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Adaptive  Interpolation of Discrete-Time  Signals  That 
Can  Be  Modeled  as  Autoregressive  Processes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I A.  J.  E.  M.  JANSSEN,  RAYMOND N. J. VELDHUIS,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND LODEWIJK  B.  VRIES 

Abstract-This  paper  presents  an  adaptive  algorithm  for  the  resto- 

ration of lost  sample  values  in  discrete-time  signals  that  can  locally be 

are  that  the  positions of the  unknown  samples  should be known  and 

that  they  should  be  embedded  in  a sufficiently large  neighborhood of 

known  samples.  The  estimates of the  unknown  samples  are  obtained 

by minimizing  the  sum of squares of the  residual  errors  that  involve 

estimates of the  autoregressive  parameters. A statistical  analysis  shows 
that,  for  a  burst of lost  samples,  the  expected  quadratic  interpolation 
error  per  sample  converges  to  the  signal  variance  when  the  burst  length 

tends  to  infinity.  The  method is in  fact  the  first  step of an  iterative 

algorithm,  in  which  in  each  iteration  step  the  current  estimates of the 

missing  samples  are  used  to  compute  the new estimates.  Furthermore, 

the  feasibility of implementation  in  hardware  for  real-time use is es- 

tablished.  The  method  has  been  tested  on  artificially  generated  auto- 
regressive  processes  as well as on digitized  music  and  speech  signals. 

described by means of autoregressive  processes.  The  only  restrictions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 

T 
I .  INTRODUCTION 

HIS  paper  treats  the  problem  of  restoring  (or  inter- 
polating)  unknown or lost  sample  values in a  discrete- 

time  signal. An algorithm  is  presented  that  is  capable of 
restoring  satisfactorily  unknown  samples  with  known  po- 
sitions  occurring  in  bursts  and  more  general  patterns.  Ex- 
amples  of  both  cases are shown  in Fig. 1. To restore  the 
unknown  samples,  the  algorithm  uses  the  information 
contained in the  known  neighboring  samples. 

Until  rather  recently,  the  problem of estimating  un- 
known  sample  values  in  discrete-time  signals  in  real  time 
could  only be solved by relatively  simple,  nonadaptive 
methods,  such  as  Lagrange-type  curve  fitting.  These 
methods are not  well  suited for  signals  primarily  contain- 
ing  harmonic  components,  especially  not  when  the  num- 
ber of samples  in the periods of the  harmonic  components 
is  less  than the number  of  unknown  samples.  For  in- 
stance,  linear  interpolation  gives  already  audible  inter- 
polation  errors  for  bursts  in  digital  audio  signals of length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  Because of the progress  made  in  the field of chip  de- 
sign,  one can now contemplate  more  complicated  real- 
time  restoration  methods  that may also  involve  some  sig- 
nal model. An example of such  a  method,  where no model 
is  assumed,  can  be  found  in [l]. This  (adaptive)  method 
deals  with  restoring  discrete-time  signals of which every' 
nth sample.is unknown.  Examples  of  methods  that  inter- 
polate  under  certain  model  assumptions  have  been  given 
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Fig.  1.  (a) Sequence  containing a burst of unknown  samples.  (b) Sequence 
containing a  random  pattern of unknown  samples. , 

in [2, Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111 and in [3]. Reference [2], in  which  the 
assumed  model  is  an  autoregressive  process,  deals  with 
the  restoration of a  single  unknown  sample by minimizing 
the expected  quadratic  interpolation  error.  The  assumed 
model  in [3] is  band-limitedness of the  signals  to  a  base- 
band  which  is  a  fraction of the  sample  frequency. In this 
nonadaptive  method,  analyzed  in [3] for burst  errors,  the 
restoration  is done in  such  a way that  the  restored  signal 
has  minimal  energy  outside  the  prescribed  baseband.  Un- 
fortunately,  the  latter  method  is  very  sensitive  to  the  pres- 
ence of noise  and  of  out-of-band  components in the  sig- 

0096-3518/86/0400-0317$01 .OO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1986  IEEE . 
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nal,  even when  the  number of lost  samples is small and 
the spectral  energy of the signal is well within  the  base- 
band. 

In this  paper, the same point of view as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[Z, Section 
111 is  taken for the  restoration of more  general  patterns of 
unknown  samples  than  single  ones or bursts. That  is,  it is 
assumed that the  signals to  be interpolated  can be modeled 
as autoregressive  (AR)  processes of finite order.  The res- 
toration is done in such a way that  the restored signal fits 
the assumed  model as well as possible. 

The method is  adaptive in the sense  that,  from a finite 
segment of data,  one first has to estimate the AR param- 
eters.  Once  these  are  known,  the  unknown  samples can 
be  obtained as the  solutions of a system of linear  equa- 
tions. In fact, the AR parameters as well as  the unknown 
samples could be  obtained in one step by minimizing some 
function  involving  both AR parameters  and  unknown 
samples.  However, this function  contains  fourth-order 
terms  and  minimizing  it  is a nontrivial problem.  Here a 
suboptimal  approach is  adopted, where first the parame- 
ters  are  estimated  from the incomplete  data  and  next  the 
unknown samples. This can  be considered to be  the first 
step of a rapidly converging  iterative  minimization  pro- 
cedure.  This  procedure will be discussed in an appendix. 

The  choice of the  autoregressive  process as a model for 
the  signal can  be motivated by the  fact  that many  signals 
that are  encountered  in  practice can be modeled in this 
way. Therefore, it  is  expected  that  the  interpolation 
method presented here can be applied  successfully in 
many practical  situations.  For  instance,  as will be  dem- 
onstrated further  on,  good  results  are obtained for  the  in- 
terpolation of digitized  music  and  speech  signals. 

The organization of this  paper  is as  follows. In Section 
11, the interpolation  method  is  presented  and a statistical 
analysis is  given.  The interpolation  error  is  analyzed un- 
der  the assumption  that  the AR parameters are known; 
this  analysis is detailed for the case that Gaussian  proba- 
bility density  functions are  assumed. In Section 111, effi- 
cient  methods for  the approximate  calculation of AR pa- 
rameters  and  unknown  samples are  given. Also, the 
numerical  properties of certain  parts of the algorithm are 
discussed. In Section IV, some results are presented.  Here 
a comparison of performance to  other methods is given. 
Section V presents  some  conclusions. Finally,  the paper 
contains a number of appendixes to which proofs not rel- 
evant to the main text  and  much of the mathematics are 
deferred. 

11. PRESENTATION AND ANALYSIS OF THE 

INTERPOLATION  METHOD 

In  this  section, it is assumed  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsk,  k = - 03, . . . , 
03, is a realization of a stationary  autoregressive  process 

is a stochastic  variable). This means  that there  exist a fi- 
nite  positive  integer p ,  the prediction order, numbers ao, 
a l ,  * , up, .ao = 1 ,  the  prediction coefficients, and a 
zero-mean  white  noise  process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE k ,  k = - 03, . . . , 03, the 
excitation noise, with variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf, such that 

$k, k = -03, * * * , 03 (the  tilda - indicates  that a variable 

UOSk + U l 5 - l  + - + U,.Tk-_, = Z k ,  

k =  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 O3. (11.1) 

For notational convenience, it shall be  agreed that ak = 0 
for k < 0 or k > p .  The AR spectrum S ( 0 )  of fk, k = 
-03, . . * , 03, is given by 

where 

(11.3) 

In Section 11-A, the  algorithm for estimating  the AR 
parameters  and the unknown  samples  from a finite se- 
quence of samples  is  presented. A statistical analysis of 
the interpolation error is given in 11-B. 

A.  Presentation of the  Interpolation  Method 

The available data consist of a segment sk, k = 0, * - * , 
N - 1, of a realization of an AR process &, k = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 3 ,  

ples occur  at  the known  time  instants t (  l ) ,  - * * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 t (m) ,  
where0 < p I t ( 1 )  < < t ( m )  5 N - p  - 1 .  The 
problem  is to  estimate the  values of the  unknown  samples - , up and 

a, from the available  data in such a way that the restored 
segment fits the assumed  model as well as possible in a 
quadratic sense.  That  is, the  restoration is such that the 
sum of the squares of the residual error ep, * - * , eN- I is 
minimal. 

Although  methods to  estimate  the  order of an autore- 
gressive  process  have  been reported [4], it has been de- 
cided, if p is  unknown,  to  choose p as a function of the 
number m of unknown samples.  The rather  arbitrary re- 
lation p = 3m + 2 has proved to  give good interpolation 
results.  For notational convenience, the  vector notation a 

Tdenotes vector or matrix  transposition)  shall be adopted. 
The estimation of a and x is expressed as a minimization 
problem, where the estimates d for a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP for x are cho- 
sen  such  that 

. . .  , 03. It  is  assumed  throughout that the  unknown  sam- 

y ) ?  * * * , and the AR parameters p ,  a l  , 

= [at, - . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT , apl 3 x = [S,(I), * - * , st(,,JT (the  superscript 

N - 1  I P 

is minimal as a function of a and x. Once d and R have 
been determined, a: is  estimated by 

(11.5) 

The particular choice  for minimizing Q(a ,  x )  to obtain 
estimates for a and x is  motivated by the  following  two 
facts.  First, if s = [so, - , sN-I] and u = [so, - , 
sp - I ]T  then,  under  the  hypothesis that the  sample  values 
have a Gaussian  probability  density  function, minimizing 

T 

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 03,2010 at 09:25:49 EST from IEEE Xplore.  Restrictions apply. 



JANSSEN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/ . :  ADAPTIVE INTERPOLATION OF DISCRETE-TIME  SIGNALS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA319 

Q(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) with  respect  to a turns  out  to  be  the  same  as  max- 
imizing  the  log  likelihood  function 

L(a,  0 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1% (Ps\r(SIU, a, 03) (11.6) 

as  a  function of a and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0:. This  is  a  common  procedure to 
estimate a and 0:. Second,  also  under  the  hypothesis  that 
the  sample  values  have  a  Gaussian  probability  density 
function,  minimizing Q(a, x) with  respect  to x is  the  same 
as  finding  a  minimum  variance  estimate for x, for  known 
p and a.  Both claims  shall  be  proved  in  Appendix  A. 

Since Q(a,  x) involves  fourth-order  terms,  such  as 
a?&), the minimization  with  respect  to a and x is a  non- 
tnvlal  problem.  Fortunately,  one  can  often  assume  that 
the  number m of unknown  samples is small  compared  to 
the  segment  length N. A suboptimal  approach can then  be 
found as  follows.  One  chooses  an  initial  estimate f('), for 
instance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.') = 0, for  the  vector x of the  unknown  sam- 
ples.  Next,  one  minimizes Q(a, 2")) as  a function of a to 
obtain  an  estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Finally,  one  minimizes Q(ci, x) as 
a  function of x to  obtain  an  estimate f for  the  unknown 
samples. 

Both minimizations  are  feasible,  since Q(a, x) is  a 
quadratic  form  in  both a E R p  and x E R". In fact, it  can 
be  shown  that 

Q(a, x) = aTC(x) a + 2aTc(x) + cao(x). (11.7) 

Here 

C(x) = ( c g ( x ) ) i , j =  I; ' , p ?  

c(x> = [COI(X), * - 3 cop(x>lT, (11.8) 

where 

N -  I 

cg(x) = s k - j s k - j ,  i , j  = 0, 1, ' * 9 P. (11.9) 
k = p  

Hence, C(x) is the p X p-autocovariance  matrix,  esti- 
mated  from s k ,  k = 0, - - , N - 1. At the  same  time, it 
can  be  shown  that 

Q(a, x) = xTB(a)x + 2xTz(a) + D(a).  (11.10) 

Here 

B(a) = (bt(i) - btu))i,j= I; . . ,rn, 

z ( 4  = [ Z l ( 4 ,  * * * 9 Z " ( 4 I T I  (11.11) 

bl, 1 -p, * . , p ,  has  been  defined  in (11.3), and 

P 

zi(a) = b k s l ( i ) - k ,  i = 1, * * , m, (11.12) 
k =  - p  

and D(a) E RI depends  on a and  the  known  samples  only. 
Hence, ci and 4 are  given by 

C(f ( 0 ) p  = - c (2 ( O ) ) ,  (11.13) 

and 

B(ci)f = -~(ci), (11.14) 

respectively. The  above method for calculating  prediction 
coefficients  from  a  sequence of samples  is  known  as  the 

autocovariance  method [ 5 ] .  On substitution  of (11.13) into 
(11.5), it  easily  follows  that 

1 
N - p - m  

6; = (cm(f) + ciTc(f)). (11.15) 

It  should  be  noted at this  point  that  the  interpolation 
method just described  can  be  considered  as the first  step 
of an  iterative  algorithm in which,  in  every  step,  new  pre- 
diction  coefficients ci are  estimated  as in (11; 13) by using, 
instead of f"), the  previously  estimated  vector of sample 
values f obtained  in (11.14). The prediction  coefficients 
can  be  used  again to  obtain  new  estimates  for  the  un- 
known  samples  and so on.  It is clear  that in this  way Q(a, 
x) decreases  to  some  nonnegative  number.  One may hope 
that  the  sequence  thus  obtained  converges to  a point  where 
Q(a,  x) attains  its  global  minimum.  Unfortunately, it 
seems  very  hard  to  prove  any  definite  result in this  direc- 
tion.  However,  it  can  be  shown  that  this  iterative  min- 
imization  procedure  closely  resembles  a  maximum  like- 
lihood  parameter  estimation  algorithm,  well  known  in 
statistics:  the EM algorithm  [6]-[8]. The  iterative version 
of  the  interpolation  algorithm  and  its  resemblance  to  the 
EM algorithm are  discussed in  Appendix B. 

The  interpolating  vector f of  (11.14) can  also  be  ob- 
tained as  the  solution  to  a  minimization  problem  in  the 
frequency  domain.  Denote by s ( 0 )  the AR spectrum  ob- 
tained by substituting 6: of (11.15) and ci of (11.13) into 
the  expression  for S(0) in (11.2). In Appendix A, it is 
proved  that 4 of (11.14) minimizes, as  a function  of x E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W", the integral 

(11.16) 

Here 

1 
N - p - l  2 

s(e; x) = ___ - 2p 1 kzp sk exp (-Jek)l 7 

--7F I e 5 n. (11.17) 

Intuitively, by minimizing (I?. 16) with  respect to  the  val- 
ues  of  the  unknown  samples, one  forces the restored  sig- 
nal to  have  little  (much)  spectral  energy in those  regions 
in  the  frequency  domain  where  the  estimated  spectral  en- 
ergy is small  (large).  This  brings  out  a  relation  with  the 
interpolation  method of [3],  where  the  restoration  is  such 
that  the  spectral  energy  of  the  restored  signal  is  concen- 
trated as much as possible  in  the  assumed  baseband  of the 
original  signal.  It  should be noted  that  the  integral in 
(11.16) can be related  with  the work of Itakura  and  Saito 
[9] on  distortion  measures for spectral  densities. 

B. Statistical Analysis of the Interpolation Error 
In  this  subsection,  some  statistical  properties of the  in- 

terpolation  error  are  discussed.  It is assumed  that p ,  a, 
and 0: are  known.  Since,  in  practice,  these  parameters  are 
estimated  from  the  data,  this  assumption may be  a  sim- 
plification  from  reality.  However,  it  has  the  advantage  that 
the  results  take  a  pleasant form. 
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The interpolation error  is defined as the stochastic  vec- 
tor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, 

d = d - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx" = d + (B(u))- '&(a). (11.18) 

Note  that  the  realization z(aj of (11.14) is replaced by a 
stochastic vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz"(a). It  follows  easily  from (11.18), and 
from the  fact  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [ f k ]  = 0 ,  that E [ d ]  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 and  that  the 
estimator d is unbiased.  The (stochastic)  relative  quad- 
ratic  interpolation  error per  sample & is defined by 

(11.19) 

To  evaluate the  expectation E [e] of &, it  is noted that 

d = (B(a))-' (z"(a) + B(a)@ =: (B(aj)-' I?, (11.20) 

and  that fo r i  = 1, * * 7 m, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P P 

bvj  = c bk$r(i)-k = c a[&r,(;)+[ (11.21) 
k =  -p l = O  

as follows  straightforwardly  from the definitions in  (11.3), 
(11.11 j ,  and (11.12). Thus, 

E[ddT] = (B(u))-I E[GI?'] ( B ( u ) ) - l .  (11.22) 

Since (E[GG']ju = E [ ~ ; b v j ]  = u&i)-r( i) ,  one  has  that 
E [ G G T ]  = ofB(a) and that 

E [dd'] = uf(B (a) )  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .  (11.23) 

Finally, E[&?] is given by 

For the  expected  relative  quadratic  interpolation error of 
the ith unknown sample,  one  has 

E [ h 3  = u:((B(a))-1)i;7 i = 1, - * , m. (11.25) 

The  case of a burst of m consecutive  unknown  samples 
deserves  somewhat  more  attention  than the general  case. 
Then  the matrix B(a) is  Toeplitz  and  therefore  has  some 
properties  that  facilitate a further  analysis of  the interpo- 
lation error. Toeplitz  matrices are persymmetric: an rz X 

n-matrix M is persymmetric if Mv = M,  + -j,n + I - i ,  i, j 

that  their inverses are  also persymmetric. If B(aj is Toe- 
plitz then (B(a))-' is  persymmetric,  and 

= 1, . . .  , n.  It  is a property of persymmetric  matrices 

E [ d 3  = E[hi+I-i], i = 1, . . * , m. (11.26) 

Extensive observations for  the  case of a burst of m un- 
known  samples  have  revealed that the ((B(u))- ' )~~, i = 1, 

large, and  that  the  tend  to  have  their maxi- 
mum  for i = m/2,  i.e.,  in  the middle of  the  burst.  Hence, 
much of the  error energy  is  usually  concentrated in the 
middle  of  the  burst. 

In  case  of a burst, the  asymptotic  behavior of E [ & ]  as 
m -+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03 can  be determined by applying the  Szego  limit 
theorem [lo].  From (11.24), one  has 

. . .  , m, seem  to  depend  quadratically  on i for m not too zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

7 111 

(11.27) 

where hi is the ith eigenvalue of B (a ) .  According to the 
Szego  limit theorem,  one  has,  for any  function F ,  contin- 
uous on  the  set {E{=-, bk exp (-jOk)jlOj < n], 

1 
lim - C F ( X J  

m - m  m j = l  

Taking F(a )  = & I ,  one finds by using (11.2), 

I . ra7r 

- - - 1 S(Oj de 
1 1  

- uf  2n -7r 

(11.29) 

Hence, 

nz + m 
lim E[&]  = 1. (11.30) 

This  shows  that  for  long  bursts  of  consecutive  samples, 
the quadratic  interpolation error  per sample  approaches 
the signal  energy per  sample. 

The result (11.30) derived for  the burst case is also 
useful for finding a bound on  the interpolation  error 
in  the general case.  Indeed, the  matrix B(a)  = 
(br,(i)-r(i))j,j= I , .  . . , m  is a principal  submatrix of the ( t (m)  
- t(1) + 1) X ( t (m)  - t(1) + 1) Toeplitz  matrix B'(a) 
- ( b k - l ) k , [ =  I , .  . . , r (m)  - r ( l )  + Denoting  the first m eigen- 
values of B (a) and B ' (a)  in increasing order by A I ,  - - , 
h,, and X;, - , one has by [ 1 1, Section 3.5, Theo- 
rem5.61 that 0 < h/ < X i ,  i = 1, . , m. Hence, 

- 

m m 

trace ( ( ~ ( a ) - ' )  = C X;' < C X/ - '  
i =  1 i =  I  

< trace ((B'(U)-'), (11.31) 

and it follows  that E [ & ]  is  asymptotically bounded by 
limm-m  sup rn-'(t(m) - t (  1) + 1). Although this bound 
is  not as good as  for the  burst case,  the interpolation error 
in the  case of m randomly positioned  unknown  samples 
usually turns out  to  be smaller  than in the case of a burst 
of length m. 

The interpolation error  can be  analyzed in some  more 
detail if fi?k has a Gaussian  probability  density  function. It 
then  follows  that d has a probability  density  function 
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It  is  a  rather  tedious  but  straightforward  exercise to cal-, 
culate  the  variance,  var (2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE[ (JTJ  - E[dTd])2] ,  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: 

4 *  

var (E) = ___ (Je c x;! (11.33) 
mE[s":I2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  I 

In the  case  of  a  burst  of  unknown  samples  of  length  m, 
one can  use  the  Szego  limit  theorem (11.28) with F(a) = 
C 2 .  For  large  m,  one  finds 

It  can  be  observed  that  var (2) is  larger if the  signal  spec- 
trum S(0) is  more  peaky . 

111. COMPUTATIONAL ASPECTS OF THE INTERPOLATION 
ALGORITHM 

In this  section,  the  computational  aspects  of  the  calcu- 
lation of 6 in (11.13) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf in (11.14) are considered.  It 
should be noted  that  a  linear  system  needs  to  be  solved 
for  the calculation  of  both B and f. If p is chosen 3m + 
2, which  is  done  when p is  unknown,  the  need  for effi- 
ciency  is  more  urgent for the  calculation  of ci than  for  the 
calculation o f f .  

A. Calculation of the  Prediction  Coeficients 

The calculation  of B in  (11.13) is, in fact,  a well-known 
problem.  It  is  often  referred  to  as  the  autocovariance 
method  and  is  discussed  in  great  detail  for  instance  in  [5]. 
In  this  reference  also,  an  efficient  algorithm is given for 
solving B from (11.13) in O(p *) operations.  It  is  the  ex- 
perience  of  the  authors  that  an  approximate  calculation  of 
ci also  gives  satisfactory  interpolation  'results, so that  other 
methods to  calculate B can  be  applied  too. An example of 
a  different  method to  calculate & is the  so-called  autocor- 
relation  method,  where,  instead of the  system (11.13), 
the  system R h  = - r  is  solved.  Here R = ((r(i - 
j)) i , j= . . . p  is  the p X p-autocorrelation  matrix, r = 
[ r ( l ) ,  . * , r (p) lTand  r ( j> = l/Nc;z$'-'sksk+Ijl,j = 

- P . " '  , p ,  is  a  (biased)  estimate for  the jth autocorre- 
lation  lag  of S,, k = -GO, - - , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA03. The  system  obtained 
in this way can  also  be  solved in O(p2)  operations by the 
Levinson-Durbin  algorithm [ 121. As can be seen  from  the 
results  presented in Section IV, in  most  cases  there are no 
significant  differences  between  the  interpolation  results 
obtained via the  autocovariance  method or via  the  auto- 
correlation  method. In [5],  a summary of the  various 
methods  to  estimate 4 from  a  sequence  of  samples is 
given.  The numerical  stability  of  some of these  methods 
is discussed  in  [13]. 

B. Calculation of the Unknown Samples 

For  the  calculation of f in (11.14), it  makes  sense to 
analyze  the  matrix B(d )  defined  in (11.11) and (11.3)  in 
some  detail.  It  can  be  seen  from (11.1 1) that B(6) has  con- 
stant  values bo on its  main  diagonal.  Furthermore,  the ma- 

trix B(ci) is positive  definite, as can be  seen  from  the 
expression 

which  follows  on  inserting (11.11) and (11.3) into  the  left- 
hand side  of (111.1). Indeed,  when i ' is the  largest  index 
with ui, f 0, the term  in  the  right-hand  sum  of (111.1) 
with k = -t( i  ') equals u;! ,  as dl = 0 for 1 < 0, a. = 1 
and ui = 0 for  i > i '. Hence, if u has  nonzero  elements, 
the  right-hand  sum of (111.1) consists  of  nonnegative  terms 
of which  at  least one is  positive.  This  shows  that B(B) is 
positive  definite. 

The fact  that B(d)  is  positive  definite  allows  one  to  use 
Cholesky  decomposition [ 141 of B (6) for solving 2 from 
(11.14)  in  O(m3) operations.  In  case of a  burst  of  unknown 
samples, B(6 )  is  Toeplitz  and (11.14) can  be  solved  in 
O(m2) operations  by  the  Levinson  algorithm [ 151. Even  in 
the  case of  a  more  general  pattern  of  unknown  samples, 
B(d )  is related to a Toeplitz  matrix, so that the system  in 
(11.14) can  be  solved  more  efficiently by using  generalized 
Levinson  algorithms [ 161. However,  this  requires  rather 
involved  mathematics  and  does not lead to  a less  compli- 
cated  hardware  implementation,  since  the  generalized 
Levinson  algorithm  to  be  used  strongly  depends  on  the 
pattern of unknown  samples.  For  these  reasons, in this 
paper,  only  the  solution  of 2 from (11.14)  by using  Cho- 
lesky  decomposition is  considered. 

In  a Cholesky  decomposition,  the  matrix B(B) is  de- 
composed as a  product 

B(B) = L L T  (111.2) 

or as  a  product 

B(ci) = EDET. (111.3) 

In (111.2), L is  a  lower  triangular m X m-matrix,  in (111.3) 
is  a  lower  triangular m X m-matrix with constant  values 

1  on  its  main  diagonal, D is  a diagonal m X m-matrix 

LLTf = -z(B) and B(B)f  = LDET = -z(B) are now 
solved by subsequently  solving by back  substitution y and 
f,from L y  = -z(B) and  from = -z(h),  respectively, 

and 2 from LTf = y and ET%? = D - I f ,  respectively. Both 
forms  of  Cholesky  decomposition  take O(m3) operations. 
A drawback  of  the  decomposition in (111.2) is that it re- 
quires  the  calculation of square  roots. On the  other  hand, 
as  is shown  further  on,  the  elements  of L in  (111.2) satisfy 
bounds  that  are  more  convenient if,one has  a fixed point 
implementation  in  mind. 

For  the  elements  of the matrices L and D,  one  has  the 
following  results: 

with D.. = L2. i = 1, * * 
11 7 , m. The systems B(8)f = 

1 5 L..  = D!:?? 5 bA'2, j = 1, . * 
JJ JJ , m, (111.4) 

m 

Li = bo, j = 1, 7 m, (111.5) 
i =  1 
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so that 

I L , (  I (bo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1, * * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, j  - 1, 

j =  1, . * a  
2 m. (111.6) 

On  substitution of L, = z i j D p  into (111.6) and by using 
(111.4), one  obtains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( E , \  5 (bo - I ) " ~ ,  i, 1, - * * , j  - 1, 

j =  1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe * *  
2 m. (111.7) 

The  bounds  in (111.5) and (111.6) and the right-hand  bound 
of (111.4) can  be  derived by using  results of [17, Section 
71 and by the  fact  that ( B  (a)), = bo, j = 1, * , m. The 
left-hand  bound in (111.4) was  not  known to the  authors 
and will be  derived  in  Appendix C. 

In a fixed point  implementation it is more  convenient 
to solve  the  system B '(ci)i? = -z'(ci), where B '(ci) = 
B(ci)/bo and z'(ci) = z(ci)/bo, than  the  system  in (11.14), 
because  the  absolute  values  of  the  elements B '(ci) are all 
bounded by 1. Then B '(ci) = L'LtT = L D  ' LT, where L' 
= L/bo and D' = D/bo. On substituting  this  into (111.4), 
(IDS), and (111.6) one  obtains 

1/#2 4 L!. = Di"2 5 1, j = 1, . 
JJ , m, (111.8) 

rn 

Lb2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz bo, j = 1, * - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 m, (111.9) 
i =  1 

or 

(L$ I 1, i , j  = 1, . . .  , m. (111.10) 

Now the L'LtT decomposition of B ' ( d )  has the  advantage 
over  the L D ' LT decomposition  that  the  absolute  values of 
all  elements of L' are bounded by 1 and  that  all fixed point 
multiplications  can  be  performed  without  prescaling. 

The  lower  bound  in (111.8) is  important  because  the  ele- 
ments L;j, j = 1, - . , m, are  used  as divisors in the 
process of back  substitution  and  accuracy will be  lost if 
they are too small. It is the  experience of the  authors that, 
for  digitized  music, bo usually  has  rather  modest  values, 
say, bo < 4, so that  the Li do not  become  too  small. 

IV. RESULTS 

In this  section,  the  performance of the  adaptive  inter- 
polation  method  discussed in this  paper  is  considered  for 
the  following  test  signals. 

1) Artificially  generated  realizations  of an  autoregres- 
sive  process of 10th-order with a  peaky  spectrum.  Table 
I and Fig. 2  show  the  prediction  coefficients  and  the AR 
spectrum.  Ten  statistically  independent  sequences  of 512 
samples  each  have  been  used.  The  excitation  noise  se- 
quences  are  uncorrelated  pseudorandom  sequences  with  a 
Gaussian  probability  density  function with zero  mean  and 
unit variance.  The patterns of the unknown  samples  were 
bursts of lengths rn = 1, 4, 16, 50. 

2)  Artificially.  generated  realizations of an  autoregres- 
sive process of 10th-order  with  a  smooth  spectrum.  Table 
I  and  Fig.  2  show  the  prediction  coefficients  and  the AR 

TABLE I 
PREDICTION  COEFFICIENTS  OF  THE AUTOREGRESSIVE PROCESSES  USED A S  

TEST SIGNALS I N  THIS  SECTIOV 

dB 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-20- 
... 

-50 ~ - 
-60 0 50 100 150 200  250 

Frequency IHzl .I02 

Fig. 2. AR spectra of test signals I and 2. 

spectrum.  The  ten statistically  independent  sequences of 
5 12  samples  that  have  been  used  are  generated in the  same 
manner  as  the test  signals  described  under  1).  The  pat- 
terns  of  the  unknown  samples  were  bursts  of  lengths m = 
1,  4, 16, 50. 

3) Multiple  sinusoids. A sequence  of 512 samples 
given by 

s, = 100  sin ( 0 . 2 3 ~ ~  + 0.3 T) 

+ 60 sin ( 0 . 4 ~ ~  + 0 . 3 ~ )  (IV. 1) 

has  been  used.  The  patterns of the  unknown  samples  were 
bursts  of  lengths rn = 4, 8, 14,  16. 

4)  Digital  audio  signals.  Bursts of 4,  6,  or 16  unknown 
samples,  occurring  at  a  rate of 10 s- '  in a  fragment of 36 s 
taken from a  Compact  Disc@  recording of Beethoven's 
Violin  Concert  have  been  interpolated.  The  sample  fre- 
quency of the  signal  is  44 100 Hz, so that  a  burst of 16 
samples  has  a  duration of 0.36  ms. 

5 )  Digitized  speech  signals.  Bursts of 100  unknown 
samples,  occurring  at  a  rate of 10 s-' in 10  English  sen- 
tences  of  male  and  female  speech,  have  been  interpolated. 
The  sample  frequency of the  signal is 8000 Hz, so that 
the bursts  have  a  duration  of 12.5  ms. 

6)  Artificially  generated  realizations of  an autoregres- 
sive  process  corrupted by pseudorandom  white  noise. To 
the  sequences  described  under l ) ,  pseudorandom  white 
noise  with  zero  mean  has  been  added.  Signal-to-noise ra- 
tios of 40 and 20 dB are  considered.  The  pattern of un- 
known  samples  was  a  burst of length  16. 

7) Sinusoids  corrupted by pseudorandom  white  noise. 
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TABLE I1 
AVERAGE INTERPOLATION ERRORS A N D  EXPECTED INTERPOLATION ERRORS 

WITH KNOWN COEFFICIENTS  AND AFTER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 AND 3 ITERATIONS FOR 10 
REALIZATIONS OF AN AUTOREGRESSIVE  PROCESS OF  ORDER 10 WITH  A  PEAKY 

SPECTRUM. THE COEFFICIENTS  OF  THE AUTOREGRESSIVE PROCESS ARE 

GIVEN IN TABLE 1 

m p  N f 

4 10 512 0:lZE-Ol 0:llE-01 0:13E-01  0:13E-01 0:12E-01~0:61E-02 0:lOE-03 
1 10 0 79E-02 0 90E-02 0 72E-02 0 90E-02 0 79E-02 0 34E-02 0 23E-04 

16  10 512 0.26E-01  0.27E-01  O.26E-01  0.28E-01  0.26E-01  0.12E-01  0.67E-03 
50 10 512 0.60E-01  0.61E-01  0.56E-01  0.62E-01  0.57E-01  0.24E-01  0.60E-02 

_______-_____---____-- 41 _______  c3 --..---_ '1 _______ '3 ________-_____-______ E t a 1  var(J) 

4 10  512 0.50Et00 0.62EtOO 0.62Et00 0.62Et00 0.61Et00 0.51Et00 0.76Et00 
1 10 0.31Et00 0.34E+OO 0.32Et00 0.34Et00 0.32EtOO 0.27~+00  0.15~+00 

50 10  512 0.11Et01 O.lIE+Ol O.llEt01 0.11Et01 0.11Et01 0.95E+00 0.39Et01 
16 10 512 0.99Et00 O.lOE+OI 0.10Et00 O.lOEtO1 0.10Et01 0.84Et00 0.29Et01 

TABLE IV 
INTERPOLATION ERRORS AFTER 1 AND 3 ITERATIONS FOR A  SUM  OF 2 SINE 

WAVES.  IN  THE  CASE Cj, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 10 THE  PREDICTION  COEFFICIENTS  CANNOT BE 

CALCULATED BECAUSE THE  MATRIX c( i )  IN (11.13) IS SINGULAR. THE 
SINUSOIDS ARE GIVEN BY (IV. I )  

............................................. 

To the  sequences  described  under  test  signal 3, pseudo- 
random  white  noise  has  been  added.  Signal-to-noise  ratios 
of 40 and 20 dB are  considered.  The  patterns of the  un- 
known  samples  were  bursts of lengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn = 4, 8, 14-, 16. 

The  test  signals 1-7 have  been  interpolated with the  aid 
of the  two  following  versions of the  adaptive  interpolation 
method. 

1) The  adaptive interpolation  method  that  uses  the  au- 
tocovariance  method to obtain  the  prediction  coefficients 
(cf.  Section 111). This  method is denoted by ci , where  the 
subscript i denotes  the  number  of  iterations. 

2)  The  adaptive interpolation  method  that  uses  the  au- 
tocorrelation  method  to  obtain  the  prediction  coefficients 
(cf. Section 111). This  method  is  denoted  by ri , where  the 
subscript i denotes  the  number of iterations. 

For  all  test  signals,  the  performances of the  adaptive 
interpolation  methods  are  judged by means of the  relative 
quadratic  interpolation  error e , 

(IV .2) 

This is the  realization of the stochastic  relative  quadratic 
interpolation  error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, defined in (11.19). The  (averaged) 
value  of e is presented for the  test  signals in Tables II- 
XI. For  the  test  signals 1 and 2, the  values  of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE[&] and 
of var ( E ) ,  given in (11.24) and (11.33), respectively,  are 

TABLE V 
AVERAGE INTERPOLATION ERRORS AFTER 1 AND 3 ITERATIONS FOR 10 

SHORT ( N  = 64) REALIZATIONS OF AN AUTOREGRESSIVE PROCESS  OF  ORDER 

10 WITH A  PEAKY  SPECTRUM. THE COEFFICIENTS  OF  THE AUTOREGRESSIVE 
PROCESS A R E  GIVEN I N  TABLE 1 

TABLE VI 
INTERPOLATION ERRORS AFTER 1 AND 3 ITERATIONS FOR A  SHORT  SEQUENCE 

OF 64 SAMPLES  OF  A  SUM  OF 2 SINUSOIDS. THE SINUSOIDS ARE GIVEN BY 

(IV. 1) 

TABLE VI1 
AVERAGE INTERPOLATION ERRORS FOR VARIOUS  SIGNAL-TO-NOISE RATIOS 

AND  ORDERS  OF  PREDICTION WITH KNOWN COEFFICIENTS  AND AFTER 1 
ITERATION FOR 10 REALIZATIONS OF AN AUTOREGRESSIVE  PROCESS OF 

ORDER 10 WITH  A  PEAKY  SPECTRUM. THE COEFFICIENTS  OF  THE 

AUTOREGRESSIVE PROCESS ARE GIVEN IN TABLE I 

TABLE VI11 
INTERPOLATION ERRORS FOR VARIOUS  SIGNAL-TO-NOISE  RATIOS  AND 

ORDERS OF PREDICTION FOR A SUM OF SINUSOIDS. THE SINUSOIDS ARE 

GIVEN BY (Iv. 1) 

4 0 d 6 ~ i 6  4-512 0.84E-02 0.40E-03 0.87E-01 0.21E-Dl 
40dB 16 10 512 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 12E-03 0 11E-03 0 12E-03 0 12E-03 
2Od8  16 4 512 0:38E+00 0:33E+00 0:44E+00 0:40EtOO 
20d8 16 10 512 0.10E-01 0.11E-01 0.10E-01 0.10E-01 

0.53E-13 0.00E+00 0.32E-01 0.25E-01 0.14E+01 0.25E+Ol 
0.85E-06 D.OOE+OO 0.16Et02 0.84E+02 0.21E+04 0.84E+04 
0.86E-02 0.00Et00 0.36E+03 0.50Et04 0.15Et05 0.50E+06 

TABLE X 

INTERPOLATION OF BAND-LIMITED SIGNALS A N D  AVERAGE INTERPOLATION 
AVERAGE INTERPOLATION ERRORS OBTAINED WITH THE ALGORITHM FOR THE 

ERRORS OBTAINED AFTER 1 ITERATION FOR A  PREFILTERED FRAGMENT OF 

BEETHOVEN'S VIOLIN  CONCERT FOR VARIOUS BURST LENGTHS 

included  in  Tables I and 11. Diagrams of some  typical  in- 
terpolation  results are presented  in Figs. 3-14, together 
with  the  original  signals, in which  the  correct  values of 
the unknown  samples  have  been  substituted. In the  dia- 
grams, the original  signal  is  marked by a " l ,  " the  inter- 
polation  result  is  marked by a "2," the  positions  of  the 
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TABLE XI 

INTERPOLATION OF BAND-LIMITED SIGNALS A N D  AVERAGE INTERPOLATION 
AVERAGE INTERPOLATION ERRORS OBTAINED WITH THE ALGORITHM FOR THE 

ERRORS OBTAINED AFTER 1 ITERATION FOR A NONPREFILTERED FRAGMENT 
OF BEETHOVEN'S VIOLIN  CONCERT FOR VARIOUS BURSTS LENGTHS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

____________________--------------------- 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm t r a c e ( H )  b, _._. m D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr .  I 

TABLE XI1 
AVERAGE INTERPOLATION ERROR OBTAINED WITH THE ADAPTIVE 

INTERPOLATION ALGORITHM FOR 10 ENGLISH SENTENCES  PRONOUNCED BY A 

MALE A N D  A FEMALE VOICE 

100r 

80 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
60- 
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Fig. 5 .  Interpolation  result  and  original  signal for  an  autoregressive  pro- 
cess with  a  peaky  spectrum, m = 16, p = 10, N = 64, interpolation 
method e , .  Interpolation  error e = 0.38E - 01. 
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Fig. 3. Interpolation result  and original signal for an  autoregressive pro- 
cess with  a  peaky  spectrum, m = 16, p = 10, N = 512, interpolation 
method e,. Interpolation error e = 0.23E - 01. 

Time (seconds) 

Fig.  4. Interpolation  result  and original  signal  for an  autoregressive  pro- 
cess with  a  smooth  spectrum, m = 16, p = IO,  N = 512, interpolation 
method e,.  Interpolation error e = 0. IOE + 01. 

unknown  samples  are  indicated  on  the  time  axis.  Besides 
the  tables  and  the  diagrams,  the  performances of the  adap- 
tive  interpolation  method  on  the  music  signals  and the 
speech  signals  are  also  evaluated by listening  tests. 

For  the test  signals 1 and 2, the  interpolation results are 
compared to those  obtained by  using the  true  prediction 
coefficients. In the  tables,  this  method is denoted by f ,  
where f stands  for fixed coefficients. In the  case of one 
single  unknown  sample,  this  nonadaptive  interpolation 
method  amounts  to  the  method  presented in [2]. 
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Fig.  6.  Interpolation result  and original signal for an  autoregressive pro- 
cess with  a  peaky  spectrum after 3 iterations, m = 16, p = 10, N = 64, 
interpolation  method c3. Interpolation error e = 0.12E - 01. 
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Fig. 7. Interpolation result  and original signal for a  sum of 2 Sine waves, 
= 16, p = 10, N = 64, interpolation  method e , .  Interpolation error e 

= 0.52E + 00. 
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Fig. 8. Interpolation  result  and  original  signal for a  sum of 2 sinusoids 
after 3 iterations, m = 16, p = I O ,  N = 64, interpolation method ci. 

Interpolation error e = 0.58E - 02. 
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.2001 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATime  isecondsi 

Fig.  9.  Interpolation result  and original  signal  for a  sum of 2 sine  waves, 
corrupted by white  noise, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASNR = 20  dB, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 16, p = 10, N = 512, 
interpolation  method c,. Interpolation  error e = 0.10E - 01. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 10. Interpolation  result  and  original  signal of the  interpolation method 
for band-limited  signals,  for a  sum of 2 sinusoids,  corrupted by white 
noise, SNR = 40 dB, m = 16, interpolation  method  Interpolation 
error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe = 0.16E + 02. 
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Fig. 11. Interpolation result  and original  signal  for a  music signal, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 
6, p = 20, N = 192,  interpolation method r , .  Interpolation error e = 
0.59E - 02. 
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Fig. 12.  Interpolation  result  and original signal of the interpolation method 
for band-limited signals,  for a  music signal m = 6, interpolation  method 
bo,27. Interpolation  error e = 0.28E + 01. 
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Fig.  13.  Interpolation result  and original  signal for a  music signal, m = 
16, p = 50, N = 512, interpolation  method r , .  Interpolation  error e = 
0.22E - 01. 
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Fig. 14. Interpolation result  and  original signal  for a  voiced  fragment of 
mate  speech, rn = 100, p = 50, N = 512,  interpolation method r , .  
Interpolation error e = 0.70E - 01. 

For the  (noisy)  sinusoids and the  music signals,  a  com- 
parison  is  made  to  an  interpolation  method for band-lim- 
ited  signals,  presented  is [ 3 ] .  For this  method, it is  re- 
quired  that  the  signals are band-limited  to  a  baseband  ex- 
tending to CY, 0 < a < 1/2, times  the  sample  frequency. 
In  the  tables,  this  method is denoted by 6,. Here CY = 
0.27, and the  noise-free  sinusoids  considered are limited 
to  this  band. For  this  comparison also,  a prefiltered  ver- 
sion  of  the  music  signal,  limited  to  the  baseband, is used. 

It  must  be  remarked  that  the  interpolation  method for 
band-limited  signals  is  rather  sensitive  to  the  presence  of 
out-of-band  components  in  the  signal. For  instance, the 
expected  value of the  relative  quadratic  interpolation  error 
e" of (11.19) for  a band-limited  signal  corrupted by white 
noise  is  given by 

E [ ~ I  = p - '  trace ( H )  (IV. 3) 

where p is the  signal-to-noise  ratio,  and H is  an m X m- 
matrix  given by 

H . .  = 6.. - 
'J rJ 

sin ( 2 ~ a ( t ( i )  - tu)) 
n(t( i )  - W )  ' 

i , j  1, * , m. (IV .4) 

The values of E[2] or, if the  signal-to-noise  ratio is un- 
known,  of  trace ( H ) ,  are included in the  tables.  In [ 3 ]  it 
.is shown  that for bursts  of  unknown  samples,  trace ( H )  
increases  roughly as exp ( T ~ c Y ) ,  so that  even  small  bursts 
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in signals  with  fairly  high  signal-to-noise ratios cannot be 
interpolated  successfully. 

The tables  and figures show  interpolation  errors for var- 
ious segment  lengths  and  prediction orders.  The  true pre- 
diction  orders of the artificially generated  autoregressive 
processes  and of the  multiple  sinusoids are known in ad- 
vance. For  the autoregressive  processes,  the  prediction 
order is 10; for the  multiple sinusoids, the  prediction or- 
der  is  twice  the  number of sinusoids  in  the signal, in this 
case zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4. For  these  signals,  the  true prediction order  is 
used  in  most cases, a higher  prediction order is sometimes 
tried to achieve  improvement  in the interpolation  quality. 
For  the  music and the speech  signal, p = min zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3m + 2, 
50) is  chosen.  This rather  arbitrary choice gives  good in- 
terpolation  results. The pattern of the  unknown  samples 
is  always a burst. It  has turned out  that, as a  rule,  general 
patterns of unknown  samples are usually interpolated with 

, a smaller  interpolation error than  bursts with the  same 
number of unknown  samples. 

The tables  and figures give  rise to the  following re- 
marks.  From  Tables I1 and 111, it  is  seen that the  inter- 
polation errors  for  either adaptive  method do not differ 
significantly from  the  interpolation errors  for the  inter- 
polation  method that uses the  true prediction coefficients. 
It  seems  that the estimation of the prediction coefficients 
from  the  incomplete  data does not influence the quality of 
the  interpolation. The deviation of the average interpola- 
tion  errors  from the expected  interpolation  errors in Ta- 
bles I1 and I11 is explained by the  high  variance of the 
interpolation error.  It is also seen  from  the Tables I1 and 
I11 that  iterative  use of the adaptive  interpolation  methods 
does not give a significant improvement.  However, if the 
segment  length N is smaller,  iteration  does  give  an  im- 
provement, as can be seen from Tables V  and VI.  Here 
results close  to  that of Tables I1 and I11 are obtained  after 
3  iterations. In general, the  interpolation  errors for auto- 
regressive  processes with a peaky  spectrum are substan- 
tially smaller  than for processes with a smooth spectrum. 

For sinusoids zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2  = 0, so that, theoretically,  the  inter- 
polation error  is  also  zero.  Indeed,  Table IV shows very 
small  interpolation  errors for methods cI and c3. The 
poorer  results  for r l ,  r3, p = 4 can  be  explained by the 
fact  that  the  autocorrelation  method uses a biased  estimate 
for  the autocorrelation function.  This  has  less influence 
on  the result if p is  chosen higher. If the autocovariance 
method is used to estimate  the prediction coefficients, p 
must not be chosen  too high.  For  after more than one it- 
eration, the  autocovariance  matrix will become nearly 
singular  and  the  prediction coefficients can no longer be 
calculated straightforwardly by solving the system (11.13). 
As can be seen from  the Tables 11,  111, VII, and VI11 for 
signals other than  multiple  sinusoids,  there are no signif- 
icant differences  between the interpolation results ob- 
tained by using the autocovariance or the  autocorrelation 
method. 

With a decreasing  signal-to-noise  ratio,  the  interpola- 
tion results of the  adaptive  interpolation  methods  deteri- 
orate  slightly.  However, they still  do not differ signifi- 
cantly from the  results  that can be  obtained if the true 

prediction coefficients were  used. This can be seen from 
Tables VI1 and VIII.  The interpolation  method for band- 
limited  signals gives  poor  results  for noisy sinusoids, as 
can  be  seen  from Table  IX, where  the  quadratic  interpo- 
lation error becomes  several  times  larger  than  the  signal 
energy. 

For the  music signal, the  relative  quadratic  interpola- 
tion errors for  the adaptive  interpolation  methods are of 
the  same  orders of magnitude as those for  the autoregres- 
sive processes  with a peaky spectrum.  The high  value for 
the relative  quadratic  interpolation  error for  the speech 
signal in Table XI1 can be explained as follows.  In pop- 
ular  speech  models [ 181, speech is assumed to consist of 
voiced parts, where  the  speech  signal  is  highly  periodic, 
and  unvoiced parts, where the speech  can be modeled as 
an autoregressive  process of order approximately 12. In 
the  voiced case,  the speech  spectrum  contains many sharp 
equidistant peaks, and  the  interpolation  results  are  similar 
to those  obtained  with  autoregressive  signals that have a 
peaky spectrum.  In the  unvoiced case,  the speech  spec- 
trum is rather  flat,  and the interpolation  results  are  similar 
to those  obtained with autoregressive  signals with a 
smooth spectrum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs can be seen  from Table I11 and Fig. 
4, these  results  are  rather  poor,  especially if the  bursts are 
large.  The  relative quadratic  interpolation  error in  Table 
XI1 is  averaged  over  20 sentences  and  the  high  value is 
caused by the presence of unvoiced fragments.  However, 
the poor interpolation results for unvoiced  fragments do 
not cause any  audible  disturbance in the interpolated 
speech.  Fig. 14 shows a typical  interpolation result for 
voiced  speech. 

Listening  tests  have  revealed  that  the  interpolation  er- 
rors in these  test signals  and in many other signals are 
practically inaudible.  After  increasing  the burst length 
from 16 to 50, the interpolation  results are still  quite  good 
for most music signals, although  some interpolation er- 
rors become audible.  For the  speech signals, bursts can 
be restored up to 100 unknown  samples  without  audible 
errors.  It may seem  curious that the method still works for 
bursts of these  lengths  (which represent time  intervals of 
durations  up to 12.5 ms),  since the length N of the seg- 
ment used to estimate the prediction coefficients repre- 
sents  a time interval of more  than 60 ms which is  gener- 
ally too long  for a  speech  signal to  be assumed  stationary. 
However,  some  speech  sounds,  for  instance  vowels,  can 
be  assumed  stationary for several  hundreds of millise- 
conds, and for these  the method performs  well.  Other 
speech sounds, especially  the  plosive sounds,  lbf,  fdi, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
l g i ,  lpf,  lti, and l k f ,  can only be assumed  stationary  for 
a few  milliseconds  and  cannot  be  interpolated  correctly. 
Still,  the  errors  made  here  do not seem to reduce  the  sub- 
jective interpolation quality, possibly because of masking 
effects. 

Comparing  the  adaptive  interpolation method to the in- 
terpolation  method for band-limited  signals,  it  is  seen that 
the  latter method performs  better if the  burst length m is 
small,  say, m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 6, and if no  out-of-band  components are 
present in the  signal. If these  requirements are not met, it 
.gives very poor  results, as can be seen from  Table XI 
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and  Figs. 10 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 2 .  Usually,  the  errors  are  pulse  shaped 
and may well  exceed  the  peak  values  of  the  signal.  The 
adaptive  interpolation  method  performs  significantly  bet- 
ter in the  presence of noise or  for  large  bursts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V. CONCLUSIONS 
In  this  paper,  an  adaptive  method  has  been  presented 

for  the  interpolation  of  general  patterns of unknown  sam- 
ples  occurring in discrete-time  signals  that  can  be  mod- 
eled as  autoregressive  processes.  It  has  been  demon- 
strated  that  this  method  gives  satisfactory  'results  for 
digital  audio  signals  and  digitized  speech.  Roughly  speak- 
ing, the  method  amounts  to  trying  to  minimize,  as  a  func- 
tion  of  the  unknown  samples  and  the  unknown  prediction 
coefficients,  a  sum- of squares of residual  errors  involving 
the  unknown  samples,  the  prediction  coefficients, and the 
known  samples  from  a  sufficiently  large  neighborhood. 
The method  can  be  used  noniteratively as well as  itera- 
tively. In the  noniterative case,  one minimization  step with 
respect  to the prediction  coefficients and,  subsequently, 
one  with  respect  to  the  unknown  samples  are  performed. 
In the  iterative  case,  the  subsequent  minimizations  are 
performed  repeatedly,  the  current  estimates of the  un- 
known  samples  being  employed in each  iteration step. It- 
eration  gives  an  improvement  in  interpolation  quality if a 
relatively  small  segment of data  is  available. 

The  interpolation  method  has  been  shown to  have  a 
sound  mathematical  foundation.  Also,  it  can  be  related  to 
several  well-known  estimation  methods  in  statistics  and 
linear  filtering.  Furthermore,  when  applied  to  signals  sat- 
isfying  the  model  assumption,  the  expected  quadratic in- 
terpolation  error  per  sample  is  bounded  asymptotically by 
the signal  energy. 

The  method  has  been  tested  on  artificially  generated  au- 
toregressive  processes,  sinusoids,  digital  audio  signals, 
and digitized  speech  signals.  The  performance  has  been 
judged  both  objectively  and  subjectively.  It  has  been  ob- 
served  that  the  interpolation  method  is  capable  of  restor- 
ing  satisfactorily  at  least  16  consecutive  unknown 
samples  in  an  audio  signal  sampled  at 44 100 Hz, 
corresponding  to  a  time  interval of 0.36  ms, and  in  a 
speech  signal,  sampled  at 8000 Hz up to 100 consecutive 
unknown  samples,  corresponding  to  a  time  interval of 
12.5 ms. 

It  has  been  shown  that  the  various  minimizations  can 
be carried  out by efficiently  solving, in a  stable  manner, 
certain  systems  of  linear  equations.  This  indicates  that  the 
interpolation  method is suitable for  a fixed point  imple- 
mentation in an  integrated  circuit.  However, in that case, 
the  number of unknown  samples  should  not  be  too  high 
(up  to  16,  say). 

APPENDIX A 
ANALYSIS OF Q (a,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) 

In  this  appendix,  the  claims  of  Section I1 are proved 
that, if the  sample  values  have  a  Gaussian  probability 
density  function, 

1) minimizing Q(a,  x) for  known x as  a function of a 
leads  to  a  maximum  likelihood  estimate  for a ,  and 

2) minimizing Q(a, x) for known a as  a  function  of x 
leads  to  a  minimum  variance  estimate for a. 

Furthermore, it is shown  that  the  integral in  (11.6) at- 
tains  its  minimum as  a  function  of x for  the  same  value as 
Q(a,  x) does. 

A. Maximum  Likelihood  Estimation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a for  Known x 

ability  density  functions 
It is assumed  that  the Zk are independent  and  have  prob- 

The log  likelihood  function  that  is  usually  taken to get 
maximum  likelihood  estimates for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa:, a from  a  sequence 
s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= [so, - - * , s,,,-~]' of data  is  log (ps(slo:, a) ) ,  the 
logarithm of the  probability  density  function  of .F. The  log 
likelihood  function  in (11.6) differs  slightly  from  this. 
However, it can be shown  that for  large N (compared  to 
p )  one may approximate  the  more  commonly  used  one by 
the  one  in (11.6) [ 191. 

To express L(a5, a) in terms of Q ( a ,  x), one  observes 
that 

p~ltdslu, a e ,  a) = PS; . , f ! t l -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(sp, * * * > s N - ,  Iu, U e ,  a> 2 2 

- - Pfp+ I ,  ' ' ' ,fN- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIISO, ' ' ' , fp  

X ( s p + l ,  * * 3 sN- 11~0, * * * 3 sp, a e ,  a) 

( A . 2 )  

2 

x PfpTpl&pIu? a,, 4 .  
2 

Furthermore, 

By repeatedly  applying 

2 
~ s l d s l u ,  a e ,  a) 

0 4 . 3 )  

the  above  reasoning,, one finds that 

N - p  

Therefore, 

L(O& a) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-(N - p )  log (a,&) - Q(u, x)/(2a;). 

(A. 5)  

Maximizing L(a$,  a)  as  a  function of a is  the  same  as 
minimizing &(a ,  x) as  a function  of a.  This  proves  the 
claim.  Furthermore, of can  be  estimated by maximizing 
L ( o ~ ,  a) as  a  function  of a:. This  gives  the  estimate in 
(11.5)  if m = 0 is  taken. 

B. Minimum  Variance  Estimation  of  the  Unknown 
Samples 

It is shown  that,  under  hypothesis (A . l ) ,  finding  the 
minimum  variance  estimate for x, given a and sk, k = 0, 
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mizing Q(a ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) as a function of x. To  this  end,  one can 
use  the  well-known fact from  statistical  estimation  theory 
that  the  minimum  variance  estimator Go of a stochastic 
vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG, given a stochastic vector i7 equals E[@t(i7], the 
expectation  under yndition i7. Hence,  for the  minimum 
variance  estimator f0 o f f ,  given  the known  samples one 
has zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

io = E[x”lq”l (A. 6) 

where the known  samples are arranged in a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi j .  To 
evaluate this,  one needs p f lq  (x 14). It  is  straightforward to 
show  that 

Pf(q(x14) = Ps~i(sIu)/Pqli(41u). (A. 7) 

By using (A.4),  one  can  express the right-hand side of 
$4.7) in terms of Q (a,  x). More  specifically,  one  has  for 

f0 

where D is  such  that 

D x exp ( -Q(a ,  x)/(2a:)) dx = 1. (A.9) 

It follows  from a standard fact  about Gaussian  integrals 
that Q(a,  x), a quadratic form in x, is minimized by 6, in 
(A.8).  This proves the  claim. 

Observe  also  that io maximizes p f lq (x  14) as a function 
of x. This  shows  that  is  also a maximum a  posteriori 
estimates for x. This follows  further  from (A.7) and (A.4). 

A further result is that io = -(B(a))-I z(a) is  also the 
best linear  minimum  variance estimator.  This result holds 
without  any  assumptions  on  the  form of the probability 
density  function of  the excitation  noise. Indeed, it is a 
well-known fact that the best  linear  minimum  variance 
estimator  is completely  determined by the  covariances 

hypothesis of Gaussian  probability  density  functions,  the 
minimum variance  estimator io happens to  depend  lin- 
early on the  known samples,  as is seen  from (11.14), 
(11.1 l ) ,  and (11.12). Thus, io is  certainly the best linear 
minimum  variance estimator, whether or not Gaussian 
probability  density  functions  have  been assumed. 

r .m 

E[g,gk], j ,  k = 0, * * , N - 1.  Furthermore,  under the 

On inserting  the definition (11.17) into (A. l l )  and per- 
forming the integration, one finds for  the integral in  (11.16) 

. N-0-1 
(A. 12) 

for properly  chosen  constants a > 0, b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R?. This proves 
that  the P of (11.14) minimizes the integral in  (11.16) as a 
function of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx”. 

APPENDIX B 
SOME NOTES ON THE ITERATIVE VERSION OF THE 

INTERPOLATION  METHOD 

A. Convergence  Properties 

Iterating  the  interpolation  method  comes  down to con- 
structing  two sequences d(k )  E RP and i ( k )  E R* of vec- 
tors of prediction coefficients and  sample  estimates, re- 
spectively. Here d (1) = B and i (  1) = i ,  B and i as in 
(11.13) and (11.14). In the kth step, d ( k )  and i ( k )  are  ob- 
tained by minimizing Q ( a ,  i ( k  - 1)) with  respect to a 
and Q ( B ( k ) ,  x) with  respect to x, respectively.  That is, 

Q(d(k) ,  i ( k  - 1)) = min Q(a, P(k - 1)) (B.l) 
a €  ’ 

It was  found that iterating  the  interpolation method can 
improve the  results if the  number of available  samples is 
relatively  small.  Although  the  iterative method turns out 
to converge very rapidly in  practice (cf. Section IV for 
more  details),  it  does not seem  easy to prove  satisfactory 
convergence  results.  It can be  shown  that, when the se- 
quences d ( k ) ,  P ( k )  converge, the  limit point a’, x ‘ is a 
stationary  point.  However, Q(a,  x) may have several such 
points. For the .asymptotic speed of convergence,  the 
Hessian H of Q(a,  x) at a’,  x ’  is  relevant.  Letting 

H ’ =  ~ l:iJAA:l (B. 3) 

whereA, = (a2/aa2)Q((a’,x’),A2 = ( a 2 / a a d x ) Q ( a ’ , x ‘ )  
and A3 = (d2/ax2) Q(a’, x ’ ) ,  one can  check  that 

A, = 2C(xr) ,  

A2 = 2(ei+t( j)  + f - i + t ( j ) ) i = l ; . . , p , j = l : . . . r n ’  

A3 = ~ B ( u ’ ) ,  (B.4) 

C. A Spectral  Interpretation 

its  minimum  for  the same.x  as Q(a,  x) does. It  is useful ek = C aisk-jn 
to note  that 

where, with = x : ,  i = 1, * * * 9 m, 
It  is  shown  that  for fixed a, the  integral (11.16) attains P 

l = O  

P N - p - I  

Q ( U ,  X) = C SkSlbk-l + E (A. 10) = C aiSk+i. 03.5) 
k;/ = p  1 = 0  

Since 
where E involves  only  samples  with  indexes I ,  k < p or 
I ,  k > N - p - 1.  The integral (11.16) can be written as 

&(a, X) G Q(ar ,  x r )  + 1/2(a - u ‘ ) ~ A ~ ( u  - a ’ )  

+ (a - a’ )TA2(x - x r )  
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it  follows  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P(k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX '  + AT1A;A;'A2(P(k) - x ' ) .  (B.7) 

The  speed  of  convergence of the  iterative  method is de- 
termined by the  spectral  properties of D = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA;  'A&4;IA2. 
A condition  guaranteeing  linear  convergence is that  the 
absolute  values of the  eigenvalues  of DTD are all  less  than 
1, but  it  does  not  seem  easy to  check  on  this  condition. 

B. Relation to the EM Algorithm 

The  assumption is  that  the  observed s = [so, * * * , 
sN- is  a  vector  of  realizations  of  a  stationary  Gaussian 
autoregressive  process  of  known  order p and  unknown 
prediction  coefficients u E R f  and a:. Consider  the  log 
likelihood  function 

L(a2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) = - (N  - p )  

- log (a,&) - Q(a, x)l(20f). (B.9) 

The EM algorithm  aims  at  finding  estimates  for  parame- 
ters  and  complete  data  from  incomplete  data by maximiz- 
ing  the  (log)  likelihood  .function.  It  can  be  described  for 
the present  situation a's follows:  Denote  for (a:, a) E R X 
Rl P 

W ( O $ ~ ,  a*lof, a) = E[L(az2, a*)lq, a:, a ] ,  (B.lO) 

with q as in (A.6). Starting  with  initial  estimates &f(O), 
ci(O), one  constructs  sequences &f(k), ci(k), k = 1 , 2 ,  * - . , 
by choosing in the kth step B:(k), b(k) in such  a way that 

~ ( a : ,  al$f(k - I ) ,  ci(k - 1)) is maximal  at (a:, a)  = 
(3f(k), ci(k)). Heuristically,  one  would  like to maximize 
L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(o:, a) ,  but  this  is  impossible  since  one  does not know 
s completely. 

To show  the  connection with the  iterative  interpolation 
method, it is  necessary  to  evaluate  (B.  10).  The  condi- 
tional  expectation in (B. 10)  refers to the  conditional  prob- 
ability  density 

(B. 11) 

It  follows  that 

w e 2 ,  a*laf, a) = - ( N  - p )  log (a,*&) 

- E[Q(a*, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx>lq, of ,  a I l ( 2 ~ $ ~ ) .  

(B. 12) 

It is a  tedious  but  straightforward  calculation  to  show  that 

E[C?(a", 4 I q ,  a:, a1 

= u t  trace ((B(a))-'B(a*)) + Q(a*, x), (B.13) 

so that  one  has 

W(aT2, a*lof, a) = - (N  - p )  log (a,*&) 

- 1/2(0,/0,*)~ trace ( (B(U) ) - 'B(U*) )  

- Q(u*, X). (B. 14) 

Maximizing W(az2 ,  a*Iuz, a) is  the  same  as  minimizing 
the  right-hand  side of (B.13).  Hence, the  difference  be- 
tween  the  EM  algorithm and the  iterative  version of the 
adaptive  interpolation  method  is  reflected by the first term 
in the right:hand side  of (B. 13). It is noted  that  minimiz- 
ing Q(a*, x) with  'respect to a* is much  easier  than  min- 
imizing  the  right-hand  side of (B. 13), since it is not  likely 
that  a  manageable  form  for  the  solution of the  latter  prob- 
lem  exists. 

APPENDIX  C 
DECOMPOSITION OF B(a) 

In  this  appendix,  the  left-hand  inequality of (111.4) is 
proved.  First,  remark  that 

B(a) = ATA, (C. 1) 

whereA = [ a l ,  * - , a,] is a ( t (m)  - t(1) + p + 1) x 
m-matrix,  defined by 

the a i  being  the  prediction  coefficients of (11.1). Note  that 
a i  = 0 for i < 0 or i > p .  Since A has  full  rank, A can 
be  decomposed  as  a  product A = QR, where Q is  a ( t (m) 
- t (1) + p + 1) X m-matrix,  consisting  of m orthogonal 
columns  and R is  an  upper  triangular m X m-matrix. On 
substituting A = QR into  (C. l ) ,  one  obtains 

B(a) = RTQTQR = LDLT (C. 3) 

where L" and D are  as in (111.3). Clearly, Dj j  = lqj 1 2 .  The 
QR decomposition of A can  be  done  iteratively.  In  every 
iteration step, qj  is  found by subtracting  from a j  the  pro- 
jection of aj  onto  the  space  spanned by q l ,  * * * 4j-I 

The  space sp{ql, * , q j p 1 }  spanned by q l ,  - 
qj-  1 is  the  same  as  the  space sp{al, * , aj -  ] spanned 
by al, * * uj'- Therefore, 

- - min (a j  - U I  2 
u€Sp{uI. ' ' ' , u j -  I }  

i - 1  

Since ( a j ) r ( j ) - t ( t ) + p + l  = ao = 1 and ( a k ) t ( J ) - t ( l ) + p + l  = 
Ofork = 1, - * , j ,  by (C.2), it follows  easily  that ( q j  I *  
2 1. This  proves  the  left-hand  inequality  of (111.4). 
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