help that has been de-

veloped by researchers at Mitsubishi Electric Research Lab-

oratory, which is based on a collaborative dialog paradigm

(Rich et al., 2005; see Rich & Sidner, 1998, and Rich, Sid-

ner, & Lesh, 2001, for a presentation of the theoretical and

technical background). In this demonstration scenario, DIA-

MONDHELP is collaborating with the user of a feature-rich

programmable washer-dryer.4 Instead of working indepen-

dently on the problem, the user conducts a dialog with the

help system, the goal of the dialog being the execution of

the user’s task. The dialog contributions of the help system

and the user are shown in the “chat” balloons at the left- and

right-hand sides, respectively, of the screen. The user’s pos-

sible dialog contributions (i.e., “things to say”) are automat-

ically generated from the current collaborative dialog state

3A collection of papers from this period appeared in a volume edited by

Hegner, McKevitt, Norvig, and Wilensky (2001).
4The interface shown in the figures may be displayed on the washer-

dryer itself or remotely accessed via a home network.
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Figure 15.8. Example of collaborative assistance offered by

DIAMONDHELP.

(Explanation in text. Screen shots courtesy of Charles Rich.)
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Figure 15.9. Overview of adaptation in DIAMONDHELP.

and offered in a menu inside of his balloon. The user can

choose what he wants to say either by touching the appro-

priate phrase or saying it using speech recognition. 5 For

example, in the top part of the figure, the user is offered a

choice among three possible top-level tasks, the most com-

plex of which is defining a new cycle. In a typical exchange,

the user specifies a goal or subgoal that he would like to

achieve, and the system responds by giving instructions and

perhaps offering further possible utterances for the user.

This dialog in some ways resembles the interaction with the

more familiar type of “wizard” that is often employed for

5DIAMONDHELP does not support unrestricted natural language or

speech understanding. In a Wizard-of-Oz study (a type of study that will be

discussed in the section on empirical methods) involving a prototype help

system of this general sort, DeKoven (2004) found that users who were able

to employ unrestricted speech would have preferred to have more guidance

about what they could say to the system.

complex, unfamiliar tasks such as software installation (see

the chapter by Mehlenbacher in this handbook). The main

difference is that the dialogs with DIAMONDHELP can be

more flexible, because the system has explicit models of the

tasks that the user can perform and is capable of making use

of these models in various ways during the dialog. For exam-

ple, after pressing the Fabric Load picture, the user can con-

tinue manipulating the GUI in the lower half of the screen

by himself until he requests guidance again, (e.g., by asking

“What next?”). Because the user’s actions with the interface

are reported to the help system, the help system can keep

track of how far the user has progressed in the performance

of his task. In other words, the help system incorporates a

restricted form of the sort of goal and plan recognition that

featured prominently in earlier intelligent help systems. In

DIAMONDHELP, recognition of the user’s actions is rela-

tively likely to be accurate, because of the information that

the user has supplied about his goals (see, e.g., Lesh, Rich,

& Sidner, 1999). Depending on the experience and the pref-

erences of the user, therefore, the user can rely on the help

system to various degrees, ranging from ignoring it, occa-

sionally asking for a hint, or allowing himself to be led step

by step through the entire task.

Mediating Interaction With the Real World

Whereas an intelligent help system aids the user as she uses

a complex interactive system, some recently developed sys-

tems help the user to cope with the world itself. They do so

by acquiring and processing evidence concerning the user’s

cognitive and/or emotional state and taking actions designed

to mitigate any conflict between this state and the demands

of the environment.

One common function of systems in this category is to pro-

tect people from the flood of incoming messages (via cell

phone, instant messaging, email, and other channels) whose

number and diversity are increasing with advances in com-

munication technology. When a potential recipient is focus-

ing on some particular task or activity, an adaptive assistant

causes messages to be discouraged, delayed, or otherwise

buffered until some more appropriate time. One strategy is

to provide to the potential initiators of communication in-

formation about the state of the recipient. The experimen-

tal prototype LILSYS (cf. Figure 15.10) illustrates this strat-

egy. The system continuously updates a user model that con-

tains assessments of its user’s availability for communica-

tion. The assessments are based on a number of cues that

have been found in previous research to be useful predictors

of a person’s physical presence and/or availability: whether

the user (or someone else in the room) is moving or speak-

ing; whether the door is open; whether the user is using the

phone or the computer keyboard and mouse; and what events

are scheduled in the user’s calendar. A hand-crafted model

uses this information to arrive at a global assessment of the

user’s availability; this assessment is in turn displayed to po-

5
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Figure 15.10. Above: LILSYS’s sensor and data acquisition

module; below: LILSYS’s data flow and a screen shot of the

user interface.

(Adapted from Figures 1 and 2 of: “Lilsys: Sensing unavailability,” by J.
Begole, N. E., Matsakis, & J. C. Tang, 2004, In J. Herbsleb & G. Olson
(Eds.), Proceedings of the 2004 Conference on Computer-Supported Coop-
erative Work, pp. 511–514, New York: ACM. Copyright 2004 by ACM.
Adapted with permission.)
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Figure 15.11. Overview of adaptation in LILSYS.

tential communicators.6 A field study with a small number

of users indicated that other persons do in fact adapt their

behavior to take into account a LILSYS user’s availability,

often by changing the nature of their communication rather

than by postponing it. LILSYS users appreciated the pos-

sibility of having their availability sensed automatically, as

opposed to having to specify it explicitly themselves. For

example, they virtually never used the timer switch (visi-

ble in Figure 15.10) that allowed them to specify that they

6In many systems in this category, such as the ones mentioned in the

following paragraph, the model for the interpretation of evidence is acquired

via machine learning methods on the basis of relevant training data.

were going to be unavailable for a particular period of time.

More generally, the modeling of a user’s changing cognitive

or emotional state appears to be a task for which automatic

adaptation is an especially promising approach, simply be-

cause people are typically not willing or able to update an

explicit self-assessment continually.

In some other availability management systems, decisions

about when and how to present messages are made by the

system itself on the basis of the user model (see, e.g.,

Horvitz, Koch, Sarin, Apacible, & Subramani, 2005). A

good deal of research has examined effective cues for the

recognition of availability and interruptibility (see, e.g., Fog-

arty et al., 2005; Ho & Intille, 2005; Iqbal, Adamczyk,

Zheng, & Bailey, 2005).

A related line of research has focused on the recognition of

the mental states of drivers, which is especially important

because of safety issues. The modeling of interruptibility is

important here as well (see, e.g., Schneider & Kiesler, 2005).

But even when no other persons are involved, there are rea-

sons to try to recognize safety-relevant states like drowsiness

and stress, so that the system can intervene, for example, by

waking the driver up or by playing soothing music. Stress

and emotion are manifested in physiological indicators (see,

e.g., Healey & Picard, 2000; Lisetti & Nasoz, 2004) and in

speech (see, e.g., Fernandez & Picard, 2000; Jones & Jons-

son, 2005). Products along these lines have begun to appear

in cars, beginning with relatively simple detection methods

such as the recognition of long or frequent eye closures. An

example of a more complex and comprehensive approach to

the modeling of drivers’ affective state can be found in the

work of Li & Ji, 2005.

A general problem with adaptation for the purpose of safety

is that the user may come to rely on the adaptation, reduc-

ing her own attention to safety.7 For example, a driver may

make less effort to avoid distraction or to remain alert, ex-

pecting that the assistant will recognize any dangerous sit-

uation and warn him in time. Especially since the recogni-

tion of a person’s mental states is almost always error-prone,

this tendency can eliminate the potential safety benefits of

monitoring systems unless appropriate measures are taken

(e.g., making warning sounds so unpleasant that the driver

will want to avoid relying on them more than is necessary).

Controlling a Dialog

Much of the early research on user-adaptive systems con-

cerned systems that conducted natural language dialogs with

their users (see, e.g., Kobsa & Wahlster, 1989). During the

1990s, attention shifted to interaction modalities that were

more widely available and that made it possible in many

cases to implement adaptation straightforwardly. Toward the

year 2000, advances in the technology of natural language

and speech processing (cf. the chapters by Karat et al. and by

7A brief overview of the theory of risk homeostasis is given by Wilde

(1998), while a recent alternative perspective is offered by Fuller (2005).
6



Lai & Yankelovich in this handbook) led to a recent reawak-

ening of interest in user-adaptive dialog systems (see, e.g.,

Haller, McRoy, & Kobsa, 1999; Zukerman & Litman, 2001;

Litman & Pan, 2002).

Natural language dialog has served as an interaction modal-

ity in connection with most of the functions of user-

adaptivity discussed in this and the following sections, such

as the provision of help and the recommendation of prod-

ucts. But there is also a type of adaptivity which is largely

characteristic of natural language dialog: adaptation of the

system’s dialog strategy: a policy for determining when and

how the system should provide information, acquire infor-

mation from the user, and perform other dialog acts.

Adaptation is especially important in spoken dialog systems,

such as those that offer information about train departures or

flight arrivals via the phone. Novice users may require exten-

sive explanations and frequent confirmations, but these ele-

ments can be unnecessarily time-consuming and frustrating

to experienced users. Many deployed systems apply sim-

ple adaptation principles that distinguish between new and

more experienced users. For example, if a phone-basedmail-

order system knows that the current caller has previously

ordered a product, it may adopt a dialog style that presup-

poses familiarity with the system. Since it is not always

this easy to classify the user, and since asking the user for

a self-assessment can be awkward and time-consuming, re-

searchers have looked for ways of adapting to the user on

the basis of her behavior during the current dialog (see, e.g.,

Litman & Pan, 2002). A recent example is shown in Fig-

ure 15.12, which shows a translation of an example dialog

conducted with the KYOTO CITY BUS INFORMATION SYS-

TEM (Komatani, Ueno, Kawahara, & Okuno, 2005). The

system adjusts its assessments of three properties of the

caller on the basis of each utterance of the caller: level of

skill at conducting dialogs with this system; level of knowl-

edge concerning the domain (i.e., Kyoto and its buses); and

desire to complete the dialog quickly (“urgency”). The evi-

dence used is a set of properties such as the amount of infor-

mation specified in each utterance; whether the user refers to

bus stops by their exact names; and whether the user “barges

in”, interrupting the system before the system has completed

an utterance. The dialog excerpt includes several examples

that illustrate how the system’s dialog behavior is adapted

on the basis of the user model. In a controlled experiment,

each of 20 subjects conducted dialogs with the system ei-

ther with the adaptive version or with a version that assumed

that all callers had the same properties. Dialogs were com-

pleted more quickly with the adaptive variant, and subjects

expressed greater satisfaction.8 .

Another popular idea about how to adapt dialogs to the user

8See the section on empirical methods for a discussion of the difficulties

involved in the interpretation of the results of experiments like this one. Al-

though the KYOTO CITY BUS INFORMATION SYSTEM is accessible to the

public, the adaptive features described here are normally turned off, because

they lead to slower processing given the currently available infrastructure.

case: [skill level: low] [knowledge level: low] [urgency: low]

Sys: What is your current bus stop, your destination, or

specific bus route number?

User: Maruyama Park.

Sys: Let me confirm these in turn.

(← Explanation is added by [skill level: low].)

Will you get on at Maruyama Park?

(← Content is confirmed by [urgency: low].)

Reply with yes or no.

(← Instruction is added by [skill level: low].)

User: Yes.

Sys: Where will you get off the bus?

Specify by bus stop name or a well-known landmark.

(← Explanation is added by [skill level: low].)

User: Tofukuji Temple.

Sys: Will you get off the bus at Tofukuji Temple?

Reply with yes or no.

User: Yes.

Sys: Following buses are located.

(← Explanation is added by [skill level: low].)

Nearest bus stop to Maruyama Park is Gion.

(← Domain information is added by [knowledge level: low].)

Bus number 202 bound for Nishioji-Kujo has departed

Higashiyama-Sanjo, which is two stops away.

. . .

Figure 15.12. Excerpt from a dialog with the KYOTO CITY

BUS INFORMATION SYSTEM.

(Figure 2 of “User modeling in spoken dialogue systems to generate flexible
guidance,” by K. Komatani, S. Ueno, T. Kawahara, & H. G. Okuno, 2005,
User Modeling and User-Adapted Interaction, 15, pp. 169–183. Copyright
2005 by Springer Verlag. Reproduced with permission.)

Assessments of the 
user’s knowledge, 
skill, and time 
pressure 

Application of a 
learned decision tree 

Rules for adapting the 
system’s dialog 
behavior 

Features of the user’s 
dialog behavior 

Appropriate selection 
of dialog moves 

Figure 15.13. Overview of adaptation in KYOTO CITY BUS

INFORMATION SYSTEM.

concerns the recognition of negative emotions like anger and

frustration, the goal being to transfer callers who express

these emotions to human call agents before they are lost as

customers. Although there has been a lot of research on the

recognition of mental states on the basis of speech in dialogs

(see, e.g., Yacoub, Simske, Lin, & Burns, 2003; Liscombe,

Riccardi, & Hakkani-Tür, 2005), it remains to be seen how

widespread this particular application will become. One pos-

sible drawback is that with some systems callers might find it

worthwhile to adapt to the adaptation (as with safety-relevant

adaptations), feigning emotion in order to get quicker atten-

tion.
7
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similar articles and 
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articles to read 

Adapted selection of 
articles to display 

Figure 15.15. Overview of adaptation in FINDORY.

Other dialog adaptations that are being explored concern sta-

ble personal characteristics like gender and age. Since it is

possible to recognize these characteristics reasonablywell on

the basis of speech, a system might adopt a voice or dialog

style that designers thought appropriate for the age and/or

gender in question (see, e.g., Müller, Wittig, & Baus, 2003).

FUNCTIONS: SUPPORTING INFORMATION

ACQUISITION

We are constantly hearing that information overload is a typ-

ical problem of our age, especially because of the explosive

growth of the internet and in particular the world-wide web.

In addition to the vast number of electronic documents of

various sorts, users now have access to a vast number of

products available for sale, people that they can get in touch

with, and systems that can teach them about some topic. The

second major type of function of user-adaptive systems is to

help people to find what they need in a form that they can

deal with.

Helping Users to Find Information

We will first look at the broad class of systems that help the

user to find relevant electronic documents, which may range

from brief news stories to complex multimedia objects.

As an especially clear example, consider the situation of a

user who, in the year 2006, has heard that a lot of interesting

facts and opinions can be found in blogs (web logs), of which

dozens of millions are accessible. She would like to be able

to read, each day, the articles in blogs that are of particular

interest to her. But how is she to find these? She does not

know in advancewhich blogs are especially likely to produce

material of interest to her (as, for example, she could specify

a well-known newspaper as a promising source of on-line

stories if she were interested in news). She could submit

queries to a search engine that indexes blogs; but she cannot

in general know in advance what topics of interest to her

will be covered by the latest blog articles; and given the low

quality and lack of authority of many blogs, she will not be

confident of receiving good results on any given topic.

An approach to this problem that relies heavily on adaptation

to the individual user (called personalization in this context)

is realized at the time of this writing in the site FINDORY

(http://findory.com), which offers access to both blogs and

news articles. To the new user visiting the blog section of the

site, FINDORY offers a page that shows the first few lines of a

number of blog articles on different topics (cf. Figure 15.14).

The user can then click to read the articles that interest her

most. Each selection causes the system to update its model

of the user’s interests and adapt the selection of blog arti-

cles accordingly. For example, if the user chooses an arti-

cle discussing a copyright infringement suit against a search

engine company, further articles concerning copyright issues

and search engines are likely to appear, marked with the sun-

burst icon that is visible in Figure 15.14. If the user clicks

on the icon for a recommended article, a page is displayed

that explains the recommendation in a style similar to that of

amazon.com (cf. Figure 15.1 and the next subsection): with a

list of articles that the user has read in the past which are sim-

ilar to the recommended item in terms of their content (which

the system can characterize on the basis of the words in the

text) or in terms of the users who have previously read them

(Greg Linden, personal communication, February 2006). If

the user sees in this way an article that she does not want to

be used for recommendations in the future, she can delete it

from her reading history.

FINDORY’s approach relies on the user’s being able to iden-

tify, early in her use of the system, some articles that interest

her and that can therefore serve as examples for the system’s

learning. This process is facilitated by the opportunities that

the user has to issue explicit queries with keywords and to

consult trusted sources in the News section of the site. The

main advantage of this approach is that the user need not

make any effort to specify explicitly what types of content

she is interested in. Any such effort would be problematic

anyway in that (a) it can be difficult and tedious to describe a

large number of general interests accurately, for example by

specifying relevant key words; and (b) since interests change

over time and as a function of current developments, the user

would have to keep updating the descriptions.

More generally speaking, user-adaptive systems that help

users find information 9 typically draw from the vast reper-

toire of techniques for analyzing textual information (and to

a lesser extent, information presented in other media) that

have been developed in the field of information retrieval. The

forms of adaptive support are in part different in three differ-

ent situations, the first two of which can arise with FINDORY:

Support for Browsing In the world-wide web and other hy-

permedia systems, users often actively search for desired

information by examining information items and pursuing

cross-references among them. A user-adaptive hypermedia

system can help focus the user’s browsing activity by recom-

mending or selecting promising items or directions of search

on the basis of what the system has been able to infer about

9Surveys of parts of this large area are provided by, among others,

Kelly and Teevan (2003) and several chapters in the collection edited by

Brusilovsky, Kobsa, and Nejdl (2007).
8
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Figure 15.14. A small part of a personalized display of FINDORY (http://findory.com, March 2006).

(The icon that appears after a title indicates that the entry has been recommended on the basis of the articles that the user has read previously.)

the user’s information needs. An especially attractive appli-

cation scenario is that of mobile information access, where

browsing through irrelevant pages can be especially time-

consuming and expensive. In this context, the best approach

may be for the system to omit entirely links that it expects to

be less interesting to the individual user. Billsus (2007) de-

scribes a case study of an adaptive news server that operated

in this way. Stationary systems with greater communication

bandwidth tend to include all of the same links that would

be presented by a nonadaptive system, highlighting the ones

that it considers most likely to be of interest or presenting

separate lists of recommended links. As is argued and il-

lustrated by Tsandilas and schraefel (2004), this approach

makes it easier for the user to remedy incorrect assessments

of the user’s interests on the part of the system.

Support for QueryBased Search or Filtering Web search

engines have been enormously successful and popular in this

context, but they have almost always exhibited one limita-

tion: The results presented for a given query have not de-

pended on the interests or previous behavior of the individ-

ual user. By contrast, with personalized search, the search

engine keeps track of user’s search history, builds up some

sort of model of the user’s interests (either by keeping track

of and analyzing the user’s search history or by asking for an

explicit description of interests), and “biases” the results pre-

sented accordingly by reordering or filtering the results. A

good deal of research (see, e.g., Teevan, Dumais, & Horvitz,

2005; Micarelli, Gasparetti, Sciarrone, & Gauch, 2007) has

demonstrated the potential benefits of this strategy. During

the year before the writing of this chapter, a personalized

variant of the search engine GOOGLE was introduced that

sometimes reranked search results on the basis its record of

the user’s previous web searching behavior. But it is unclear

at the time of this writing how widespread this approach will

become. The added value of personalization is less obvious

when the user has given an explicit query than when she is

simply looking for “something interesting”, as is often the

case with FINDORY. With an explicit query, it is feasible

and worthwhile for the user to think about an informative

description of her interests and to modify her query (perhaps

repeatedly) on the basis of the results obtained.

An interesting variant on personalized search is found in

the system I-SPY (see, e.g., Smyth et al., 2005): This

community-oriented search engine tailors the results of web

search queries to an entire community of users, such as the

employees of a particular company. It moves upward in the

search results list results that have been clicked on by pre-

vious users in the community who had issued the same or

similar queries.

SpontaneousProvision of Information A number of systems

present information that may be useful to the user even while

the user is simply working on some task, making no effort

to find information. A recent prototype that has been de-

ployed at a research laboratory is the FXPAL BAR (Billsus,

Hilbert, & Maynes-Aminzade, 2005). While an employee

visits web pages in the course of normal work, the system

searches in the background for potentially relevant informa-

tion (e.g., about company visitors and internal publications).

A central design issue for this and similar systems concerns

the methods for making the retrieved information available

to the user. Presentation of results via means like popup

windows risks being obtrusive (cf. the section on usability

challenges below), but if the presentation is too subtle, users

will often ignore the recommendations and derive little or no

benefit from the system. Moreover, the optimal solution in

general differs from one user to the next. Billsus et al. (2005)

reports on studies with a variety of interface solutions for the

FXPAL BAR, some of which are adaptable by the user (e.g.,

the size of a translucent popup window that describes a po-

tentially relevant document).10

Recommending Products

One of the most practically important categories of user-

adaptive systems today comprises the product recommenders

10Influential earlier systems in this category include those of Rhodes

(2000) and Budzik, Hammond, and Birnbaum (2001).
9
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that are found in many commercial web sites.11 The best-

known such system, the recommender of AMAZON, was dis-

cussed briefly in the introduction to this chapter. Looking

more closely at Figure 15.1, we can see some distinguishing

features of this approach to recommendation. As can be seen

from the brief explanations that accompany the recommen-

dations, the system takes as a starting part the information

it has about the user’s ownership or evaluation of particular

products. It then recommends products that are similar in the

sense that there is large overlap in the sets of customers that

buy them (hence the familiar explanations of the form “Cus-

tomers who bought this title also bought . . . ”). That is, the

recommendations are based on a statistical analysis of pur-

chases made by many users, an approach known as collab-

orative filtering (see, e.g., Schafer, Frankowski, Herlocker,

& Sen, 2007, for an overview). The products recommended

in this way may also happen to be similar in the sense of

having the same author or a similar title (as in the exam-

ples in the figure), but similarities of this sort can also be

conspicuously absent: In the category “Coming soon”, the

user of Figure 15.1 was recommended the DVD The Island

because of having positively rated a Sony VAIO notebook

PC. As is explained by Linden, Smith, and York (2003), the

details of this particular variant of collaborative filtering are

due largely to the constraint that it has to be able to cope with

AMAZON’s millions of products and customers. Although

it is generally acknowledged that the recommendations are

not always accurate, they can yield notable benefits simply

by being better than the generic recommendations (e.g., of

top-selling items) that would be presented without personal-

ization.

Some product recommenders allow and require the user to

specify her evaluation criteria explicitly, instead of simply

rating or purchasing individual items. For example, with the

ACTIVE BUYERS GUIDE in Figure 15.16, the user has spec-

ified how she intends to use the digital camera that she would

like to buy, and the system has recommended three cameras,

explaining why each one is suitable in terms of the user’s re-

quirements. This needs-based approach to recommendation

offers a natural alternative to the purely statistical approach

of systems like AMAZON when relatively complex and im-

portant decisions are involved for which it is worthwhile for

the user to think carefully about the attributes of the prod-

ucts in question. It does, however, require that a good deal of

knowledge about the features of products and their relation-

ships to user requirements be incorporated in the system.

An intermediate approach between these two extremes is

the critiquing paradigm (see, e.g., Burke, Hammond, &

Young, 1997, for an early exposition and McCarthy, Reilly,

McGinty, & Smyth, 2005, for an evaluation of some recent

advances). The distinguishing feature is an iterative cycle in

which the system proposes a product (e.g., a restaurant in a

given city), the user criticizes the proposal (e.g., asking for

11For a more general treatment of the human-computer interaction as-

pects of e-commerce, see the chapter by Vergo et al. in this handbook.

a “more casual” restaurant), and the system proceeds to pro-

pose a similar product that takes the critique into account.

Since some products are often used by groups of users (e.g.,

movies, vacations), a number of systems have been devel-

oped that explicitly address groups (see Jameson & Smyth,

2007, for an overview). The need to address a group rather

than an individual has an impact on several aspects of the

recommendation process: Users may want to specify their

preferences in a collaborative way; there must be some ap-

propriate and fair way of combining the information about

the various users’ preferences; and the explanations of the

recommendations may have to refer to the preferences of the

several individual group members.

Product recommenders of these various types address several

problems that computer users typically experiencewhen they

search for products:

1. The user may not knowwhat aspects of the products to at-

tend to or what criteria should determine her decision. Some

recommenders either (a) make it less necessary for the user

to be explicitly aware of her evaluation criteria (as when col-

laborative filtering is used) or (b) help the user to learn about

her own criteria during the course of the interaction with the

system.

2. If the user is unfamiliar with the concepts used to charac-

terize the products, she may be unable to make effective use

of any search or selection mechanisms that may be provided.

Product recommenders generally reduce this communication

gap by allowing the user to specify her criteria (if this is nec-

essary at all) in terms that are more natural to her. For ex-

ample, in Figure 15.16, the user does not need to know in

advance how many megapixels she requires in her camera,

since the question about photo quality is formulated in ev-

eryday terms.

3. The user may have to read numerous product descriptions

in various parts of the site, integrating the information found

in order to arrive at a decision. Once a product recommender

has acquired an adequate user model, the system can take

over a large part of this work, often examining the internal

descriptions of a much larger number of products than the

user could deal with herself.

From the point of view of the vendors of the products con-

cerned, the most obvious potential benefit is that users will

find one or more products that they consider worth buy-

ing, instead of joining the notoriously large percentage of

browsers who never become buyers. A related benefit is the

prospect of cross-selling: the system’s model of the user can

be employed for the recommendation of further products that

the user might not have considered herself. Finally, some

vendors aim to build up customer loyalty with recommenders

that acquire long-termmodels of individual customers: If the

user believes that the system has acquired an adequate model

of her, the user will tend to prefer to use the system again

rather than starting from scratch with some other system.
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Figure 15.16. Partial screen shot from the ACTIVE BUYERS GUIDE recommender for digital cameras.

(Screen shot made from http://www.activebuyersguide.com in December 2005.)

Tailoring Information Presentation

Even after a system has decided which documents or prod-

ucts to present to a user, the question may remain of exactly

how to present them. In some cases, this question should be

answered differently for different users. In Figure 15.16, the

verbal descriptions of the recommended products refer ex-

plicitly to the preferences that the user has expressed; if they

did not, the user would have to invest more effort to judge

how well each product met his requirements.

An example from a research prototype is found in the system

RIA (Figure 15.17; Zhou & Aggarwal, 2004), a multimodal

system that helps users search for real estate, often present-

ing information about houses on a map. As the figure shows,

the amount of space available for describing a house is lim-

ited, so it is important to select the information that is most

likely to help the user to decide how to proceed; otherwise,

the user may have to request additional information explic-

itly, which would slow down the interaction. The process

of user model acquisition (the three left-most nodes in Fig-

ure 15.18) is quite straightforward in RIA: Before the inter-

action begins, the user is asked a small number of questions

about his or her interest and knowledge concerning houses.

The sophisticated part of the system is the way in which

it uses this information—along with information about the

houses that satisfy the query—to decide which information

to select for presentation and how it is to be ordered. The

problem is viewed as one of optimizing the presentation with

respect to a large set of constraints.12 In an evaluation, the

displays generated by this methodwere found to be similar to

12Decisions about what modalities to use for presentation—for example,

text or speech output—are made in a similar way; cf. Zhou, Wen, and Ag-

garwal (2005).

I found 4 ranches under $800K in Armonk.

Show ranches unter $800K in Armonk.

Ria:

User:

Emphasis on financial, exter−

ior, and interior aspects

Emphasis on size and

amenities

Figure 15.17. Two cropped screen shots from the RIA mul-

timedia conversation system.

(Screen shots courtesy of Vikram Aggarwal.)

those generated by a human designers, who found the task of

selecting the appropriate information items to be quite time-

consuming (cf. the section on empirical methods for com-

ments on this evaluation method).

Another class of systems in which the tailoring of informa-

tion to individual users has promise comprises systems that

present medical information to patients (see, e.g., Cawsey,

Grasso, & Paris, 2007, for an overview).

Properties of users that may be taken into account in the tai-

loring of documents include: the user’s degree of interest in

particular topics; the user’s knowledge about particular con-
11
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Figure 15.18. Overview of adaptation in RIA.

cepts or topics; the user’s preference or need for particular

forms of information presentation; and the display capabil-

ities of the user’s computing device (e.g., web browser vs.

cell phone). One strong point of the optimization approach

taken with RIA is that all of these factors can be represented

and taken into account within a uniform framework.

Even in cases where it is straightforward to determine the

relevant properties of the user, the automatic creation of

adapted presentations can require sophisticated techniques of

natural language generation (see, e.g., Bontcheva & Wilks,

2005) and/or multimedia presentation generation. Various

less complex ways of adapting hypermedia documents to in-

dividual users have also been developed (see Bunt, Carenini,

& Conati, 2007).

Supporting Collaboration

The increasing tendency for computer users to be linked via

networks has made it increasingly feasible for users to col-

laborate, even in a spontaneous way and without prior ac-

quaintance. A system that has models of a large number of

users can facilitate such collaboration by taking into account

the ways in which users match or complement each other.

A striking—though not very typical—example is the system

AGENTSALON (Sumi & Mase, 2001, Sumi & Mase, 2002),

shown in Figure 15.19. The system is used at conferences,

in conjunction with a handheld guide (PALMGUIDE) that

collects information about exhibits that the user has visited

and ratings that she has given of them (the purpose within

PALMGUIDE being to make recommendations to the user

about other exhibits). When two visitors agree to work with

AGENTSALON, the information about them is transferred

from their handhelds to AGENTSALON. Like a hostess at a

party, AGENTSALON then looks for topics on which the two

visitors might be able to hold an interesting conversation—

for example, an exhibit about which they gave different rat-

ings. The system tries to get a conversation going by having

two animated agents simulate a conversation between these

two visitors.

User modeling has been applied in connection with several

(partially overlapping) types of collaboration:

In computer-supported learning environments, in which

PalmGuide

Semantic map

Conversation

by agents

Migration

of agents

Figure 15.19. Attempt by AGENTSALON to stimulate dis-

cussion between two conference visitors.

(The system has identified an interesting topic by comparing the records of
their conference experiences that have been stored on their PDAs. Figure 1
of “AgentSalon: Facilitating face-to-face knowledge exchange through con-
versations among personal agents,” by Y. Sumi & K. Mase, 2001, in Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pp.
393–400, New York: ACM. Research conducted at ATR Media Informa-
tion Science Laboratories, Kyoto. Copyright 2001 by the Association for
Computing Machinery, Inc. Reproduced with permission.)
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Figure 15.20. Overview of adaptation in AGENTSALON.

the idea of collaborative learning has gained popularity in

recent years (see, e.g., Soller, 2007).

As a way of providing “intelligent help” for complex tasks

(see, e.g., Vivacqua & Lieberman, 2000; Aberg & Shah-

mehri, 2001). Putting a human expert into the loop is a

way of avoiding some of the difficulties associated with

fully automatic adaptive help systems that were discussed

above.

In environments for computer-supported cooperative work

within organizations (see, e.g., Terveen & McDonald,

2005).

Supporting Learning

Research on student modeling—or learner modeling, as it

has been called more often in recent years—aims to add user-
12



Figure 15.21. Screen shots from the SQL-TUTOR.

(Above: the main interface; below: display of the learner model. Screen
shots courtesy of Antonija Mitrovic.)

adaptivity to computer-based tutoring systems and learning

environments (cf. Corbett, Koedinger, & Anderson, 1997,

and the chapter by Emurian & Durham in this handbook).13

Increasingly, learning environments are being made avail-

able on the world-wide web. An example is the SQL-

TUTOR (see, e.g., Mitrovic, Suraweera, Martin, & Weeras-

inghe, 2004), which teaches the database query language

SQL.14 The top part of Figure 15.21 illustrates how the tu-

tor presents a database querying problem and gives feedback

on the learner’s solution. The lower part of the figure shows

a simple visualization of the learner model, which indicates

the learner’s degree of mastery of each of the six clauses of

the SQL SELECT statement. It also shows a suggestion by

the system about what type of problem the learner should at-

tempt next—one of several ways in which the system helps

the learner to pick a problem to work on next.

A number of different aspects of the SQL-TUTOR have

been evaluated in ten studies (see, e.g., Mitrovic et al.,

2004; Mitrovic & Ohlsson, 1999), including two studies that

showed the value of helping learners to choose the next prob-

lem and showing learners their learner model.

Interaction in intelligent tutoring systems and intelligent

learning environments can take many forms, ranging from

tightly system-controlled tutoring to largely free exploration

by the learner. Aspects of the system that can be adapted to

the individual user include: (a) the selection and the form

of the instructional information presented; (b) the content of

problems and tests; and (c) the content and timing of hints

and feedback.

Learner modeling systems may adapt their behavior to any of

a broad variety of aspects of the user, such as: (a) the user’s

13Good sources of literature include the International Journal of Artificial

Intelligence in Education and the proceedings of the biennial Conferences

on Artificial Intelligence in Education (see, e.g., Looi, McCalla, Bredeweg,

& Breuker, 2005).
14The tutor is available to registered students via Addison-Wesley’s web-

site DATABASE PLACE (http://www.aw-bc.com/databaseplace/).
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Performance on 
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Current suitability of 
practice problems 

Figure 15.22. Overview of adaptation in the SQL Tutor.

knowledge of the domain of instruction, including knowl-

edge acquired prior to and during the use of the system;

(b) the user’s learning style, motivation, and general way

of looking at the domain in question; and (c) the details of

the user’s current processing of a problem.

The underlying assumption is that the adaptation of the sys-

tem’s behavior to some of these properties of the learner can

lead to more effective and/or more enjoyable learning. One

series of studies that directly demonstrates the added value

of learner-adaptive tutoring is described by Corbett (2001).

Many evaluations, however, do not focus on measuring the

benefits of adaptivity but rather on comparing alternative

variants of the same adaptive system. And in some cases

it has been found that the modeling of the learner, however

well realized, is not necessary for the effective functioning

of the learning environment (see, e.g., VanLehn et al., 2005).

USABILITY CHALLENGES

Some of the typical properties of user-adaptive systems can

lead to usability problems that may outweigh the benefits

of adaptation to the individual user. Discussions of these

problems have been presented by a number of authors (see,

e.g., Norman, 1994; Wexelblat & Maes, 1997; Höök, 2000;

Tsandilas & schraefel, 2004; and the references given below

in this section). Figure 15.23 gives a high-level summary of

many of the relevant ideas, using the metaphor of signs that

give warnings and advice to persons who enter a dangerous

area.

The Usability Threats shown in the third column concern

several generally desirable properties of interactive systems.

Those referred to by the top three signs (PREDICTABILITY AND

COMPREHENSIBILITY, CONTROLLABILITY, and UNOBTRUSIVENESS)

correspond to general usability principles (see, e.g., the chap-

ters by Stewart & Travis, by Cockton et al., and by van der

Veer & Puerta Melguizo in this handbook. The remaining

two threats, to PRIVACY and to BREADTH OF EXPERIENCE, are es-

pecially relevant to user-adaptive systems.

The column Typical Properties lists some frequently en-

countered (though not always necessary) properties of user-

adaptive systems, each of which has the potential of creating

particular usability threats.
13
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Figure 15.23. Overview of usability challenges for user-adaptive systems and of ways of dealing with them.

(Dashed arrows denote threats and solid arrows mitigation of threats, respectively; further explanation is given in the text.)

Each of the remaining two columns shows a different strat-

egy for avoiding or mitigating one or more usability threats:

Each of the Preventive Measures aims to ensure that one

of the Typical Properties is not present in such a way that
it would cause problems. Each of the Compensatory Mea-

sures aims to ward off one or more threats once it has arisen.

A discussion of all of the relationships indicated in Fig-

ure 15.23 would exceed the scope of this chapter, but some

remarks will help to clarify the main ideas.

Threats to Predictability and Comprehensibility

The concept of predictability refers to the extent to which a

user can predict the effects of her actions. Comprehensibil-

ity is the extent to which she can understand system actions

and/or has a clear picture of how the system works (cf. the

chapter by van der Veer & Puerta Melguizo in this hand-

book).15 These goals are grouped together here because

they are associated with largely the same set of other vari-

ables.

Users can try to predict and understand a system on several

different levels of detail.

1. Exact layout and responses. Especially detailed pre-

dictability is important when interface elements are involved

that are accessed frequently by skilled users—for example,

icons in control panels or options in menus (cf. the discus-

sion of interface adaptations above). If the layout and behav-

ior of the system is highly predictable—in fact, essentially

identical—over time, skilled users can engage in automatic

15The term transparency is sometimes used for this concept, but it can be

confusing, because it also has different, incompatible meanings.
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processing (see, e.g., Hammond, 1987): They can use the

parts of the interface quickly, accurately, and with little or

no attention. In this situation, even minor deviations from

complete predictability on a fine-grained level can have the

serious consequence of making automatic processing impos-

sible or error-prone.

2. Success at specific subtasks. Users may desire only more

global predictability and comprehensibility when the system

is performing some more or less complex task on the user’s

behalf (e.g., searching for suitable products on the web): In

the extreme case, the system may want only to predict (or

evaluate) the quality of the result of a complex system action.

3. Overall competence. The most global form of predictabil-

ity and comprehensibility concerns the user’s ability to as-

sess the system’s overall level of competence: the degree to

which the system tends in general to perform its tasks suc-

cessfully. With many types of system, high overall com-

petence can be taken for granted; but as we have seen, the

processes of acquiring and applying user models do not in

general ensure a high degree of accuracy. If the user seri-

ously overestimates the system’s competence, she may rely

on the system excessively; if she underestimates the system,

she will not derive the potential benefits that the system can

provide. A factor that is especially important with regard

to this global level is the way in which the adaptive part of

the system is presented to the user. Some user-adaptive sys-

tems, such as AGENTSALON (which was discussed above)

and the well-known Microsoft OFFICE ASSISTANT, have

employed lifelike characters, for various reasons. As has of-

ten been pointed out, such anthropomorphic representations

can invoke unrealistically high expectations concerning sys-

tem competence—not only with regard to capabilities like

natural language understanding but also with regard to the

system’s ability to understand and adapt to the user.

In general, the levels and degrees of predictability and com-

prehensibility that are necessary or desirable in a given case

can depend on many factors, including the function that is

being served by the adaptation and the user’s level of skill

and experience. The same is true of the choice of the strate-

gies that are most appropriate for the achievement of pre-

dictability and comprehensibility.

Threats to Controllability

Controllability refers to the extent to which the user can

bring about or prevent particular actions or states of the sys-

tem if she has the goal of doing so. Although controllability

tends to be enhanced by comprehensibility and predictabil-

ity, these properties are not perfectly correlated. For exam-

ple, when the user clicks on a previously unused option in

SMART MENUS, she can predict with certainty that it will

be moved to the main part of its menu; but the user has no

control over whether this change will be made.

A typical measure for ensuring some degree of control is to

have the system submit any action with significant conse-

quences to the user for approval. This measure cause a threat

of obtrusiveness (see below); so it is an important interface

design challenge to find ways of making recommendations

in an unobtrusive fashion that still makes it easy for the user

to notice and follow up on them (cf. the earlier discussion of

FXPAL BAR).

Like predictability and comprehensibility, controllability can

be achieved on various levels of granularity. Especially since

the enhancement of controllability can come at a price, it is

important to consider what kinds of control will really be

desired. For example, there may be little point in submitting

individual actions to the user for approval if the user lacks the

knowledge or interest required to make the decisions. Wex-

elblat and Maes (1997) recommendmaking available several

alternative types of control for users to choose from.

Obtrusiveness

We will use the term obtrusiveness to refer to the extent

to which the system places demands on the user’s atten-

tion which reduce the user’s ability to concentrate on her

primary tasks. This term—and the related words distract-

ing and irritating—are often heard in connection with user-

adaptive systems. Figure 15.23 shows that (a) there are sev-

eral different reasons why user-adaptive systems can easily

turn out to be obtrusive and (b) there are equally many cor-

responding strategies for minimizing obtrusiveness. Some

of these measures can lead straightforwardly to significant

improvements—for example, when it is recognized that dis-

tracting lifelike behaviors of an animated character are not

really a necessary part of the system.

Threats to Privacy

User-adaptive systems typically (a) gather data about indi-

vidual users and (b) use these data to make decisions that

may have more or less serious consequences. Users may ac-

cordingly become concerned about the possibility that their

data will be put to inappropriate use. Privacy concerns tend

to be especially acute in e-commerce contexts (see, e.g., Cra-

nor, 2004), and with some forms of support for collabo-

ration (see, e.g., Terveen & McDonald, 2005), because in

these cases (a) data about the user are typically stored on

computers other than the user’s own, (b) the data often in-

clude personally identifying information; and (c) there may

be strong incentives to use the data in ways that are not dic-

tated by the user’s own interests. As will be discussed in the

next section, different means of acquiring information about

users can have different consequences with regard to privacy.

On the other hand, many of the measures that can be taken

to protect privacy—for example, a policy of storing as lit-

tle personally identifying data as possible—are not specific

to user-adaptive systems (see the chapters by Diller, Lin, &

Tashjian and by Friedman & Kahn in this handbook).
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Breadth of Experience

When a user-adaptive system helps the user with some form

of information acquisition (cf. the second major section of

this chapter) much of the work of examining the individ-

ual documents, products, and/or people involved is typically

taken over by the system. A consequence can be that the user

ends up learning less about the domain in question than she

would with a nonadaptive system (cf. Lanier, 1995). For ex-

ample, if the AMAZON visitor for whom recommendations

are shown in Figure 15.1 relies heavily on such recommen-

dations (as opposed to browsing freely), he is likely to learn

a lot about the books of Frederick Forsyth and about closely

related products but little about the full range of books and

other media that are available. One point of view here (see,

e.g., the remarks of Maes in Shneiderman & Maes, 1997,

p. 53) is that it should be up to the user to decide whether

she prefers to learn about a given domain or to save time

by delegating work to a system. It may be worthwhile to

give the user a continuous spectrum of possibilities between

complete control over a task and complete delegation of it.

For example, many product recommendation systems, such

as AMAZON’s, allow users to alternate freely between pur-

suing the system’s recommendations and browsing through

product descriptions in the normal way.

Reduction of breadth of experience is especially likely if the

system relies more heavily than is necessary on an incom-

plete user model. The user of Figure 15.1 had (understand-

ably) informed the system about only a tiny proportion of

the books that he had ever read and liked; and since the

system tends to recommend—and offer a chance to rate—

similar items, the system may never obtain much evidence

about all of the user’s other literary interests. Some systems

mitigate this problem by systematically proposing solutions

that are not dictated by the current user model (see, e.g.,

Ziegler, McNee, Konstan, & Lausen, 2005, for a method that

is directly applicable to recommendation lists such as AMA-

ZON’s; and Linden, Hanks, & Lesh, 1997, and Shearin &

Lieberman, 2001, for methods realized in different types of

recommenders).

Dealing With Tradeoffs

As can be seen in Figure 15.23, the designer who attempts to

combat a particular usability threat will often have to accept a

greater threat to some other usability goal. The most obvious

tradeoffs involve UNOBTRUSIVENESS. In particular, steps taken

to enhance control or to protect privacy often require the user

to perform additional actions, input additional information,

and/or pay attention to additional system messages. Dealing

with tradeoffs of this sort is complicated by the fact that users

often differ markedly in the relative priority that they assign

to each of the conflicting goals.

Figure 15.24 illustrates some general points, referring for

concreteness to a recently developed prototype OFFICE

CONTROL SYSTEM (Cheverst et al., 2005).This system first

observes how the occupant of an office tends to operate
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Figure 15.24. Illustration of strategies for dealing with

tradeoffs among usability goals in user-adaptive systems.

(Explanation in text.)

various devices such as the fan and the window shades; it

then tries to help the user by performing some actions au-

tonomously (e.g., opening the window when certain weather

conditions prevail and there is no visitor in the office). An

early version offered two ways of dividing the work between

the user and the system for each type of action: The system

could either perform actions of that type autonomously or

request the user’s permission with a preemptory dialog box

on the user’s normal computer screen. Users chose the latter

option for different proportions of the available actions, re-

flecting different priorities for the goals of unobtrusiveness

and controllability, respectively. In terms of the tradeoff

graph shown in Figure 15.24, users chose different points

on the straight diagonal line. But despite this freedom of

choice, users were often not satisfied with the overall us-

ability of the prototype. A significant improvement in ac-

ceptance was achieved when the designers expanded the de-

sign space: They introduced a separate small screen for the

OFFICE CONTROL SYSTEM, in which information and re-

quests for confirmation could be offered in several ways that

are not very familiar in everyday graphical user interfaces

(though they are familiar in industrial and traffic contexts;

see, e.g., Wickens & Hollands, 2000). As Figure 15.24 in-

dicates, these additional forms of interaction represented a

more favorable combination of degrees of unobtrusiveness

and controllability and unobtrusiveness at least for some of

the users some of the time.

Consistent with more complex examples (see, e.g., Jameson

& Schwarzkopf, 2002; Billsus, 2007), this small case study

illustrates two general points: 1. When dealing with trade-

offs among the usability goals discussed here, it is important
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show Waldo in which type of home you live.

yours, but Waldo doesn’t like to give the store away. So kindly

Figure 15.25. Example of a screen with which the

LIFESTYLE FINDER elicits demographic information.

(Figure 3 of “Lifestyle Finder: Intelligent user profiling using large-scale
demographic data,” by B. Krulwich, 1997, AI Magazine, 18(2), pp. 37–45.
Research conducted at the Center for Strategic Technology Research of An-
dersen Consulting (now Accenture Technology Labs). Copyright 1997 by
the American Association for Artificial Intelligence. Adapted with permis-
sion.)

to offer alternative solutions for users with different priori-

ties. 2. It is equally important to consider relatively novel

interface design solutions that may spare users the need to

choose among unsatisfactory alternatives.

OBTAINING INFORMATION ABOUT USERS

Some of the usability challenges discussed in the previous

section are closely connected with the ways in which infor-

mation about individual users is acquired—a consideration

which also largely determines the success of a system’s adap-

tation. The next two subsections will look, respectively, at

(a) information that the user supplies to the system explic-

itly for the purpose of allowing the system to adapt; and (b)

information that the system obtains in some other way.

Explicit SelfReports and Assessments

SelfReports About Objective Personal Characteristics

Information about objective properties of the user (such as

age, profession, and place of residence) sometimes has im-

plications that are relevant for system adaptation—for exam-

ple, concerning the topics that the user is likely to be knowl-

edgeable about or interested in. This type of information also

has the advantage of changing relatively infrequently. Some

user-adaptive systems request information of this type from

users, but the following caveats apply:

1. Specifying information such as profession and place of

residence may require a fair amount of tedious menu selec-

tion and/or typing.

2. Since information of this sort can often be used to de-

termine the user’s identity, the user may justifiably be con-

cerned about privacy issues. Even in cases where such con-

cerns are unfounded, they may discourage the user from en-

tering the requested information.

A general approach is to (a) restrict requests for personal

data to the few pieces of information (if any) that the sys-

tem really requires; and (b) explain the uses to which the

data will be put. A number of suggestions about how the use

of personally identifying data can be minimized are given

by Cranor (2004). An especially creative approach was

tried in the web-based LIFESTYLE FINDER prototype (Fig-

ure 15.25; Krulwich, 1997), which was characterized by a

playful style and an absence of requests for personally iden-

tifying information. Of the users surveyed, 93% agreed that

the LIFESTYLE FINDER’s questions did not invade their pri-

vacy.

It is sometimes possible to avoid requests for explicit input

about personal characteristics by accessing sources where

similar information has already been stored (a strategy that

will be discussed later in this section).

SelfAssessments of Interests and Knowledge

It is sometimes helpful for a user-adaptive system to have an

assessment of a property of the user that can be expressed

naturally as a position on a particular general dimension: the

level of the user’s interest in a particular topic, the level of

her knowledge about it, or the importance that the user at-

taches to a particular evaluation criterion. Often an assess-

ment is arrived at through inference on the basis of indirect

evidence, as with the assessments of a learner’s knowledge

in the SQL-TUTOR (Figure 15.21). But it may be necessary

or more efficient to ask the user for an explicit assessment.

For example, it would be difficult for the ACTIVE BUYERS

GUIDE recommender shown in Figure 15.16 to estimate the

importance that the user attaches to photo quality without

asking the user directly. The scales in this figure illustrate

good practice in that they make clear the meaning of the var-

ious possible answers, instead of asking “How important is

photo quality to you (on a scale from 1 to 5)?”16

Because of the effort involved in this type of self-assessment,

it is in general worthwhile to consider ways of minimizing

such requests, making responses optional, ensuring that the

purpose is clear, and integrating the self-assessment process

into the user’s main task (see, e.g., Tsandilas & schraefel,

2004, for some innovative ideas about how to achieve these

goals).

SelfReports on Specific Evaluations

Instead of asking the user to describe her interests explicitly,

some systems try to infer the user’s position on the basis of

her explicitly evaluative responses to specific items. AMA-

ZON’s rating scales (Figure 15.1) illustrate one form that this

type of input can take; other forms include checkboxes and

icons (e.g., “thumbs-up” and “thumbs-down”). The items

that the user evaluates can be (a) items that the user is cur-

rently experiencing directly (e.g., the current web page); (b)

actions that the system has just performed, which the user

may want to encourage or discourage (see, e.g., Wolfman,

Lau, Domingos, & Weld, 2001); (c) items that the user must

16Further guidance concerning the formulation of questions of this gen-

eral sort can be found in the chapters by Blomberg et al., and by Karat in

this handbook.
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judge on the basis of a description (e.g., the abstract of a talk;

a table listing the attributes of a physical product); or (d) the

mere name of an item (e.g., a movie) that the user may have

had some experience with in the past (see, e.g., Figure 15.1).

The cognitive effort required depends in part on how directly

available the item is: In the third and fourth cases just listed,

the user may need to perform memory retrieval and/or infer-

ence in order to arrive at an evaluation.

Even when the effort is minimal, users often do not like to

bother with explicit evaluations that do not constitute a nec-

essary part of the task they are performing. For this reason,

many designers try to get by with the type of nonexplicit in-

put discussed in the following section. For example, FIND-

ORY (Figure 15.14) could allow the user to rate the various

news stories and blogs presented, but instead it just interprets

the user’s behavior in selecting items to read them.

Responses to Test Items

In systems that support learning, it is often natural to ad-

minister tests of knowledge or skill. In addition to serving

their normal educational functions, these tests can yield valu-

able information for the system’s adaptation to the user. An

advantage of tests is that they can be constructed, adminis-

tered, and interpreted with the help of a large body of theory,

methodology, and practical experience (see, e.g., Wainer,

2000).

Outside of a learning context, users are likely to hesitate to

invest time in tests of knowledge or skill, unless these can

be presented in an enjoyable form (see, e.g., the color dis-

crimination test used by Gutkauf, Thies, & Domik, 1997,

to identify perceptual limitations relevant to the automatic

generation of graphs). Trewin (2004) reports on experience

with a brief typing test that was designed to identify helpful

keyboard adaptations: Some users who turned out to require

no adaptations were disappointed that their investment in the

test had yielded no benefit. As a result, Trewin (2004) de-

cided that adaptations should be based on the users’ naturally

occurring typing behavior.

Nonexplicit Input

The previous subsection has given some examples of why

designers often look for ways of obtaining information about

the user that does not require any explicit input by the user.

Naturally Occurring Actions

The broadest and most important category of information of

this type includes all of the actions that the user performs

with the system that do not have the express purpose of re-

vealing information about the user to the system. These ac-

tions may range from major actions like purchasing an ex-

pensive product to minor ones like scrolling down a web

page. The more significant actions tend to be specific to the

particular type of system that is involved (e.g., e-commerce

sites vs. learning environments). Within some domains,

there has been considerable research on ways of interpret-

ing particular types of naturally occurring user actions. For

example, researchers interested in adaptive hypertext navi-

gation support have developed a variety of ways of analyz-

ing the user’s navigation actions to infer the user’s interests

and/or to propose navigation shortcuts (see, e.g., Mobasher,

2007).

In their purest form, naturally occurring actions require no

additional investment by the user, because they are actions

that the user would perform anyway. The main limitation

is that they are hard to interpret; for example, the fact that

a given web page has been displayed in the user’s browser

for 4 minutes does not reveal with certainty which (if any)

of the text displayed on that page the user has actually read.

Some designers have tried to deal with this tradeoff by de-

signing the user interface in such a way that the naturally

occurring actions are especially easy to interpret. For exam-

ple, a web-based system might display just one news story

on each page, even if displaying several stories on each page

would normally be more desirable.

The interpretation of naturally occurring actions by the sys-

tem can raise privacy and comprehensibility issues (cf. Fig-

ure 15.23) that do not arise in the same way with explicit

self-reports and self-assessments of the types discussed ear-

lier in this section: Whereas the latter way of obtaining in-

formation about the user can be compared with interviewing,

the former way is more like eavesdropping—unless the user

is informed about the nature of the data that are being col-

lected and the ways in which they will be used (cf. Cranor,

2004).

Previously Stored Information

Sometimes a system can access relevant information about

the user which has been acquired and stored independently

of the system’s interaction with the user:

1. If the user has some relationship (e.g., patient, customer)

with the organization that operates the system, this organiza-

tion may have information about the user that it has stored

for reasons unrelated to any adaptation, such as the user’s

medical record (see Cawsey et al., 2007, for examples) or

address.

2. Relevant information about the user may be stored in pub-

licly available sources such as electronic directories or web

homepages. For example, Pazzani (1999) explores the idea

of using a user’s web homepage as a source of information

for a restaurant recommending system.

3. If there is some other system that has already built up

a model of the user, the system may be able to access the

results of that modeling effort and try to apply them to its

own modeling task. There is a line of research that deals

with user modeling servers (see, e.g., Kobsa, 2007): systems

that store information about users centrally and supply such

information to a number of different applications. Some of

the major commercial personalization software is based on

this conception.

Relative to all of the other types of information about users,
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previously stored information has the advantage that it can

in principle be applied right from the start of the first inter-

action of a given user with a given system. To be sure, the

interpretability and usefulness of the information in the con-

text of the current application may be limited. Moreover,

questions concerning privacy and comprehensibility may be

even more important than with the interpretation of naturally

occurring actions.

LowLevel Indices of Psychological States

The next two categories of information about the user have

become practically feasible only in recent years, with ad-

vances in the miniaturization of sensing devices (cf. the

chapter by Hinckley in this handbook).

The first category of sensor-based information (discussed at

length in the classic book of Picard, 1997) comprises data

that reflect aspects of a user’s psychological state. Some of

the application scenarios in which this type of information

can be useful were discussed in the section on systems that

mediate interaction with the real world.

Two categories of sensing devices have been employed:

(a) devices attached to the user’s body (or to the comput-

ing device itself) that transmit physiological data, such as

electromyogram signals, the galvanic skin response, blood

volume pressure, and the pattern of respiration (see Lisetti &

Nasoz, 2004, for an overview); and (b) video cameras and

microphones that transmit psychologically relevant informa-

tion about the user, such as features of her facial expressions

(see, e.g., Bartlett, Littlewort, Fasel, & Movellan, 2003) or

her speech (see, e.g., Liscombe et al., 2005).

With both categories of sensors, the extraction of meaningful

features from the low-level data stream requires the applica-

tion of pattern recognition techniques. These typically make

use of the results of machine learning studies in which the re-

lationships between low-level data and meaningful features

have been learned.

One advantage of sensors is that they supply a continuous

stream of data, the cost to the user being limited to the phys-

ical and social discomfort that may be associated with the

carrying or wearing of the devices. These factors are still sig-

nificant now, but further advances in miniaturization—and

perhaps changing attitudes as well—seem likely to reduce

their importance.

Signals Concerning the Current Surroundings

As computing devices become more portable, it is becoming

increasingly important for a user-adaptive system to have in-

formation about the user’s current surroundings (cf. the chap-

ter by Stephanidis & Savidis in this handbook). Here again,

two broad categories of input devices can be distinguished

(see Krüger, Baus, Heckmann, Kruppa, & Wasinger, 2007,

for a discussion of a number of specific types of devices).

1. Devices that receive explicit signals about the user’s sur-

roundings from specialized transmitters. Some mobile sys-

tems that are used outdoors employ GPS (Global Position-

ing System) technology. More specialized transmitters and

receivers are required, for example, if a portable museum

guide system is to be able to determine which exhibit the

user is looking at

2. More general sensing or input devices. For example,

Schiele, Starner, Rhodes, Clarkson, and Pentland (2000) de-

scribe the use of a miniature video camera and microphone

(each roughly the size of a coin) that enable a wearable com-

puter to discriminate among different types of surroundings

(e.g., a supermarket vs. a street). The use of general-purpose

sensors eliminates the dependence on specialized transmit-

ters. On the other hand, the interpretation of the signals re-

quires the use of sophisticated machine learning and pattern

recognition techniques.

SPECIAL CONSIDERATIONS CONCERNING EMPIRICAL

METHODS

The full repertoire of empirical methods in human-computer

interaction (cf. Section VI of this handbook) is in principle

applicable to user-adaptive systems. This section will focus

on some methods that are more important for user-adaptive

systems than for other types and on some typical problems

that need to be dealt with. But this focused discussion should

not obscure the fact that a lot of empirical work with user-

adaptive systems looks the same as with other systems.17

Use of Data Collected With a Nonadaptive System

The key difference between user-adaptive systems and other

interactive systems is the inclusion of some method for ac-

quiring and exploiting a user model. This feature gives rise

to a type of empirical study that is largely unique to user-

adaptive systems: studies in which the accuracy of the mod-

eling methods is evaluated.

This type of evaluation can often be performed even if there

exist no user-adaptive systems that employ the user modeling

method in question. What is needed are (a) some implemen-

tation of the adaptation algorithm, not necessarily embedded

in any interactive system; and (b) a database of behavioral

data on how a number of users have used a relevant non-

adaptive system. The researcher can then apply the model-

ing method to the data in order to determine how well the

system would adapt to the users in question.

A number of studies of this type were conducted with the

I-EMS system (see McCreath et al., 2005, and the discus-

sion earlier in this chapter). In one case, the researchers

wanted to find out whether a user who had defined a num-

ber of hand-crafted email sorting rules could benefit from

having automatically learned rules applied to messages that

were not covered by the hand-crafted rules. One simulation

was performed on 5100 email messages that had been sorted

by a single user within a nonadaptive email client over a 3-

month period. In the order in which the messages had been

17More extended discussions of empirical methods for user-adaptive sys-

tems are provided by Gena and Weibelzahl (2007); Höök (2000); and Lan-

gley and Fehling (1998).
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Figure 15.26. Results of one of the simulation experiments

performed with I-EMS’s algorithms.

(Explanation in text. Figure courtesy of Eric McCreath.)

received, they were presented to one of the system’s learning

algorithms in batches of 100, along with information about

how the user had sorted them, so that the system could con-

tinually refine its set of learned rules. After each batch of 100

messages, the accuracy of the updated set of rules was eval-

uated: The system was asked to make predictions about the

next batch of messages before being told how the user had in

fact sorted them, and these predictions were compared with

the user’s actual behavior. Several indices of the system’s

performance were computed, one of which is shown in Fig-

ure 15.26: the percentage of messages for which the learned

rules made no prediction (i.e., where the appropriate folder

was “unknown” to the system). The middle curve in the

graph shows how this percentage gradually decreased over

time. The uppermost curve shows the corresponding results

for the case where only the user’s hand-crafted rules were

used for prediction; the lowest curve shows the results where

both types of rules were applied, with the hand-crafted rules

taking precedence in the case of disagreement. It can be seen

that the joint use of both sets of rules gave the best results in

terms of avoiding “unknown” predictions. Since according

to other indices the accuracy of the combined set of rules was

as good as that of the hand-crafted rules alone, the system’s

performance was best overall with the combined set.

Note that it was not necessary, for this evaluation, to cre-

ate three different versions of I-EMS and have them used for

months by different users. In addition to being extremely

time-consuming, this procedure would allow less direct ac-

curacy comparisons. By contrast, using existing email cor-

pora, McCreath et al. (2005) were able to perform simula-

tions that shed light on many properties of the algorithms

used.

The appeal of this type of evaluation, in terms of being able

to yield numerous interpretable results with minimal involve-

ment of actual users, is so great that researchers often seem

to lose sight of the fact that studies with real users are like-

wise essential. No simulation study, for example, can re-

veal how well the design of the I-EMS interface shown in

Figure 15.4 corresponds to the way users like to deal with

incoming email, or how helpful users find the explanations

that the system offers for its predictions.

Early Studies of Usage Scenarios and User

Requirements

In the field of human-computer interaction as a whole, it is

expected that user-centered design should begin with a study

of contexts of use, usage scenarios, properties of users, and

user requirements (cf. the chapters in Section VI.A of this

handbook). To date, this strategy has been applied less fre-

quently in the design of user-adaptive systems—perhaps be-

cause the designers less frequently come from an HCI back-

ground, often specializing instead in the development of the

necessary adaptive algorithms. Early user studies are actu-

ally at least as important with novel user-adaptive systems

as with other types of system: It is often not clear in ad-

vance whether adaptation will yield added value and achieve

acceptance in a particular context. Careful attention to the

requirements and contexts of users may greatly increase the

likelihood of success—or at least warn of the designers at an

early stage that if a particular usage scenario is not promising

for the sort of adaptive interaction that they envision.

A positive example of early attention to user requirements is

found in the development of the museum guide HYPERAU-

DIO, which was developed as a prototype in the 1990s (see,

e.g., Petrelli & Not, 2005, for a retrospective discussion).

Studying the attitudes and behavior of museum visitors at an

early stage in the system’s design, the researchers found that

many visitors enjoy guided tours but that few visitors want

to spend time interacting with technical devices. These two

findings, along with others, led to a modification of the orig-

inal conception of HYPERAUDIO, in that they suggested the

appropriateness of a museum guide that selects information

for presentation on the basis of the user’s behavior and loca-

tion, requiring little or no explicit input.

WizardofOz Studies

Systems that adapt to their users are in one methodological

respect similar to systems that make use of speech (cf. the

chapter by Lai & Yankelovich in this handbook): They at-

tempt to realize a capability that is so far, at least in many

contexts, possessed to the highest degree by humans. Conse-

quently, as with speech interfaces, valuable information can

sometimes be obtained from a Wizard-of-Oz study: In a spe-

cially created setting, a human takes over a part of the pro-

cessing of the to-be-developed system for which humans are

especially well suited (cf. the chapters by Lai & Yankelovich

and by Beaudouin-Lafon & Mackay in this handbook).

One example is the Wizard-of-Oz study that was conducted

early in the development of the LUMIÈRE intelligent help

system (Horvitz, Breese, Heckerman, Hovel, & Rommelse,
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1998), which formed the basis for the OFFICE ASSISTANT,

which was introduced in Microsoft OFFICE 97. In this study,

subjects working with a spreadsheet were told that an ex-

perimental help system would track their activity and make

guesses about how to help them. They received the advice

via a computer monitor. The advice was actually provided

by usability experts who, working in a separate room, viewed

the subjects’ activity via a monitor and conveyed their advice

by typing.

This type of study can yield an upper-bound estimate of the

highest level of modeling accuracy that might be attainable

given the available information—as long as one can assume

that the human “wizards” are more competent at the type

of assessment in question than a fully automatic system is

likely to be in the foreseeable future. In this example study,

the expert advisers showed some ability to identify the users’

goals and needs; if they had not done so, perhaps the entire

project would have been reconsidered.

Aside from accuracy, a Wizard-of-Oz study can also shed

light on problems with the acceptability and usability of the

new system, as long as they concern the content and basic

nature of the adaptations performed, as opposed to interface

details that are not faithfully reproduced in the study. In our

example study, it turned out that even incorrect advice was

often taken seriously by the users, who wasted time follow-

ing up on irrelevant suggestions. One design implication is

that users should be made aware of the fact that the system’s

advice is not necessarily relevant.

Comparisons With the Work of Human Designers

Just as humans can sometimes be employed as a surrogate

for a user-adaptive system in the early stages of design, hu-

mans can sometimes also serve as a standard of comparison

for the evaluation of an implemented system. This method

makes most sense when the system is performing a task at

which human authors or designers are likely to be experi-

enced and skilled, such as the tailoring of the content of a

presentation to the individual user. An example of such a

study was mentioned earlier: a comparison of the displays

generated by the real estate recommender system RIA with

those generated by two experienced designers. Instead of

performing the same task as the system, the human design-

ers may simply act as judges of the appropriateness of the

system’s output. In either case, the comments of the design-

ers can yield valuable qualitative information to complement

the objective results.

Experimental Comparisons of Adaptive and

Nonadaptive Systems

Many experimental studies involving user-adaptive systems

compare an adaptive variant with some nonadaptive one.

This strategy is understandable given the doubt that often ex-

ists as to whether the additional overhead required for user-

adaptivity is justified by any sort of improvement in the in-

teraction. But studies like this are trickier to conduct and

Move items from bottom

to top partition

Move items up and down

in top partition

Figure 15.27. The adaptive (left) and adaptable (right) split

menus used in an experimental comparison.

(Adapted from Figure 1 of “A comparison of static, adaptive, and adaptable
menus,” by L. Findlater & J. McGrenere, 2004, in E. Dykstra-Erickson &
M. Tscheligi (Eds.), Human factors in computing systems: CHI 2004 con-
ference proceedings, pp. 89–96, New York: ACM, Copyright 2004 by the
Association for Computing Machinery, Inc. Adapted with permission.)

interpret than they may seem at first glance.

As an example, consider the experiment by Findlater and

McGrenere (2004), which examined whether subjects could

work faster using (a) an adaptive menu system somewhat

like SMART MENUS (cf. the discussion of adaptive menus

above); (b) an adaptable system in which the users explic-

itly determined the content of the menus themselves; or (c)

a conventional static menu system. For each of these three

types of menu, a realization was chosen that seemed opti-

mal in the context of the experiment. All three menus were a

special type of split menu (Sears & Shneiderman, 1994): The

four most frequent items in each menu were placed in a spe-

cial section at the top of the menu for quick access (instead

of being temporarily hidden, as in SMART MENUS). The

items selected for the upper part of the static menu were op-

timally chosen in that they reflected the actual frequency of

the items in the experimental tasks. The adaptive menu was

initially identical to the static menu, but the arrangement of

the items changed as a function of the user’s behavior, favor-

ing the most frequently and recently used menu items. For

the adaptable menu, the upper part was initially empty, so

that users would be encouraged to perform some adaptations.

Though the overall pattern of results is complex, it tends to

speak in favor of the adaptable menu. But note that the con-

ditions did not give the adaptive variant much of a chance to

provide any benefit: Since the initial menu was already the

best possible single menu for the experimental tasks, adap-

tation could improve performance only by taking advantage

of any local concentrations of commands within a particular

period of time (e.g., the need to execute the same command

several times in succession). By contrast, in normal usage

situations, an adaptive menu can also improve performance

by reflecting increasingly the user’s longer-term patterns of

use.

The difficulties in interpreting the results of this experiment
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could not easily have been avoided with a different design:

Any other way of realizing the three conditions would have

left some different set of questions open. The lesson of

this and many other examples is that comparisons between

adaptive and nonadaptive variants of a system should not be

viewed as empirical tests whose results can be interpreted

straightforwardly. Instead, they should be seen as shedding

light on various aspects of the ways in which people use

adaptive and nonadaptive systems and on the effectiveness

of these methods in certain conditions.

Taking Into Account Individual Differences

Individual differences among users show up in just about ev-

ery user study in the field of human-computer interaction;

but with the user-adaptive systems they are especially impor-

tant, because of the wide range of subjective reactions that

user-adaptivity tends to invoke (illustrated in the experiment

discussed in the previous subsection). As a result, asking

whether people like a particular type of user-adaptive system

is in many cases like asking whether the voters in a given

country prefer progressive or conservative policies. Even if,

in a given sample, a statistically significant tendency in one

direction or the other can be found, importantminority points

of view should be understood and reported. As in politics,

the goal should be to take into account the range of differ-

ent preferences in a way that is satisfactory at least a large

proportion of the potential user group.

When individual differences are present, it may be tempting

to try to find correlations with demographic characteristics

or with general personality variables. Although some rela-

tionships of this sort can be found (see, for example, Grazi-

ola, Pianesi, Zancanaro, & Goren-Bar, 2005, with regard to

personality variables), it is not always worthwhile to look

for them. The relationships tend to be weak, since different

responses can also be due to more specific causes such as

degree of familiarity with the particular type of system and

particular conditions under which a user performs a task.

Checking Usability Under Realistic Conditions

With just about any type of interactive system, new lessons

are likely to be learned when a working prototype (or the

finished system itself) is tested in realistic situations, even

if the system has been studied thoroughly in earlier stages.

With user-adaptive systems, realistic testing is especially ad-

visable because of the issues discussed in the section on us-

ability challenges, whose importance for a given system can

often be assessed only in real use. For example, an obtrusive

proactive recommender might be considered quite accept-

able, or even amusing, when the user is performing some ar-

tificial assigned task in a laboratory; in the real world, when

she is under pressure to complete an important task quickly,

the interruptions may be evaluated quite differently. Simi-

larly, privacy issues are serious mainly when real data about

the user is involved, whose misuse could have real conse-

quences.

THE FUTURE OF USERADAPTIVE SYSTEMS

This chapter has shown that adaptive interfaces, agents, and

other user-adaptive systems do not represent a smooth and

easy shortcut to more successful human-computer interac-

tion: They present a complex set of usability challenges; they

require carefully designed methods of acquiring information

about users, as well as relatively sophisticated computational

techniques that are not needed in other types of interactive

system. And even when all of these requirements have

been dealt with, it is often tricky to prove empirically that

user-adaptivity has actually added any value. It is no wonder

that some experts believe that the interests of computer users

are better served by continued progress within more familiar

paradigms of user-centered system design.

On the other hand, our understanding of the complex chal-

lenges raised by user-adaptive systems has been growing

steadily, and they are now familiar and valued elements in

a number of types of system, as the survey in the first two

major sections of this chapter has shown.

Growing Need for UserAdaptivity

Increases in the following variables suggest that the func-

tions served by user-adaptivity will continue to grow in im-

portance:

Diversity of Users and Contexts of Use As several chapters

in this handbook make clear, computing devices are being

used by an ever-increasing variety of users in an increas-

ing variety of contexts. (See Section B, Interaction Issues

for Diverse Users, as well as the chapter by Stephanidis &

Savidis.) It is therefore becoming harder to design a sys-

tem that will be suitable for all users and contexts without

some sort of user-adaptivity or user-controlled adaptability;

and as has been discussed at several points in this chapter,

user-controlled adaptability has its limitations.

Number and Complexity of Interactive Systems The func-

tions of user-adaptivity discussed in the first major section

of this chapter involve helping users to deal effectively with

interactive systems and tasks even when they are not able or

willing to gain complete understanding and control in each

individual case. This goal becomes increasingly important

as the number—and in some cases the complexity—of the

systems that people must deal with continues to increase—

because of factors ranging from the growth of the world-

wide web to the proliferation of miniature interactive com-

puting devices.

Scope of Information to Be Dealt With Even when using

a single, relatively simple system, users today can often ac-

cess a much larger and more diverse set of objects of interest

than they could a few years ago—be they documents, prod-

ucts, or potential collaborators. It is therefore becoming rela-

tively more attractive to delegate some of the work of dealing

with these objects—even to a system which has an imperfect

model of the user’s requirements. In the early 1990s, the

idea that an email sorting agent such as the one described by
22



Maes (1994)might delete an incomingmessage without con-

sulting the user seemed preposterous to many people. After

the huge increase in the amount of (largely unwanted) email

that has occurred since then, many people now regularly al-

low dozens of their incoming messages to be deleted unseen.

Increasing Feasibility of Successful Adaptation

As the need for user-adaptivity increases, so—fortunately—

does its feasibility, largely because of advances in the fol-

lowing areas:

Ways of Acquiring Information About Users Most of the

methods discussed in the section about acquiring infor-

mation about users are becoming more powerful with ad-

vances in technology and research. They therefore of-

fer the prospect of substantial increases in the quality of

adaptation—although methods for ensuring users’ privacy

call for equal attention.

Advances in Techniques for Learning, Inference, andDecision

In addition to the more general progress in the fields of ma-

chine learning and artificial intelligence, communities of re-

searchers have been focusing on the specific requirements of

computational techniques that support user-adaptivity. Con-

sequently, noticeable progress is being made every year.

Attention to Empirical Methods The special empirical issues

and methods that are involved in the design and evaluation

of user-adaptive systems have been receiving increasing at-

tention from researchers, as emphasis has shifted from high

technical sophistication to ensuring that the systems enhance

the users’ experience.

Despite these tendencies, it is actually unlikely that the num-

ber of deployed systems associated with labels like “user-

adaptive” will increase. Once an adaptation technique has

left the research laboratory and started playing some gen-

uinely useful role in people’s lives, it tends to be described

in terms of the function that it serves rather than in terms

of the techniques that it uses. Awareness of the commonali-

ties discussed in this chapter should help both to increase the

number of systems that succeed in this way and to recognize

them despite the new labels that are placed on them.
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