
Received 5 November 2020; revised 20 November 2020; accepted 7 December 2020. Date of publication 16 December 2020;

date of current version 14 January 2021.

Digital Object Identifier 10.1109/OJCOMS.2020.3044323

Adaptive Intrusion Detection in the Networking
of Large-Scale LANs With Segmented

Federated Learning
YUWEI SUN (Student Member, IEEE), HIROSHI ESAKI (Member, IEEE),

AND HIDEYA OCHIAI (Member, IEEE)
Graduate School of Information Science and Technology, University of Tokyo, Tokyo 1138654, Japan

CORRESPONDING AUTHOR: Y. SUN (e-mail: sywtokyo@hongo.wide.ad.jp)

ABSTRACT Predominant network intrusion detection systems (NIDS) aim to identify malicious traffic

patterns based on a handcrafted dataset of rules. Recently, the application of machine learning in NIDS

helps alleviate the enormous effort of human observation. Federated learning (FL) is a collaborative

learning scheme concerning distributed data. Instead of sharing raw data, it allows a participant to share

only a trained local model. Despite the success of existing FL solutions, in NIDS, a network’s traffic

data distribution does not always fit into the single global model of FL; some networks have similarities

with each other but other networks do not. We propose Segmented-Federated Learning (Segmented-FL),

where by employing periodic local model evaluation and network segmentation, we aim to bring similar

network environments to the same group. A comparison between FL and our method was conducted

against a range of metrics including the weighted precision, recall, and F1 score, using a collected

dataset from 20 massively distributed networks within 60 days. By studying the optimized hyperparam-

eters of Segmented-FL and employing three evaluation methods, it shows that Segmented-FL has better

performance in all three types of intrusion detection tasks, achieving validation weighted F1 scores of

0.964, 0.803, and 0.912 with Method A, Method B, and Method C respectively. For each method, this

scheme shows a gain of 0.1%, 4.0% and 1.1% in performance compared with FL.

INDEX TERMS Cybersecurity, deep learning, intrusion detection, segmented-federated learning, LAN,

convolutional neural network.

I. INTRODUCTION

NETWORK intrusion detection strategies existing in

current systems have been revealing issues of low adap-

tivity to network traffic from various network environments.

A network monitoring system that has the ability to detect

and track malware in various networks is highly demanded.

The scheme of federated learning (FL) was first proposed

by Google to solve problems of data scarcity and privacy

in the field of machine learning [1]. This scheme has been

employed in applications such as image recognition, natural

language processing, cybersecurity, and so on. It showed

that by using this scheme, users could share intelligence on

a machine learning task with each other, whereas without

disclosing their raw data.

Despite the success of existing FL solutions [2], [3], in

NIDS, a network’s traffic data does not always fit into the

single global model of FL; some networks have similarities

with each other but other networks do not. In this article,

we propose a novel adaptive learning scheme of Segmented-

Federated Learning (Segmented-FL) (Fig. 1). We employ

periodic local model evaluation and segmentation for adap-

tive model training. Different from all users training a model

under the single global model at the central server in FL,

Segmented - FL has a feature that each segmented group of

users is arranged with a specified global model for adaptive

learning.

The Segmented - FL is utilized for parameter sharing

among participants as well as automatic segmentation of

participants thus adapting to massively distributed networks.

For each day, also called round, selected participants con-

duct local model training based on locally collected datasets.

Then the trained models are uploaded and aggregated in the
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FIGURE 1. Segmented-FL has multiple global models, each of which aggregates

local models of similar participants. E.g. since P1, P2, and P4 are similar; P3 and

P5 are similar, they are segmented into two groups belonging to Global Model A and

Global Model B respectively.

parameter server for updating a global model. The periodic

evaluation of local models is used to validate and divide them

into several groups for adaptive learning based on recent

performance in tasks of intrusion detection. If a model shows

a disadvantaged performance compared with the other mod-

els, it will be removed from the current group, and a new

group with an independent global model will be initialized.

Thus, from the next round, these participants will train their

local models using respective global models.

A deep convolutional neural network (CNN) is used as

the protocol for model training and sharing. We adopt

a combined approach of feature representation and expert

knowledge-based labeling of benign and malicious network

events to train an artificial neural network (ANN) model. The

trained models are used to detect malicious network events

in LANs, and enhance detection performance through ANN

model parameters sharing among group members.

The patterns of network traffic data for intrusion detection

are varying in large-scale network environments, with vari-

ous network scales, devices with different operating systems

and applications installed, and so on. For example, some

LANs have more than 1000 active users while some have

only a dozen users, showing different presence information.

Devices in these LANs are working on different operating

systems such as Windows, macOS, and Ubuntu, which reveal

different traffic patterns. Some LANs include the Internet of

Things (IoT) devices such as Web cameras and smart home

devices. Besides, the user groups could be different from

students in academic institutes to professionals in industries.

These reasons above contribute to the diversity of network

traffic patterns as well as the difficulty of intrusion detection

in large-scale distributed networks.

The research project of the LAN-Security Monitoring

Project aims to collect these varying real-time network traffic

data from massively distributed academic networks [4]. In

this project, a monitoring device was developed and deployed

in a network to collect traffic data. The collected data is saved

at a server for further analysis, including complete broadcast

traffic data in a local area network (LAN) and network traffic

sent directly to monitoring devices. A total of 38 institutes

have been participating with a monitoring device set up in

an office network or laboratory network. The data from this

project provided the basis of datasets used in the research

of Segmented-FL.

The challenges and contributions of the research include:

• For segmenting similar participants into the same group

with a respective global model, we propose Segmented-

FL for adaptive model learning and sharing.

• To understand the effect of key parameters of

Segmented-FL, we have conducted a comprehensive

survey on 27 combinations of them for exploiting the

optimized solution.

• For validating the model with diverse network traffic

data, we applied massively distributed networks’ real-

time traffic from various academic institutes.

• To compare the performance between FL and our

method, we have conducted evaluations against a range

of metrics, weighted precision, recall, and F1 score. It

shows that our method has better performance in intru-

sion detection with large-scale distributed networks.

This article is organized as follows. Section II discusses

related works on network intrusion detection and the appli-

cation of federated learning in cybersecurity. Section III

provides an overview of our method consisting of funda-

mental federated learning, intrusion detection with a com-

bined approach of visual analytics and CNN, and the

proposed Segmented-FL. Section III presents experiments

and performance evaluation against the metrics of weighted

precision, recall, and F1 score. Section V discusses the pros

and cons of this method. Section VI concludes this article.

II. RELATED WORK

Traditional approaches to network intrusion detection are

commonly related to matching between the database of

known malicious patterns based on expert knowledge

and network behavior in a network [5], [6], [7]. Many

NIDSs [8], [9] use a network-based activity study to deter-

mine if a node is compromised, such as traffic or frequency

analysis, and deep packet inspection. Unfortunately, these

approaches appear to be insufficient, with underlying issues

of adaptivity and privacy.

Recently, machine learning and neural networks have been

employed to strengthen the performance of network systems

for intrusion detection in personal computers and critical

infrastructures, such as support vector machine (SVM) and

artificial neural network (ANN) [10], [11]. Besides, due to

the rapid development of deep learning in recent years,

data analysis on big data of network traffic became fea-

sible and was employed in lots of research. For instance,

Salama et al. [12] presented an intrusion detection hybrid

scheme using deep belief network and SVM, recogniz-

ing the malicious network events. An evaluation based on

the NSL-KDD dataset was conducted, with a detection

accuracy of above 0.9. Yang et al. [13] adopted a com-

bined approach of using restricted Boltzmann machine to

extract high-level feature representation of network traffic

and classifying these features with SVM. Duy and Diep [14]

presented intrusion detection based on the NSL-KDD dataset,
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using a feedforward neural network. Their model achieved

an F1 score of 0.962 at last. Saxe and Berlin [15]

proposed a deep neural network-based malware detector

by employing two-dimensional binary program features.

Yousefi-Azar et al. [16] presented a generative feature

learning-based approach for malware classification, where

they extracted latent features of network traffic based on an

unsupervised learning model called autoencoder.

The aforementioned research on intrusion detection

aims to detect malware in limited network environments.

Detection strategies and results from one network usu-

ally could not be applied to other network environments.

Federated learning (FL) is a collaborative learning scheme

that allows users to share intelligence on machine learning

tasks with each other thus improving overall performance.

Different from centralized learning [17], FL allows users

to share local models instead of raw network traffic data,

which might reveal private information to the learning group.

There have been already lots of research on the application

of FL in cybersecurity and edge computing. For example,

Abeshu and Chilamkurti [2] proposed a cyberattack detection

model using FL to improve accuracy in detecting attacks.

It showed enhanced performance and privacy of participants

as well as reduced traffic load. Wang et al. [3] presented an

intrusion detection in simulated environments based on FL,

with a gradient descent-based learning function. Schneible

and Lu [18] demonstrated an application of FL in anomaly

detection, where autoencoder was employed for analytics

and observations. Zhao et al. [19] employed FL to tackle the

data scarcity problem and to preserve data privacy, where

multiple participants collaboratively train a global model.

Daga et al. [20] proposed Cartel, a system for collaborative

learning in edge clouds. The CICIDS2017 [21] Intrusion

Detection evaluation dataset was used, consisting of benign

data samples, distributed denial-of-service (DDoS) attacks,

and port scan attacks. Additionally, Yu et al. [22] presented

a Mobility-aware Proactive edge Caching scheme based on

Federated learning (MPCF) for predicting content popularity

with the private training data distributed on local vehicles.

This scheme could adapt to various mobility patterns and

references of vehicles and protect users’ privacy.

Different from former research, we propose Segmented-

FL for adaptive intrusion detection in large-scale massively

distributed networks. The proposed approach has a feature

that the scheme architecture is adjusted continually based on

periodic evaluation results of local models thus adapting to

varying traffic data in these network environments. A deep

CNN model is employed as the protocol ANN for collabora-

tive learning, using feature representation of network traffic

as the input, results from knowledge-based labeling as the

ground truth.

III. ADAPTIVE NETWORK INTRUSION DETECTION

BASED ON SEGMENTED-FL

A. FEDERATED LEARNING

Federated learning is a collaborative learning scheme for

users to share intelligence on model training with each other,

FIGURE 2. The architecture and mechanism of federated learning.

without sharing their private data. The intrusion detection

in networks could cause exposure of private information to

third-party entities while analyzing network traffic data for

tracking malicious users. The implementation of FL in intru-

sion detection allows network operators to detect malware

without accessing users’ private data.

The architecture and mechanism of FL for collaborative

learning by sharing local model training results is shown

below (Fig. 2).

In this graph, first, participants of FL download the latest

global model from the central server and update their local

models. Then, the selected users will conduct model training

based on a local dataset with varying numbers of data and

portions of different clusters. After training, these trained

local models will be uploaded to the server for aggregation.

As a result, based on the aggregated local parameters and

the former global parameters, the current global model is

updated for the next round’s collaborative learning.

B. INTRUSION DETECTION WITH A COMBINED

APPROACH OF VISUAL ANALYTICS AND A

CONVOLUTIONAL NEURAL NETWORK

To process network traffic for model training, we generated

feature maps representing communication patterns of vari-

ous network protocols by employing a quantitative approach

based on frequency information. These extracted information

of protocols includes IP, ARP, TCP, HTTP, HTTPS, UDP,

mDNS, DHCP, and Others. Fineness, a time window parame-

ter, which corresponds to generating a pixel value in a feature

map, was employed when extracting protocol information

from raw data. By studying varying fineness rates for the

efficiency of feature representation [23], we found a larger

time window would reveal more patterns of network traffic

in the feature map, while a smaller one would contribute to
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FIGURE 3. Protocol-wise feature representation of network traffic in a LAN based on

the Hilbert curve and array exchange.

the sensibility of the detection systems. Given the balance

between the pattern representation ability and the detection

sensibility, we selected 0.5 seconds as fineness for comput-

ing frequencies, recording how many packets related with

a specified protocol were sent or received within the defined

time window, thus generating a feature map.

Then a chunk of these records with a size of 256 for each

protocol was combined to generate communication patterns

related with these protocols. As a result, each generated

communication pattern covers network traffic features within

128 seconds, related with a specified protocol. The reason for

choosing a size of 256 is that the selected time window for

generating a pattern allows a network operator to respond to

these detected malicious behaviors timely. The relationship

between the time window for pattern generation and the

fineness rate is defined in (1).

T = Tst · fineness · s2 (1)

where T represents the time window for pattern generation,

Tst (Time Standard) represents the standard interval of one

second for generating a pattern, fineness represents the time

window for record generation thus controlling information

density in a pattern, and s represents the pattern size (side

length).

To combine every 256 records into a pattern, we converted

frequency information into pixel values by employing (2).

Then the Hilbert curve was used to generate a feature map,

which is a geometric structure used to transform the structure

of data so that it fills up all space in an image, by projecting

pixel information to specified positions in the Hilbert curve.

pi =
ci

Max(c)
· 255 (2)

where pi is pixel information, ci is frequency information,

and c represents all frequency information covered in a com-

munication pattern. Thus, ci
Max(c)

is in the interval of (0, 1],

and pi is in the interval of (0, 255].

By employing the array exchange, we aggregated these

generated feature maps of nine types’ protocols into one

feature map representing protocol-wise network traffic fea-

tures within 128 seconds in a LAN. Each generated feature

map has a size of 48 pixels × 48 pixels (Fig. 3).

FIGURE 4. The architecture of the four-layers CNN model.

To process these feature maps of network events, we

employed a supervised learning method of CNN (Fig. 4),

since the generated feature maps are two-dimensional

data with time-related information encoded. Considering pos-

sible training computation and transmitting time cost while

model sharing, we employed a four-layers CNN which con-

sists of two convolution layers each of which is followed

by a maxpooling layer, and two fully-connected layers. For

the first convolution layer, ten kernels which are used for

convolution operation with a size of 3 × 3 and a stride of

one were used. For the second convolution layer, ten kernels

with a size of 1×1 and a stride of one were used. The fully-

connected layer of hidden layers consists of 200 neurons,

and the output layer consists of one neuron for classifica-

tion between the benign and the malicious. The padding

with a value of one pixel was used in computation at each

convolution layer.

The learning function is used to update parameters of

weights and biases in the model, with the purpose of decreas-

ing prediction loss as much as possible. The RMSProp

defined in (3) was employed for the model training, which

has a characteristic that the emphasis is placed on the latest

gradient information more than the past gradient information

and gradually the past gradient information is forgotten,

instead, the new gradient information is greatly reflected.

The learning rate is used to control the step length for each

epoch’s update. Besides, the cross-entropy defined in (4) was

employed as the loss function to compute prediction loss for

updating.

ht = ρ ∗ ht−1 + (1 − ρ) ∗
∂L

∂Wt
⊙

∂L

∂Wt

Wt+1 = Wt − η
1

√
ht + ǫ

⊙
∂L

∂Wt
(3)

where L represents the loss, W represents the weight, η is

the learning rate, and ρ is a decay rate of RMSProp for

controlling the forgetting rate of past gradient information

which is usually set to a value of 0.9.

L = −
K

∑

k

tklogyk (4)

where K is the number of nodes at the output layer, k rep-

resents the kth node at the output layer, yk is the prediction

result, and tk is the ground truth.
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FIGURE 5. Periodical evaluation and segmentation: if a participant’s model fits into the current global model according to the result of evaluation module, they remain in the

group, but if the participant does not fit into the current global model, we move it to another group.

The Sigmoid function defined in (5) was used as the

activation function at the last layer for narrowing the output

into the range of (0, 1).

Sig(x) =
1

1 + e−x
(5)

where x is the computation results of the last layer, and

Sig(x) is the output of the Sigmoid function with numerical

values in the range of (0, 1).

C. SEGMENTED-FEDERATED LEARNING

Due to network environment diversity, a network’s traffic

data does not always fit into the single global model of

FL; some networks have similarities with each other but

others do not. We propose a novel adaptive learning scheme

of Segmented-FL (Fig. 5), to safeguard the data privacy

of participants as well as adapting to the various network

environments by employing multiple global models.

In detail, the periodical performance evaluation is used for

the quality verification of local model training in recent sev-

eral rounds, based on the evaluation module defined in (6).

By employing the average validation result as the metric,

we periodically evaluate the performance of each partici-

pant’s local model for training and sharing with the current

global model. If a participant’s model fits into the current

global model according to the result of evaluation module,

they remain in the group, but if the participant does not fit

into the current global model, we move it to another group.

If there is no group already created, a new group will be

initialized based on the average-aggregated result of them.

To decide whether a participant’s model fits into the current

global model, we apply a flexible threshold, and an eval-

uation result below the threshold represents it doesn’t fit.

Additionally, a relatively low threshold brings fewer partici-

pants for segmentation, whereas, a relatively high threshold

brings more participants to a new global model. The partic-

ipants moved into the new group conduct the next round’s

collaborative learning with the initialized global model. The

maximum number of possibly existing global models can be

set to five for the sake of simplicity.

di = Ei −
∑n

i=1
Ei

n

ei =
1

1 + e−di
threshold = 0.5 − hf × 0.01 (6)

where n is the number of participants, Ei represents the

average validation result of participant i in the recent several

rounds, di is the computation result of the difference between

participant i’s performance and the average performance of

all group members, ei is the output of the evaluation module

using the Sigmoid function to covert di into the interval of

(0, 1), and hf is the segmentation fineness to adaptively

adjust the threshold.

For the parameter aggregation to update a global model,

we applied the former global parameters, the average-

aggregated local parameters, and the average-aggregated
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Algorithm 1 SEGMENTED-FL

pg=1 is the initialized global model. Ng is the number of participants related
to global model g. Nt is the number of participants conducting local model
training in a group. Dt is the local dataset of participant t. G represents
all global models. ht is the number of rounds for periodic local model
evaluation. Lg is a list including segmentation information of participants.
B is the batch size. E is the local training epoch. η is the learning rate.
α, β and γ are the component ratios for aggregation. pnew is the newly
initialized global model from the segmentation.
1: Server executes:
2: initialize pg=1

3: for each round t = 1, 2, . . . do
4: for each global model g = 1, 2, . . . do
5: Bt ← (split Ng into batches with a size Nt)
6: st ← (participants conducting model training from Bt)
7: sr ← (the other participants not conducting model training)
8: for each participant t ∈ st in parallel do
9: Execute(pt , Dt)
10: for each participant r ∈ sr in parallel do
11: pr ← pg
12: pg ← Aggregate(pt , t ∈ st; pg, g ∈ G)
13: If t%ht == 0 do
14: for each participant k ∈ sg do
15: Ek ← avg(validation results of k in recent Re rounds)
16: Lg ← Segment(Ek , k ∈ sg; Lg)
17:Execute(pt,Dt):
18: pt ← pg
19: Db ← (split Dt into batches of size B)
20: for each local epoch i from 1 to E do
21: for batch b ∈ Db do
22: pt ← pt − η ▽ l(pt; b)
23: return pt to server
24: Aggregate(pt, t ∈ st; pg, g ∈ G):
25: Gothers ← (the other global models except for the current one)
26: pg ← α · pg + β · avg(pt, t ∈ st) +γ · avg(po, o ∈ Gothers)
27: return pg to server
28: Segment(Ek, k ∈ sg; Lg):
29: ek ← sigmoid(Ek − avg(Ek, k ∈ sg))
30: if ek < threshold
31: Lg (remove participants k from the current global model)
32: initialize pnew
33: Lg (attach k to the newly initialized global model pnew)
34: return Lg to server

parameters of the other global models with varying com-

ponent ratios, defined in (7).

pt = α · pt−1 + β ·
∑n

i=1
pi

n

+ γ ·
∑m

i=1
qi

m
(α + β + γ = 1) (7)

where pt represents the updated global parameters, pt−1

represents the former global parameters, pi represents

the average-aggregated local parameters, qi represents the

average-aggregated parameters of the other global models,

n is the number of participants who conducted local

model training in this round, and m is the number

of the other global models. α, β and γ represent the

ratios of each component respectively, with a sum

of 1.

Considering the balance of each component for the

update and the stability of Segmented-FL, we employed

0.1 as β, 0.01 as γ , and consequently (0.9 − 0.01 · m)
as α. The intact algorithm of Segmented-FL is shown as

Algorithm 1.

FIGURE 6. The massively distributed LANs applied in the experiments.

FIGURE 7. The scheme of local network traffic collection: a monitor device was

employed for collecting and transporting data in a LAN to the server.

FIGURE 8. Samples of the generated feature maps of network traffic.

IV. EVALUATION

A. EXPERIMENT SETTING

We adopted the experiment data of 20 participants from the

LAN-Security Monitoring Project (Fig. 6). In this project,

a device connected to a port of the switching hub or the

router was used for collecting network traffic in the LAN

(Fig. 7). Then the collected data was compressed, encrypted,

and transported to the central server daily. The collected

traffic data in a LAN includes broadcasts and direct traffic to

the device. The Network Time Protocol (NTP) was employed

for clock synchronization between a device and the server.

We studied and applied a total of 60 days’ network traffic

data from 20 participants’ LANs, from 1st October to 29th

November in 2019.

By employing the aforementioned visual analytics, we

generated the feature maps from collected network traffic

data (Fig. 8).

To evaluate the adaptivity of Segmented-FL in typical

applications, we have studied three types of virtual ground

truths. This is because we cannot obtain the actual ground

truth (i.e., manually labeled data) in the current phase.

However, if Segmented-FL could adapt to many virtually

generated ground truths, it says that it is possible to adapt
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FIGURE 9. The ratios of each type’s anomaly to all feature maps generated from network traffic data for each node.

TABLE 1. Knowledge-based labeling.

to the actual ground truth when we obtain manually labeled

data. We admit that a knowledge-based labeling method is

a general approach to label possibly malicious data, doesn’t

certainly fit all participants’ data. The employed three types

of knowledge-based labeling methods are shown in Table 1.

First, for Method A, SYN445 (TCP port 445) is used to

operate Server Message Block (SMB) directly over TCP/IP,

where SMB is used for file sharing. However, this port is

usually blocked or disabled. The TCP port 445 of a monitor

device was opened for luring underlying attacks through

SMB. Considering a deployed monitor device in a LAN

doesn’t possess a purpose of file sharing, detected SYN445 to

the monitor device would be malicious.

Second, for Method B of a TCP SYN flood attack, an

attacker usually sends repeated SYN packets to every port of

the target. The target receives multiple requests to establish

communication and responds to each request with an SYN-

ACK packet from each open port, unaware of the attack.

As the target’s connection overflows, requests from other

users would be denied, and the target could malfunction. As

a result, we extracted MAC addresses of users in a LAN

and considered the users sending three or more TCP SYN

for requesting a connection with another user in the LAN

during the time window of 128 seconds as malicious.

Finally, for Method C, unicast is communication where

information is sent from one point to another point directly

in a network, and UDP is used to send datagrams. However,

due to the monitor device not possessing a purpose of direct

datagram sharing with other users, UDP unicast communica-

tions to the monitor device would be considered malicious,

except for fundamental functions of DNS with a source port

of 53 and NTP with a source port of 123.

The ratios of results with each labeling method for 20 par-

ticipants are shown above (Fig. 9). The graph shows the

varying and imbalanced data compositions of participants.

The constitution of the generated dataset for Segmented-FL

is shown below (Table 2).

Then, we employed Segmented-FL and the four-layer

CNN as the basis of our scheme. The scheme conducted

collaborative learning on a daily basis, which means for each

round, participants conducted local model training based on

the same day’s data from the datasets. For each round,

a specific number of participants conducting local model

training were selected on a rolling basis. The reason for

the rolling basis is to eliminate the imbalance between

users’ training times, thus bringing to more precise model

evaluation and participant segmentation.

The batch learning method was applied, where the dataset

was partitioned into small chunks for training purposes.

Usually, a smaller batch size brings out a more satisfactory

model at a slower speed, in contrast, a larger one can speed

up the training process, albeit bringing out poorer training

results.
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TABLE 2. Dataset profile.

A dataset separating from the datasets for collaborative

learning was used to initialize the global model based

on the four-layers CNN model with a learning rate of

0.00001, a batch size of 200, and an epoch of five. The

dataset for initialization included 782 benign feature maps

and 1186 malicious feature maps, which were generated

from participant N001’s network traffic in September 2019.

Besides, for local model training, we applied a learning rate

of 0.00001, a batch size of 50, and an epoch of one. We

employed the dataset consisting of sixty days’ network traffic

data to conduct experiments. Since for each round, partic-

ipants applied data from one day, a total of sixty rounds’

adaptive collaborative learning were conducted based on the

dataset.

B. VARYING HYPERPARAMETERS OF SEGMENTED-FL

Precision, recall, and f1 score formed the basis of our metrics

for evaluating the performance of the scheme, defined as (8).

Precision shows the fraction of relevant feature maps suc-

cessfully classified among all data in the validation set; recall

shows the fraction of ones successfully classified among

existing relevant feature maps. And the f1 score shows over-

all performance. Besides, these metrics were weighted by

support, namely the number of true instances for each label,

to deal with data imbalance.

WeightP =
TP+ FN

TP+ FP+ TN + FN

WeightN =
TN + FP

TP+ FP+ TN + FN
Weighted − Precision

=
TP

TP+ FP
×WeightP +

TN

TN + FN
×WeightN

Weighted − Recall

TABLE 3. Varying hyperparameters of segmented-FL.

=
TP

TP+ FN
×WeightP +

TN

TN + FP
×WeightN

Weighted − F1 Score

=
2 ×Weighted − Precision×Weighted − Recall

Weighted − Precision+Weighted − Recall
(8)

where TP (True Positives) indicates the number of cor-

rect malicious network flows classified by the model in the

data, FP (False Positives) indicates the number of incorrect

malicious network flows classified in the data, TN (True

Negatives) indicates the number of correct benign network

flows classified by the model in the data, and FN (False

Negatives) indicates the number of incorrect benign network

flows classified in the data.

To optimize the scheme’s architecture, we experimented

with various hyperparameters to effect performance changes,

including the factor of selected participants, evaluation

frequency, and segmentation fineness (Table 3). Equation (9)

was employed to compute the number of participants for

local model training in a group from the factor parameter ht.

Nt = floor

(

max(N, ht)

ht

)

(9)
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FIGURE 10. Heatmaps of validation weighted F1 scores with various combinations of the hyperparameters.

where Nt is the number of participants for local model train-

ing, N is the total number of participants in the group, ht is

the factor parameter, max is a function to compute the max-

imum between N and ht, and floor is a function to obtain

the greatest integer less than or equal to the input.

We tuned a total of 27 combinations of the various hyper-

parameters for each labeling method. By comparing the

average validation weighted F1 score within the last sev-

eral rounds (according to the evaluation frequency, e.g., an

evaluation frequency of four brings the last four rounds’ aver-

age), we evaluated the performance of Segmented-FL. The

evaluation results for the three types of labeling methods are

shown above (Fig. 10). In addition, we applied the F1 score

as the metric for the periodic local model evaluation.

We employed the average evaluation results of 20 partic-

ipants in the last he rounds (the last evaluation cycle) as the

final performance. Based on the study on the performance

of Segmented-FL for various combinations of the hyper-

parameters, we selected an evaluation frequency of six,

a segmentation fineness of seven, and a factor of selected

participants for local model training of one. The aver-

aged validation results of 20 participants at each round of

Segmented-FL with the selected hyperparameters are shown

below (Fig. 11).

C. COMPARISON WITH FEDERATED LEARNING FOR

INTRUSION DETECTION IN MASSIVELY DISTRIBUTED

NETWORKS

We employed FL on the dataset with a factor of selected par-

ticipants for local model training of one, which is the same

as the selected hyperparameter of Segmented-FL. Then, the

metrics of weighted precision, recall, and F1 score were used

to evaluate the performance with the three knowledge-based

labeling methods. The average of the last six rounds’ evalua-

tion results was used as the final performance of FL. Besides,

considering the situation that for each round not all of the

participants would conduct local model training (ht �= 1), we

also studied the performance of FL and Segmented-FL when

the factor of selected participants was two. A comparison was

conducted between the performance of FL and the proposed

method, with the two different settings of hyperparameters

(Fig. 12).

As shown in the graphs, for each type of method, the

average weighted F1 score based on validation sets had an

increase. For Method B which showed relatively disadvan-

taged performance, the proposed method with the optimized

hyperparameters contributed an increase up to 4.0% in the

average weighted F1 score based on validation sets. When

the factor parameter ht was two, the gain rose to 4.8%.

That’s because a larger ht brought to fewer participants for

local model training at each round, contributing to a con-

siderable decrease in the performance of FL. For Method A

and Method C, though the obtained gains were not so large,

the increases in performance were still sufficient since they

showed relatively high validation scores. Secondly, data con-

stitution imbalance in the networks let the weighted metrics

put more emphasis on the validation results from benign

data with these two methods. The comparison result shows

Segmented-FL has better performance for intrusion detection

in large-scale massively distributed networks.

V. DISCUSSION

Segmented-FL has a feature of automatic architecture trans-

formation based on the periodic evaluation, thus adapting to

diverse data from massively distributed networks. Compared

with FL, it showed more adaptability to collaborative learn-

ing with imbalanced and diverse data. The labeling methods

110 VOLUME 2, 2021



FIGURE 11. The averaged validation results of 20 participants at each round of

Segmented-FL with the optimized hyperparameters.

employed were based on network traffic patterns within

a small time slot of 128 seconds, which allowed us to detect

malicious behavior precisely. Besides, the visualization of

network traffic by feature maps provided more explainability

for the detection of malicious behavior.

Several considerations of future improvement of the

scheme include: a feature map was generated based on

FIGURE 12. A comparison between the performance of FL and Segmented-FL

against a range of metrics including weighted precision, recall, and F1 score, when

applying the two different hyperparameter settings.

frequency information of several network protocols, how-

ever, other information such as packet length and payload

size could also include hidden features of malicious behav-

iors; the experiment traffic data was observed by a normal

host connected to a LAN (broadcasts and direct packets),

hence, a combination with upstream captured network traf-

fic would provide more insights into underlying malicious

traffic features; α, β, and γ were employed to represent the

ratio of each component for aggregation, further discussion

on these parameters could be considered.

VI. CONCLUSION

We proposed Segmented-FL to solve the problem of

a network’s traffic data not always fitting into the single

global model of FL situation. This research is focusing on

the study of how Segmented-FL works for intrusion detection

in real-world massively distributed LANs. By studying the

optimized hyperparameters of Segmented-FL and employ-

ing three evaluation methods, the validation result shows

that Segmented-FL has better performance in all three types
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of intrusion detection tasks, achieving validation weighted

F1 scores of 0.964, 0.803, and 0.912 with Method A, Method

B, and Method C respectively. For each method, this scheme

shows a gain of 0.1%, 4.0% and 1.1% in performance

compared with FL.
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