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Cătălin Lăcătuş, Student Member, IEEE, and Dimitrie C. Popescu, Senior Member, IEEE

Abstract—In this paper, we present an adaptive algorithm for in-
terference avoidance, which can be applied in a distributed manner
by active users in a CDMA wireless system to obtain optimal code-
words and powers for specified target signal-to-interference plus
noise ratio (SINR). The algorithm is derived using a game-theoretic
approach in which separable cost functions with respect to code-
word and power are defined, and joint codeword and power adap-
tation is formulated as a separable game with two corresponding
subgames: the noncooperative codeword adaptation game, and the
noncooperative power control game. Codeword and power adap-
tation use incremental updates in the direction of the best strategy,
which are desirable in practical implementations since they allow
the receiver to follow transmitter changes with corresponding in-
cremental changes of the receiver filter and continue detection of
transmitted symbols with high accuracy. The algorithm can also
track variable target SINRs or variable number of active users in
the system, and is therefore useful for dynamic wireless systems
with varying quality of service (QoS) requirements. We illustrate
the proposed algorithm with numerical examples obtained from
simulations that show convergence and tracking properties of the
algorithm for different scenarios.

Index Terms—Code division multiple access (CDMA), inter-
ference avoidance, noncooperative game theory, transmitter
optimization.

I. INTRODUCTION

I NTERFERENCE avoidance has emerged in the literature as
a new technique by which transmitters in a wireless commu-

nication system are optimized in response to changing patterns
of interference to better suit the environment in which they op-
erate under specified QoS [18]. Currently, interference avoid-
ance algorithms are static in the number of users, and do not
allow variable QoS [4], [16], [19], [23], [31], and each time
these change the algorithms must be reiterated in order to deter-
mine the socially optimal solution for the new number of users
and/or QoS. We note that other related algorithms for CDMA
codeword adaptation [6], [9], [10], [29], [30], [33]–[35] have
the same characteristic, and are not adaptable to changing num-
bers of active users and/or QoS requirements in the system. In
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order to overcome this limitation, recent research [7] proposes
using Grassmannian signatures in dynamic systems with vari-
able number of users in the system. These are designed to sup-
port a maximum number of active users in the system subject to
a given interference level, and have the nice property that inter-
ference among users does not change when less users are active
in the system. As noted in [7] the disadvantage associated with
equiangular Grassmannian signatures is that they may not exist
for any desired system configuration specified by given number
of users and processing gain value.

In this paper, we present an alternative approach to dealing
with variable number of active users and/or QoS requirements in
the uplink of a CDMA system. More specifically, we propose an
adaptive algorithm that moves the system incrementally from an
optimal configuration with a given number of active users and/or
QoS, to a new optimal configuration with a different number
of active users and/or QoS. The transition between the two op-
timal configurations is based on an adaptive interference avoid-
ance procedure: when a change in the system status occurs this
translates in a change of the SINR of active users which will
employ incremental updates for codeword and power that de-
crease individual user cost functions subject to constraints on
the codewords and SINR. This procedure works similar to the
way adaptive equalization tracks changes in time-varying chan-
nels by gradient-based techniques for minimizing the channel
estimation error.

The proposed algorithm is derived using a game-theoretic ap-
proach in which joint CDMA codeword and power adaptation
is modeled as a noncooperative game. Noncooperative game
theory has been extensively used by economists for a long time
to study how rational individuals (players) that do not coop-
erate interact to reach their goals. Lately, noncooperative game
theory has been applied to communications systems [13], and
alternative game-theoretic approaches to CDMA codeword and
power adaptation in CDMA systems are discussed in [8], [27],
[28]. In [8], CDMA codeword adaptation based on interfer-
ence avoidance is approached from the perspective of potential
game theory, while [27] uses noncooperative game theory to ap-
proach codeword adaptation in asynchronous systems. In [28]
joint CDMA codeword and power adaptation is formulated as a
separable game, with two corresponding subgames: the power
control game and the codeword (sequence) control game.

Inspired by the approach in [28], in our paper we formu-
late also two separate games for codeword and power adapta-
tion. However, we define new cost functions for users in the
system, which are different than those in [28], and show that
these cost functions are convex. Unlike [28], we then use the
theory of convex noncooperative games to investigate best re-
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sponse strategies as well as existence of Nash equilibrium solu-
tions implied by these cost functions.

The paper is organized as follows. We describe the system
model and problem statement in Section II, followed by pre-
sentation of the game-theoretic framework for codeword and
power optimization in Section III where we discuss best re-
sponse strategies for users and investigate the Nash equilibrium
solution of the game. In Section IV we discuss incremental
codeword and power updates in the direction of best response
strategy, and formally state the adaptive algorithm for interfer-
ence avoidance in Section V. We present and discuss numer-
ical examples obtained from simulations in Section VI, and final
conclusions in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the uplink of a synchronous CDMA system with
active users in a signal space of dimension implied by fi-

nite common bandwidth and signaling interval constraints [11].
The received signal at the base station is given by:

(1)

where is the unit-norm codeword corresponding to user
is the information symbol transmitted by user is the re-
ceived power at the base station for user , and is the addi-
tive white Gaussian noise (AWGN) that corrupts the received
signal with zero-mean and covariance matrix equal to identity

.
Formally, we note that all user codewords take values in the
-dimensional sphere with radius 1

(2)

while powers take values in the set defined by the real interval

(3)

where is the maximum power value.
By defining the codeword matrix

having as columns the user
codewords, and the diagonal matrix of received user
powers we rewrite the received
signal in a compact matrix-vector form as

(4)

where is the vector containing the information
symbols sent by users.

At the receiver a unit norm linear filter, , is used to obtain
the decision variable for user

(5)

The SINR for user is the ratio of the desired signal corre-
sponding to user at the receiver to the power of interference
and noise that affects user ’s signal at the receiver, and is ex-
pressed as

(6)

We formally define the denominator of the SINR as the user
interference function

(7)

where

(8)

is the correlation matrix of the interference+noise seen by user
and

(9)

is the correlation matrix of the received signal in (4). We note
that the interference function for a given user depends explic-
itly on user receiver filter as well as on all the other users
codewords and powers . The interference function
does not depend on user ’s power, and depends implicitly on
user ’s codeword since the receiver filter depends usually
on . We also note that interference functions have been de-
fined in previous work on power control [36] as well as power
and codeword adaptation [27], [28].

In the case of matched filter (MF) receivers the
interference function (7) has the expression

(10)

and the SINR expression (6) becomes

(11)

The MF performs single user detection, and is the simplest re-
ceiver filter that one can use for decoding user . The MF is
optimal in the presence of AWGN and maximizes the signal-to-
noise ratio, and is suboptimal in the presence of interference
caused by the other users.

The minimum mean squared error (MMSE) receiver filter is
the linear receiver that minimizes the mean squared error (MSE)
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between the transmitted symbol and its corresponding decision
variable, and is the optimal linear multiuser detector that max-
imizes also the SINR [14], [32]. The expression of the normal-
ized MMSE receiver is [14]

(12)

for which the interference function expression (7) becomes

(13)

and the corresponding SINR expression (6) is

(14)

We note that when user codewords and powers are Generalized
Welch Bound Equality (GWBE) sequences, MF are equivalent
to MMSE receivers [33]–[35].

Our goal is to derive a distributed algorithm in which users
individually adjust codewords and powers to meet a set of spec-
ified target SINRs . We note that users
with specified SINR requirements, are admissible in the uplink
of a CDMA system with signal space dimension if and only
if the sum of their effective bandwidths

(15)

is less than the dimension of the signal space [34], [35], that is

(16)

In the case of an overloaded system, with , the desired
stopping point for the algorithm is a set of GWBE user code-
words and powers with eventual oversized users1 for which the
sum of allocated powers among all valid power allocations for
the given target SINRs is minimum [34], [35]. According to [34]
and [35], with specified target SINRs for users, optimal code-
words and powers satisfy the following properties.

• The oversized users have orthogonal codewords, and the
optimal power for oversized user with target
SINR is . The number of oversized users in
the system is implied by the relation [35]

(17)

which assumes that the target SINRs are specified in de-
creasing order, that is .

• The nonoversized users will share a subspace of
dimension that is not occupied by oversized users,
and will use GWBE user codewords that satisfy

(18)

1A user is said to be oversized if the effective bandwidth implied by its target
SINR is large relative to the effective bandwidths implied by the other user’s
target SINRs [34], [35].

with user powers

(19)

where

(20)

In the case of an underloaded system, with , the de-
sired stopping point is one where user codewords are orthog-
onal, since in this case users do not interfere with each other.

The proposed algorithm is based on an adaptive interference
avoidance procedure [26], and will be derived using the nonco-
operative game theory framework presented in Section III.

III. FORMULATION AS A NONCOOPERATIVE GAME

A noncooperative game is formally defined by the set of
players, the sets of strategies (or actions) that each player may
take, and the individual player utility or cost functions [15].
The game is noncooperative in the sense that a given player is
interested only in minimization of its individual cost function,
without paying attention to how its actions affect the other
players. For the wireless system described in Section II the
players are the active users in the system, and their corre-
sponding strategies are adaptation of codeword and power with
strategy spaces formally defined by (2) and (3).

The user cost function is associated with the use of system
resources and the satisfaction experienced by users as a result of
their actions. Cost functions for wireless systems depend usually
on the transmitted power as well as on the QoS desired by a
given user in the system. In general, it is desired that user cost
functions satisfy the following properties [5]:

• The user cost function increases with increasing user
power. The reason for this is that power is a valuable
commodity for a mobile terminal, and transmitting at the
lowest required power to achieve specified QoS will ex-
tend the terminal’s battery life and contribute to increasing
its level of satisfaction. In addition, transmitting at lowest
power for the specified QoS will contribute to minimizing
the amount of interference experienced by the other users
in the system.

• The cost function decreases with decreasing interference.
The reason for this is that for fixed user power decreasing
interference will increase the user SINR, and implicitly its
satisfaction level.

In our paper we consider the user cost function of a given
user to be the product between its power and its corresponding
interference function

(21)

We note that this function satisfies the two general properties
mentioned above. We consider that MF are used at the receiver,
which are simple and widely used in practice, so that the actual
expression of the cost function becomes

(22)
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As will become apparent later on, this is not a restriction since
our goal is to reach a GWBE set of codewords and powers in
which case MF and MMSE receivers are equivalent.

The cost function in (22) is separable with respect to the two
parameters that define the user strategy, the corresponding code-
word and power, since the interference function does not depend
on the user power although it depends on the user codeword

[28]. As noted in [28], this property leads to a separable game
with two separate subgames: one for codeword adaptation, and
one for power control. We will investigate these two subgames
in the following sections, and will discuss best response strate-
gies in terms of codeword and power updates that will minimize
the user cost functions. We will also investigate the existence of
Nash equilibria for the two subgames, and will use the result in
[28] to show that the joint codeword and power adaptation game
has a Nash equilibrium provided that Nash equilibria for the two
subgames exist.

A. Noncooperative Codeword Adaptation Game (NCG)

In this game, user powers are fixed, and individual users ad-
just only their codewords in their corresponding strategy spaces
(2) in order to minimize their corresponding cost function. The
NCG is formally defined as

(23)

where the three components of the game are as follows.
1) is the set of players which are the active

users in the system.
2) is the set of strategies for player defined in (2)
3) is th user cost function that maps the

joint strategy space to the set of positive
real numbers.

Individual users select their strategies to minimize their corre-
sponding cost functions for a given set of powers, that is

(24)

In order to investigate the existence of Nash equilibrium for
NCG we state the following formal definitions from game
theory in the context of our problem.

Definition 1 (Nash Equilibrium for NCG): The codeword ma-
trix is a Nash equilibrium
of the NCG if for every user we have that

Definition 2 (Best Response for NCG): The best response
function of user to the other users’ strategies is the set

Definition 3 (Convex Game): A game is convex for a closed,
convex, and bounded joint strategy space , if the cost function
of each user is convex in for every fixed , such that

.

We note that the user cost function in (22) is a quadratic form
in the user codeword , which implies that is twice differen-
tiable, and differentiating it twice with respect to we get

(25)

Since is a symmetric positive definite matrix, we have that
the user cost function is convex, which implies also that NCG is
a convex game. We also note that the result proved in Theorem 1
in [24] for concave games can be extended in a straightforward
way to prove existence of a Nash equilibrium point for convex
games. As a consequence, we get that a Nash equilibrium point
for NCG exists.

In order to find a Nash equilibrium for NCG one could use the
approach suggested in many game theory textbooks (see for ex-
ample [15]) in which the best response function of each user
is identified, followed by selection of an appropriate strategy
in . Alternatively, in order to identify properties of the Nash
equilibrium, one can look at the minimization of individual user
cost functions. This is a constrained optimization problem for
which the differential form and the Kuhn–Tucker (KT) condi-
tions can be used to identify necessary and sufficient conditions.
Thus, the best response in terms of codeword updates can be
found by solving the constrained optimization problem of min-
imizing the user cost function subject to unit norm constraints
on the user codewords

(26)

In order to solve this problem we define user ’s Lagrangian
function

(27)

where is the Lagrange multiplier associated with the con-
straints on the norm of in (26).

The necessary conditions for minimizing the Lagrangian in
(27) are obtained by differentiating with respect to and ,
and equating the corresponding partial derivatives to zero. Dif-
ferentiating with respect to the codeword leads to the eigen-
value/eigenvector equation

(28)

with . We note that , and that for any eigen-
vector of we have that which satisfies
the necessary condition in (28). In this context, the best response
for user is the eigenvector corresponding to the minimum
eigenvalue2 of , since this choice minimizes the effec-
tive interference corrupting user ’s signal at the receiver. Thus,
at a Nash equilibrium all user codewords will be the minimum
eigenvectors of their corresponding interference-plus-noise cor-
relation matrices. We note that the best response strategy based
on minimum eigenvector replacement defines a greedy interfer-
ence avoidance procedure for replacing user codewords [18].
We also note that the second necessary condition implied by

2This is also referred to as the minimum eigenvector ofR .



LĂCĂTUŞ AND POPESCU: ADAPTIVE INTERFERENCE AVOIDANCE FOR DYNAMIC WIRELESS SYSTEMS 193

, is not relevant since our model assumes
that users are assigned only unit norm codewords.

In order to investigate whether the minimum eigenvector
strategy is also optimal with respect to the constrained mini-
mization of user cost function, we use the approach in [2,
Ch. 3], which involves expanding the Lagrangian function in
Taylor series around the point satisfying the necessary KT
conditions. In this expansion, the term containing the first
derivative disappears since the derivative is equal to zero due
to KT conditions, the higher order terms are neglected, and the
expansion is essentially left with a differential quadratic form.
For the Lagrangian expression in (27) the second order term in
the Taylor expansion is

(29)

and is positive if the point that satisfies the KT conditions is
also the constrained minimum of the Lagrangian. As already
mentioned, the best response implies that is the minimum
eigenvector of , for which the value of that achieves the
specified target SINR for user is . Thus, if a
Nash equilibrium point of the NCG satisfies

(30)

it is also an optimal equilibrium point with respect to the con-
strained minimization of the user cost function.

We conclude this section by noting that a given Nash equilib-
rium point for the NCG does not correspond to a single code-
word matrix , but rather to an entire class of matrices that can
be related by unitary transformations which preserve the spec-
trum of the cross-correlation matrix .

B. Noncooperative Power Control Game (NPG)

In this game, user codewords are fixed, and individual users
adjust only their powers in their corresponding strategy spaces
(3) in order to minimize their corresponding cost function. The
NPG is formally defined as

(31)

where the three components of the game are as follows.
1) denotes the set of players which are the

active users in the system as in the case of NCG.
2) is the set of strategies for player defined in (3).
3) is th user cost function that maps

the joint strategy space to the set of
positive real numbers.

Individual users select their strategies to minimize their corre-
sponding cost functions for a given set of user codewords, that

is

(32)

Similar to the previous section, we make some formal defi-
nitions before investigating the existence of a Nash equilibrium
for NPG.

Definition 4 (Nash Equilibrium for NPG): The set of user
powers is a Nash equi-
librium for NPG if for every user , we have that

Definition 5 (Best Response for NPG): The best response
function of user to the other users’ strategies is the set

We note that NPG can also be considered a convex game ac-
cording to Definition 3, since the user cost function is linear in

. Thus, existence of a Nash equilibrium is also guaranteed as
in the case of NCG. We use a similar line of reasoning as in the
previous section to identify properties of the Nash equilibrium,
by looking at the constrained minimization of individual user
cost functions. In this case the best response in terms of power
updates can be found by solving the convex constrained opti-
mization problem of minimizing the user cost function subject
to constraints on the user SINR

(33)

Similar to the previous section, we define user ’s Lagrangian
function

(34)

where is the Lagrange multiplier associated with the power
constraint in (33). The necessary KT conditions in this case
imply that the best response in this case is , with

. This best response strategy for NPG is also optimal in
this case since we have that for all .

C. Noncooperative Codeword Adaptation and Power Control
Game (NCPG)

This game of joint codeword adaptation and power control
consists of the two separable subgames NCG and NPG. For-
mally the NCPG is defined as

(35)

where the three components of the game are as defined in the
previous two subsections. Using the result in Theorem 1 in [28]
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we note that a Nash equilibrium solution for NCPG exists and is
defined by codeword matrix and power matrix if and only
if represents a Nash equilibrium for NCG and represents
a Nash equilibrium for NPG. Since we have shown that both
NCG and NPG have Nash equilibria, we conclude that a Nash
equilibrium for NCPG also exists. This Nash equilibrium will
be optimal with respect to constrained minimization of the user
cost function if the sufficient conditions for optimality for code-
words in (30) are satisfied.

At the optimal Nash equilibrium point of the game each user’s
strategy is a best response function to the other users’ strategies,
and all user codewords are minimum eigenvectors of their cor-
responding interference+noise correlation matrices, that is

(36)

where is the minimum eigenvalue of and is the corre-
sponding minimum eigenvector. Using the expression of in
terms of in (8) we obtain from (36) that codewords are also
eigenvectors of the the received signal correlation matrix

(37)

In addition, because is the minimum eigenvector in (36), it is
also the eigenvector of corresponding to maximum eigen-
value . This implies that at the Nash equilibrium MF and
MMSE filters are equivalent receivers that yield the same SINR

(38)

According to Section V-B in [35] this implies that the corre-
sponding user codewords and powers form a GWBE set that
satisfies (18) and (19), with eventual oversized users determined
according to (17).

IV. BEST RESPONSE VERSUS INCREMENTAL STRATEGIES

In order to find a Nash equilibrium for NCPG one must play
the two subgames, NCG and NPG, by using their corresponding
best response strategies. However, we note that these best re-
sponse strategies may lead to new user codewords that are dis-
tant in signal space from the current user codewords, and/or
abrupt power changes to meet the target SINRs. This behavior
is not desirable in the practical operation of a system since it
may lead to increased probability of error at the receiver or even
connection loss between the transmitter and the receiver which
is not able to adapt to these sudden changes. From a practical
perspective, a more desirable approach is to change the user
codewords and powers in small increments, with corresponding
incremental changes of the receiver filter that follow the trans-
mitter codeword changes. This will allow the receiver to con-
tinue detecting transmitted symbols with high accuracy.

In this section, we discuss the use of incremental codeword
and power updates. At a given instance of the NCPG, code-
word adaptation for user is defined by the incremental update

(39)

where is the minimum eigenvector of corresponding ma-
trix , and is the best response for NCG, ,
and is a parameter that limits how far in terms of Euclidian
distance the updated codeword can be from the old codeword.
This is an incremental interference avoidance codeword update
in the direction of the best response of the NCG, which implies
a decrease in the interference function since [26]

(40)

User power will be adjusted also in small increments using a
gradient-based approach

(41)

with , which is also an incremental power update in
the direction of the best response of the NPG defined by

.
We note that the proposed incremental codeword and power

update (39) and (41) are descent-based optimization methods
[3] that move the system incrementally in the direction of the
minimum cost. We also note that interference avoidance algo-
rithms based on incremental updates do not get trapped in sub-
optimal points as it may happen in the case of regular interfer-
ence avoidance [22], since incremental adaptation has effects
similar to the “noisy MMSE iteration” proposed in [1] to es-
cape suboptimal points.

V. THE ADAPTIVE INTERFERENCE AVOIDANCE ALGORITHM

The proposed algorithm for adaptive interference avoidance
consists of two main steps, which correspond to the two sub-
games NCG and NPG that make up NCPG, and which are per-
formed sequentially by users in the system. Instead of using the
best response functions discussed in Section III the algorithm
employs the incremental updates mentioned in Section IV. The
algorithm reacts to changes in the system configuration which
may occur as a result of various events like for example ad-
mitting new active users into the system, dropping idle/inac-
tive users, or changing the target SINRs of active users. We as-
sume that there is no latency associated with a change in the
number of active users, and that the algorithm adds/eliminates
users to/from the system as soon as changes occur by imme-
diately updating the codeword and power matrices ( and )
according to the changes. A formal statement of the algorithm
is given below:

Adaptive Interference Avoidance Algorithm

Initial Data:
• Codewords, powers, and desired (target) SINRs for active

users (matrices and , and values ).
• Noise covariance matrix
• Constants , and tolerance .

Triggering Event:
• The SINR of active users with specified codewords and

power does not match the target SINRs.
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• New active users are admitted: their codewords, powers,
and target SINRs are added to those of the active users in
the system by augmenting the corresponding matrices and
increasing accordingly.

• Idle/inactive users are dropped: their codewords, powers,
and target SINRs are removed from the corresponding
matrices, and is decreased accordingly.

Admissibility check:
• IF admissibility condition in (16) is satisfied GO TO

Adaptation Stage, ELSE STOP: the system changed to
an unfeasible configuration.

Adaptation Stage:
1) IF change in cost function is bigger than for any user GO

TO Step 3, ELSE a Nash equilibrium has been reached.
2) IF optimality condition in (30) is true STOP: an optimal

configuration has been reached, ELSE GO TO Step 3.
3) FOR each user DO

a) Compute current using (8) and determine the
minimum eigenvector .

b) Replace the current codeword using codeword
update (39).

c) Update user ’s power using (41).
4) GO TO Step 1.

We note that Steps 3b and 3c of the algorithm perform incre-
mental codeword and power adaptation in the direction of the
best response strategy. We also note that the sum of user cost
functions defined as in [24] is decreasing at each iteration, and
together with the check of the optimality condition in (30) per-
formed at Step 2 this ensures that the algorithm will converge to
the optimal Nash equilibrium point that corresponds to a GWBE
set of user codewords and powers with eventual oversized users
as mentioned in Section II.

It is also important to note that codeword and power updates
of individual users do not require explicit knowledge of the other
users’ codewords and powers. The only piece of information re-
quired by a given user is its corresponding interference+noise
correlation matrix which can be derived from the correlation
matrix of the received signal by subtracting the contribution
of given user as implied by (8). Thus, provided that is made
available to individual users through a feedback channel [12],
[25], the algorithm can be implemented in a distributed manner
and run independently by active users to adapt to changes in
the system configuration as reflected by changes of their SINRs
and corresponding cost functions. The distributed implementa-
tion of the algorithm which requires knowledge of matrix
only, implies also that the computational cost of the algorithm
for each user will be the same and independent of the number of
active users, since the dimension of the eigenvalue/eigenvector
problem for matrix is .

VI. SIMULATIONS, NUMERICAL EXAMPLES, AND DISCUSSIONS

In order to corroborate our theoretical findings and illustrate
the proposed algorithm we performed extensive simulations for
various scenarios, which we discuss in detail in this section. More
specifically, in Section VI-A we look at the variation of user
powers, SINRs, and cost functions after a triggering event oc-

curs, and illustrate it with plots obtained using particular exam-
ples. In Section VI-B we investigate the convergence speed of
the algorithm using Monte Carlo simulations for a specific sce-
nario with given number of users and signal dimension . We
also look at convergence speed for increasing and such that
the ratio remains constant. In Section VI-C we discuss how
quantization affects theaccuracy of the optimal Nash equilibrium
solution of the algorithm, and illustrate quantization effects on a
particular example. We conclude with Section VI-D in which we
discuss extensions of the algorithm to multiple cell scenarios.

A. Variation of User Powers, SINRs, and Cost Functions After
a Triggering Event Occurs

In this section we consider a CDMA system with
users in a signal space of dimension and AWGN with

. The algorithm constants are , and
tolerance .

1) SINR of Active Users With Initial Codewords and Powers
Does Not Match Target SINRs: The user codeword matrix was
initialized randomly and user powers were set up to 0.1. We set
different target SINRs for users

such that they satisfy the admissibility condition in (16), and
there are no oversized users.

The algorithm yields the codeword matrix

and power matrix

These values are within tolerance from the corre-
sponding values implied by (18), and which imply user SINR
values within tolerance from the specified target
SINRs. The weighted correlation matrix is ,
and is within similar tolerance from the corresponding matrix
implied by (18).

Next, we present a similar example in which one of the users
is oversized. We start with the same initial codeword matrix and
powers, and specify the target SINRs as

which satisfy also the admissibility condition in (16). However,
in this case user 1 is oversized according to (17). In addition,
for this experiment we choose in order to compare our
results with those in [35]. The algorithm yields the codeword
matrix

and power matrix
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Fig. 1. Variation of user power, SINR, and cost function for the target SINR tracking example. (a) Power variation. (b) SINR variation. (c) Cost function variation.

which imply user SINRs within the same from speci-
fied target SINRs. The weighted correlation matrix is

In this case we also look at the matrix of user cross-correlations

This shows that oversized user 1 is orthogonal to the other
nonoversized users. We note that user 1 had no a priori knowl-
edge of its oversized status in the system, and performed the
same updates as the other users which resulted in the right
codewords and powers for this system. We also note that
although our weighted correlated matrix is not identical to that
in the similar example in [35] which is , they
are related by a linear transformation. This can be determined
by “aligning” the signal space directions to the oversized user
1. The new user codeword matrix after alignment is

and implies weighted correlation matrix identical to that in [35]

2) Tracking Variable SINRs With Fixed Number of Active
Users: In this section, we illustrate the tracking ability of
the proposed algorithm, for fixed number of active users and
variable target SINRs. This feature is useful in systems where
variable QoS requirements may lead to variable target SINRs.
We assume that the system starts with the same initial code-
words, powers, and target SINRs as in our first example, and

that a steady state configuration (user codeword and powers)
is reached. We then change the target SINR for the last user to
new value , let the algorithm reach a new steady state
configuration, and then change user 5 SINR back to its old value

. The first steady state will have the same codeword
and power matrices as in first example of the previous section.
After the second stage of the experiment the codeword matrix
changes to

and the power matrix becomes

implying actual SINR values equal to (new) specified targets,
and weighted correlation matrix . After the
third stage of the experiment, when the system returns to the
original set of target SINRs we obtain essentially the same user
codeword and power matrices as in the end of stage 1 of the ex-
periment. Fig. 1 shows that user powers, SINRs, and cost func-
tions vary smoothly during this experiment.

During this experiment, we compared also the efficiency of
the MF receiver with that of the MMSE receiver, for which re-
sults are presented in Table I. We note that after the first stage of
the experiment, when an optimal GWBE set of user codewords
and powers is reached, the two receivers are equivalent and
imply the same SINR. However, as the SINR of user 5 changes
at iteration 62, the MF becomes sub-optimal until the second
stage of the experiment is completed at iteration 120, when the
new optimal GWBE configuration is reached. The same situa-
tion is true for the third stage of the experiment, when the system
transitions back to the original set of target SINRs, between 214
and 300. Nevertheless, as shown by the SINR values in Table I,
we note that the MF and MMSE receivers imply essentially the
same SINR values during the transition periods. As a conse-
quence, we note that the use of MF receiver during system tran-
sitions from one optimal configuration to another one implies
performance very close to the optimal MMSE performance, and



LĂCĂTUŞ AND POPESCU: ADAPTIVE INTERFERENCE AVOIDANCE FOR DYNAMIC WIRELESS SYSTEMS 197

TABLE I
MF EFFICIENCY DURING ALGORITHM ITERATIONS

will not disrupt symbol detection at the receiver and/or cause
outages due to increased probability of symbol error.

3) Tracking Variable Number of Active Users: In this section,
we illustrate the ability of the proposed algorithm to track vari-
able number of active users in the system. We start with
active users with different target SINRs

that satisfy the admissibility condition in (16). The user code-
word matrix is initialized randomly, and the user power matrix
is taken , which imply initial SINRs below the spec-
ified targets. This triggers the adaptation stage of the algorithm
which yields codeword matrix (see the equation at the bottom
of the page)

and power matrix for which the weighted codeword correlation
matrix is , and corresponds to a GWBE
set [35]. At this point the last user becomes inactive, and is
dropped from the system. Thus, the new number of active users
becomes , with codeword matrix containing only the
first five columns of derived previously and diagonal power
matrix containing only the first five diagonal elements in

derived previously. We assume that the remaining active users
keep the same target SINRs as before

which satisfy the admissibility condition in (16) and implies that
the new configuration is feasible. This change in system con-
figuration triggers the adaptation stage of the algorithm which
yields new optimal codeword and power matrices

that imply the specified target SINRs, with the new weighted
codeword correlation matrix corre-
sponding to a GWBE configuration for the new number of
users. We now add a new active user in the system, such that
the new number of active users becomes again. The new
user codeword is chosen randomly and appended as the sixth
column to matrix to form a 4 6 codeword matrix. The new
user power is added to the previous user powers to
form a 6 6 diagonal matrix, and user 6 target SINR
is added to the previous set of user target SINRs. We note that
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Fig. 2. Variation of user power, SINR, and cost function for variable number of active users. (a) Power variation. (b) SINR variation. (c) Cost function variation.

new sum of effective bandwidths is equal to which
implies that the new system configuration is also feasible.
This new change in system configuration triggers again the
adaptation stage of the algorithm which yields new optimal
codeword and power matrices (see the equation at the bottom
of the next page) which imply the specified target SINRs for
users, and for which the new weighted codeword correlation
matrix corresponds to a new GWBE set.
Fig. 2 shows the smooth variations of user powers, SINRs, and
cost functions during the tracking of variable number of users.
We note that the system remains in a optimal configuration
until iteration 38 when user 6 is dropped from the system. This
implies an increase of user SINRs above their corresponding
targets due to decreasing multiuser interference.

We have also looked at the particular situation when the
number of active users in the system becomes smaller than the
dimension of the signal space. In this case, as was expected,
an orthogonal set of codewords was yielded by the algorithm
as shown in the following example. We started with the system
having users in dimensions, target SINRs

, and codeword and power matrices

We drop user 1 from the system, so that the new number of ac-
tive users becomes , and we assume that these continue
to keep the original target SINRs . This change
in system configuration triggers the adaptation stage of the al-
gorithm which in this case yields the codeword matrix

which satisfies , and implies that in the re-
sulting configuration the active users are orthogonal. This is the
optimal configuration when the number of users in the system
is less or equal to the dimensionality of the signal space, and in
this case the user powers in matrix

are proportional to the corresponding SINRs achieved
which are within tolerance from

the specified target SINRs.

B. Convergence Speed

In order to investigate the convergence of the proposed
algorithm for adaptive interference avoidance in dynamic
systems we consider a scenario in which we have initially

active users in signal dimensions, with target
SINRs . For this system we
ran 10 000 simulations of the proposed algorithm initialized
with randomly generated user codewords and powers, and plot
the number of ensemble iterations to reach the optimal Nash
equilibrium configuration of user codeword and powers in
Fig. 3(a). When the optimal configuration has been reached
in each of these 10 000 simulations, we drop the last user
from the system and plot the number of ensemble iterations
to reach a new optimal configuration with ,
and same target SINRs for the
remaining active users. The number of ensemble iterations
needed to reach a new optimal configuration with and

from and is plotted in Fig. 3(b). Once
the new optimal configuration with and is
reached we add a new active user in the system with target
SINR equal to 1.1, and with randomly generated codeword
and power, and plot the number of ensemble iterations to a
new optimal configuration with , and target
SINRs in Fig. 3(c). From
the plots in Fig. 3 we note that in all the considered cases the
convergence speed of the algorithm to an optimal configuration
of codewords and powers for a given set of target SINRs is well
approximated by a Gaussian distribution, with a mean of about
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Fig. 3. Monte Carlo simulations to investigate convergence of the proposed algorithm. (a) Random codewords and powers. (b) Removing one active user. (c)
Adding a new user.

TABLE II
THE CONVERGENCE SPEED OF THE DYNAMIC ALGORITHM FOR DIFFERENT CONFIGURATIONS

55 iterations when initial codewords and powers are random,
23 iterations when one user is dropped from the system, and
approximately 32 iterations when a new user is added to the
system.

We have also observed from simulations that the number of
ensemble iterations to an optimal configuration depends on the
desired target SINR values, and the higher these are, the slower
the convergence of the algorithm will be. However, the noise
level does not seem to be a critical issue, and this is usually the
case in CDMA systems which are interference limited rather
than noise limited. In noisy environments when noise level is
high and the signal-to-noise ratio (SNR) is low, all users can
increase their powers by the same relative amount to boost their
SNR without changing the relative interference experienced by
users in the system (which is usually measured in terms of the
signal-to-interference ratio—SIR). This will only affect the life
of users’ batteries which will be exhausted faster. Otherwise,
if users start with a low initial SNR, then with the same fixed
algorithm step , the algorithm needs more iterations to reach
the same target SINRs.

We conclude this section with an empirical analysis of the
convergence speed of the proposed algorithm for increasing
numbers of active users in the system and signal space dimen-
sions. In Table II, we present the number of iterations needed
to reach convergence within tolerance , for algorithm
parameters and , for different numbers of users

and such that the ratio remains constant and equal
to . We note that while there are minor variations
in the number of iterations needed for convergence when user

codewords are randomly chosen, this is essentially the same
when the system transitions from one GWBE configuration to
a different one.

C. Quantization Effects

The proposed algorithm for adaptive interference avoidance
is designed for jointly convex codeword and power strategy
spaces and , and yields real-valued codewords and powers
that can take any value in and . However, practical im-
plementation of the algorithm in hardware employing digital
signal processors usually uses a finite number of values corre-
sponding to scalar quantization of user codewords and powers.
Nevertheless, provided that the quantization interval used to
quantize each dimension of the user codewords as well as user
powers is sufficiently small to ensure a convex perception of the
quantized joint codeword and power strategy spaces— and

—by the algorithm, this will converge to a point which is
the quantized version of the optimal Nash equilibrium. This is
similar to the case of adaptive equalizers, where the equalizer
coefficients are obtained as the result of convex optimization
problems, but where the optimization signal space is quantized
with a sufficiently small quantization step.

To illustrate the effects of scalar quantization on the pro-
posed algorithm we consider that in Steps 3b and 3c of the algo-
rithm user codeword and power are updated with uniform quan-
tized versions of corresponding (39) and (41). We take the same
system as in Section VI-A1 with active users in a signal
space of dimension and AWGN with , with
target SINRs , and algorithm constants
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, and . With a uniform quantization
interval the algorithm yields the following user code-
word matrix

We note that although elements of are quite different than
corresponding elements in corresponding to optimal Nash
equilibrium point obtained in Section VI-A1, user powers are
actually quantized versions of the optimal power values ob-
tained in Section VI-A1, and imply the corresponding weighted
correlation matrix

whose elements are within tolerance from the corre-
sponding values obtained in Section VI-A1 .
We also note that decreasing the quantization interval will
imply a smaller difference between the codewords and powers
yielded by the algorithm and the codewords and powers cor-
responding to the optimal Nash equilibrium. However, coarser
quantization implied by larger values of leads the algorithm
to stop further away from the optimal Nash equilibrium, and
yield codewords and powers for which the corresponding target
SINRs are no longer close to the desired target SINR values.
For the particular system considered in our example we have
observed that this situation occurs for a quantization interval

of approximately 0.032. This value implies 63
intervals for uniform scalar quantization of codeword elements
in the set , and requires 6 bits for encoding. The fact that
performance of the proposed adaptive algorithm for interference
avoidance deteriorates in this case comes in agreement with
the empirical studies on codeword quantization for interference
avoidance in [17], which show that performance of interference
avoidance algorithms degrades when uniform quantizers with
6 bits or less are used for codeword quantization.

D. Extension to Multicell Scenarios

In a multicell scenario we have a set of users and bases that
are distributed over a given geographical area, such that subsets
of users communicate directly with a given base, while creating
interference to the other bases for which their transmission is not
intended. One possible approach to the multicell scenario is to
assume collaboration among bases [20], [21], [28]. In this case
the system can be regarded as a single base system with multiple
inputs as multiple outputs (MIMO) [20], [21] which enables ap-
plication of algorithms joint codeword design and power opti-
mization established for single base systems. However, in this
case gains from users to bases must be explicitly considered,
and as discussed in [28], there may exist particular link gains

which lead to instability of the system in this approach. Insta-
bility is not desirable in real systems, and makes implementation
of algorithms for joint codeword design and power optimization
impractical. In addition, the collaborative approach requires a
high-speed backbone network and/or high data rate feedback
and control channels which can lead to delays and implementa-
tion issues in large geographical areas.

An alternative approach is to consider that there is no collab-
oration among bases in the multicell scenario. This approach
is practical in unlicensed systems where competing service
providers with possibly different air interfaces may operate in
different cells, making collaboration either impractical (due
to competition), or impossible (due to incompatibility of air
interfaces), or both. In this case, a given base may regard the
intercell interference coming from other cells in the system
as a colored Gaussian noise process, and consider that the
covariance matrix of the intercell interference-plus-noise seen
by the cell’s base station receiver is a general symmetric and
positive definite matrix , as opposed to the scaled identity
matrix that corresponds to the additive white Gaussian noise
used in the single-cell case. We note that for any symmetric
and positive definite matrix , the convexity of user cost
function, , in both and is preserved, which implies that
for convex and bounded joint codeword and power strategy
spaces, and , the NCG and NPG will be convex games for
which a Nash equilibrium exists. Furthermore, according to the
discussion in Section III-C. the NCPG will also have a Nash
equilibrium for which the optimal codewords and powers are
according to [34].

We illustrate this approach for the system with users in
a signal space of dimension , and with covariance matrix
of the intercell interference plus noise seen by the cell base sta-
tion receiver . As-
suming the same initial target SINR as in Section VI-A,

, the algorithm yields the codeword matrix

and power matrix

for which the weighted correlation matrix
is within tolerance from the corresponding

GWBE values implied by [34].

VII. CONCLUSION

In this paper we proposed an adaptive algorithm for interfer-
ence avoidance for dynamic wireless systems which can be ap-
plied in a distributed manner by active users in the systems to
derive optimal codewords and powers for given target SINRs.
The algorithm is derived using a game-theoretic approach in
which separable cost functions with respect to codeword and
power are defined, such that joint codeword and power adapta-
tion is formulated as a separable game, with two corresponding
subgames: the noncooperative codeword adaptation game NCG,
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and the noncooperative power control game NPG. The best re-
sponse strategies of users are then obtained by constrained min-
imization of the user cost function subject to constraints on user
SINR and codeword norm. However, the codeword and power
updates used in the algorithm are based on incremental updates
in the direction of the best strategy. Such incremental adapta-
tion procedure is desirable in practical implementations since
it allows the receiver to follow codeword changes at the trans-
mitter with corresponding incremental changes of the receiver
filter that allow continued detection of transmitted symbols with
high accuracy.

If the specified target SINRs are admissible then the algo-
rithm always yields GWBE user codewords and powers [34],
[35] with eventual oversized users that have codewords which
are orthogonal to the other users’ codewords. The algorithm can
also track variable target SINRs or variable number of active
users in the system, and is therefore useful for dynamic wire-
less systems with varying QoS requirements.

The proposed algorithm is illustrated with numerical exam-
ples obtained from simulations which illustrate convergence and
tracking properties of the algorithm for different scenarios.
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