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Abstract Uncertainties inherent in customer demands make it
difficult for supply chains to achieve just-in-time inventory re-
plenishment, resulting in loosing sales opportunities or keeping
excessive chain-wide inventories. In this paper, we propose two
adaptive inventory-control models for a supply chain consisting
of one supplier and multiple retailers. The one is a centralized
model and the other is a decentralized model. The objective of
the two models is to satisfy a target service level predefined for
each retailer. The inventory-control parameters of the supplier
and retailers are safety lead time and safety stocks, respectively.
Unlike most extant inventory-control approaches, modelling the
uncertainty of customer demand as a statistical distribution is
not a prerequisite in the two models. Instead, using a reinforce-
ment learning technique called action-value method, the con-
trol parameters are designed to adaptively change as customer-
demand patterns changes. A simulation-based experiment was
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performed to compare the performance of the two inventory-
control models.

Keywords Adaptive inventory control · reinforcement
learning · simulation · supply chain

1 Introduction

In supply-chain management, the effort of minimizing total costs
in terms of reduction in chain-wide inventory has been increas-
ingly addressed and attempted in industry. During the last two
decades, however, achieving this objective has been more dif-
ficult, as customer demands become more diverse and the life
cycles of products are shorter. In most cases, due to unpre-
dictable customer needs and economic situations, customer de-
mands fluctuate with time, showing nonstationary patterns. Un-
certainties inherent in customer-demand patterns make it difficult
to satisfy customer demands in just-in-time (JIT) mode, resulting
in loosing sales opportunities or keeping excessive chain-wide
inventories.

In modelling inventory-control problems, it is not practical to
assume that customer demands during a period are known a pri-
ori in the form of a constant or a statistical distribution. In this
respect, adaptive inventory control in supply-chain management
should be addressed. By adaptive, we mean that the control pa-
rameters of inventory-control models are dynamically adjusted
toward satisfying a target service level with the consideration of
the nonstationarity of customer demand. The target service level
means the percentage of customer demands that have to be satis-
fied during the time interval between order placement time and
inventory replenishment time. This time interval is commonly
called lead time.

In this paper, we deal with a two-echelon supply-chain sys-
tem consisting of one supplier and multiple retailers. The cus-
tomer demand process is assumed to be nonstationary and un-
known. By a nonstationary demand process, we mean that the
mean and variance of the demand distribution changes with time.
It is assumed that the supplier’s orders are always satisfied after
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a constant lead time from a perfectly reliable single outside
source. It is also assumed that, for each retailer, transportation
lead time from the supplier to the retailer is given as a constant.
However, the retailers’ actual lead times are not constants unless
the supplier has enough inventory to meet the retailers’ orders.
Finally, if customer demands are not satisfied at sales points of
time, the demands are treated as lost sales.

In this environment, we propose two adaptive inventory-
control models for the supply chain: a centralized model and
a decentralized model. In both models, the supplier makes use of
on-line information about the retailers’ inventory status in decid-
ing his order placement time. The goal is to make the average of
service levels during lead times as close as possible to a prede-
fined target service level. We assume that the order size of each
retailer is predetermined based on the capacity of the delivery
system. Therefore, associated decisions are concerned with when
the retailers’ inventories are replenished. The control parameters
of the two models determine the inventory replenishment times.

The centralized inventory-control model is similar to the
vendor-managed inventory model [1], in the sense that the re-
tailers no longer control their inventory replenishment times.
Instead, the supplier is responsible for maintaining appropriate
inventory levels of the retailers. In more detail, at each dis-
crete inspection time, the supplier collects data on each retailer’s
inventory position (on-hand inventory plus ordered quantity in
transition) and sales history. With the data, the supplier makes
use of a linear time-series model to predict the time point at
which the inventory position of the retailer is anticipated to drop
down below zero at first. If the time interval between the inspec-
tion time and the predicted time is approximately close to total
lead time (supplier’s lead time + retailer’s transportation lead
time + safety lead time), then the supplier places an order for
the retailer. In this paper, we call this inventory-control rule a
JIT delivery policy. As soon as the supplier receives the ordered
quantity from the outside source, he sends the quantity directly
to the retailer without keeping it in his warehouse. As a conse-
quence, the inventory level of the supplier becomes completely
zero. The safety lead time is a time buffer and is traditionally
used for coping with demand uncertainty during lead time. In
the centralized model, it is a control parameter to adjust the ser-
vice level of the retailer in a nonstationary demand situation. The
safety lead time exists for each retailer.

In the decentralized inventory-control model, each retailer is
allowed to adaptively set safety stock by reflecting the nonsta-
tionarity of demand. Just as for the safety lead time, the safety
stock is an inventory buffer to cover demand uncertainty during
lead time. Once the safety stock is decided, the retailer forecasts
demand during its transportation lead time at each inspection
time. If, at a certain inspection time, demand during the trans-
portation lead time plus safety stock is very close to its inventory
position observed at the inspection time, the retailer places an
order to the supplier.

The supplier also makes use of the safety stock set by the
retailer. The operational mechanism of the supplier in the decen-
tralized model is almost the same as the JIT delivery policy in the
centralized model. That is, at each inspection time, the supplier

predicts the time point at which the inventory position of the re-
tailer is anticipated to drop below the safety stock at first. If the
time interval between the inspection time and the predicted time
is approximately close to total lead time, then the supplier places
an order for the retailer. However, unlike the centralized model,
after the supplier receives the ordered quantity from the outside
source, he keeps the quantity in his warehouse until the retailer
actually places an order. In the decentralized model, safety stock
and safety lead time are control parameters.

Using a reinforcement learning technique, the control param-
eters of the two models are designed to adaptively change. The
reinforcement learning technique employed in this research is
called the action-value method [2], which is suitable to heuris-
tically solve sequential optimization problems in uncertain en-
vironments. A representative domain appropriate for applying
the action-value method is the stochastic optimization problem,
where the value of each action is not known but should be
learned through repetitive applications of the action in a real
or simulated domain. The main advantage of the reinforcement
learning is that it is possible to make good decisions while the
learning is progressing. In this respect, reinforcement learning
would be appropriate for applying to real-time control problems.

Specifically, at each decision point of time, one of the pos-
sible actions is selected based on a probabilistic function of their
value estimates. In minimization problems, it is desirable to give
more opportunity of being selected to the actions with low value
estimates. This idea can be incorporated into the following prob-
abilistic action selection rule:

P{new action = a} = e−ValueEstimate(a)

∑

ai∈AS
e−ValueEstimate(ai )

(1)

where AS is the set of possible actions. Because the numerator,
e−ValueEstimate(a), in Eq. 1 increases as the value estimate of the
action ValueEstimate(a) decreases, the action with the lowest es-
timated value would be selected with the highest probability. The
denominator is a normalization term to make the action selection
rule be a probability function.

The result of the selected action (current value) is then used
for learning its objective value. The learning formula we employ
is called the exponential recency weighted average (pp. 37, Sut-
ton and Barto [2]) and can be defined as

NewValueEstimante ← OldValueEstimate

+StepSize[CurrentValue −OldValueEstimate] (2)

Each time a specific action is performed, its new value estimate
is updated by adding an error (weighted difference of the current
value and the old estimate) to the old estimate. The error indi-
cates a desirable direction to which the value estimate moves.
StepSize is a learning parameter that decides learning speed. It
is normally set to a constant, such as 0.1, which has been ex-
perimentally verified to be desirable, especially in nonstationary
environments (pp. 39, Sutton and Barto [2]). At the next decision
point of time, a new action is chosen according to the probabilis-
tic rule with the updated value estimate, and this procedure is
repeated until the end of the decision horizon is reached.
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Fig. 1. Inventory replenishment time and order cycle in periodic inspection
system

In the context of the problem discussed in this paper, the ac-
tion corresponds to a control parameter (safety stock or safety
lead time). As shown in Fig. 1, for each retailer, the decision
point of time implies inventory replenishment time. The time in-
terval between two consecutive inventory replenishment times
is called an order cycle. When a new safety stock is selected
at an inventory replenishment time, the service level during the
lead time is measured at the end of the order cycle. The re-
sult of the safety stock is then defined as the absolute deviation
of the service level from a target service level. After that, the
value estimate of the safety stock is updated according to Eq. 2.
The NewValueEstimate in Eq. 2 means the weighted average of
the absolute deviations of service levels during lead times from
the target service level. Therefore, as learning progresses, safety
stocks with low service-level deviations will be given high selec-
tion probabilities.

The remainder of this paper is organized as follows. In
Sect. 2, we review extant inventory-control methods relevant to
our models. In Sect. 3, we present the two inventory control
models. In Sect. 4, we present the results of a simulation-based
performance evaluation. Finally, in Sect. 5, we conclude this re-
search and remark on some future research areas.

2 Literature survey

Related to adaptive inventory control in supply chains, most pre-
vious research efforts have been occurred in the mathematical
production control area [3–6]. With the objective of minimizing
total sum of inventory costs, they formulate the inventory-control
problem as a dynamic programming model and adaptively es-
timate the uncertain parameters of demand distribution using
demand history. While the rigorous optimization models show
some mathematical convergence results in stationary demand
cases, it is unsupported in many applied contexts in which cus-
tomer demand processes are nonstationary.

The idea of our approach is similar to Packer [7]. He consid-
ered the (Q, R) inventory policy in single-site inventory-control
problems. He suggested a way of taking advantage of using de-

mand history to decrease inventory-related costs. Specifically,
order quantity Q is calculated with the economic order quantity
(EOQ) model, for which average demand rate is estimated by the
exponential smoothing formula. Then the average demand dur-
ing lead time and a predetermined safety-stock factor are used
for setting reorder point, R.

Moinzadeh [8] proposed a supplier replenishment policy in
which an order is placed to the outside source immediately after
a retailer’s inventory position reaches R + s. Thus, s, in a sense,
gauges the proactivity of the supplier from information availabil-
ity. He computationally derived the optimal s under the assump-
tion that customer demand at the retailers is Poisson.

Recently, a few distributed inventory-control models have
been proposed. Axsater [9] applied the Stackelberg game model
to the decentralized control of a multiechelon inventory system
consisting of a central warehouse and multiple retailers. Also, by
employing penalty cost concepts, Andersson et al. [10], Lee and
Whang [11] and Cachon and Zipkin [12] attempted to distribute
decision-making rights to the participants in a supply chain while
enforcing each participant to respect others’ costs. However, all
of them analytically solved the distributed problems under the
assumption that the customer demand distribution is known.

Zhao et al. [13] proposed a retailer’s early order commit-
ments rule in a decentralized supply chain for enabling sup-
pliers to smooth production, better utilize resources and ulti-
mately reduce costs in the whole supply chain. They investigated
the impact of the early-order commitment rule and forecasting
models on the supply-chain performance under different scenar-
ios of demand patterns and supplier’s capacity tightness. Zhao
and Xie [14] also examined the impact of forecasting errors on
the value of information sharing between a supplier and retailers.
They experimentally showed that, although information sharing
gives benefits to the supplier, in most cases, it increases the re-
tailers’ costs. This phenomenon becomes more distinctive as the
magnitude of the forecasting error increases.

Finally, a reinforcement learning approach was recently ap-
plied to a coordination and integration problem of multinational
corporations with emphasis on logistics and production man-
agement [15]. The problem was formulated as a semi-Markov
decision model and solved via a reinforcement learning tech-
nique called Q-learning.

3 The inventory-control models

3.1 Notations

We define the following notations to explain the two inventory-
control models.

L0 : lead time of supplier
Li : transportation lead time of retailer i (i = 1, 2, . . . , N)
Di(t) : customer demand of retailer i at inspection time t
Qi : order quantity of retailer i
sij : jth safety factor of retailer i in the centralized model
stij : safety lead time of the supplier when safety factor sij is

applied in the centralized model
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σ̂ε(t) : standard deviation of forecast errors estimated at in-
spection time t

SL(sij ) : average service level of retailer i when safety factor sij

is applied
sr

ij : jth safety factor of retailer i in the decentralized model
ssr

ij : safety stock of retailer i when safety factor sr
ij is applied

in the decentralized model
ss

ij : jth safety factor of the supplier in the decentralized
model

sts
ij : safety lead time of the supplier when safety factor sij is

applied in the decentralized model

3.2 The centralized model

3.2.1 The JIT delivery policy

The supplier monitors the inventory position of retailer i (i =
1, 2, . . . , N) and sales history at each discrete inspection time.
With the sales history data, the supplier updates linear time se-
ries model D̂i(t ′) = a0 +a1t ′. This model is used for estimating
the amount of customer demand at future time t ′. In the model,
coefficients a0 and a1 are also updated using the exponential
smoothing method (see Brown [16] for detailed update formula).

At each inspection time t, the inventory position of retailer i
at future time t ′ is defined as the inventory position observed at
the inspection time t minus the sum of the estimated demands
during the time interval between the inspection time t and the fu-
ture time t ′. Now suppose that the future time t ′ is set to the time
at which the inventory position of retailer i falls to zero. Then the
JIT delivery policy can be briefly stated as follows:

At inspection time t, if {(the time t ′ that the time series model

predicts the inventory position of retailer i reaches its zero) − t}
≤ L0 + Li + stij , then the supplier issues an order

of Qi to the outside source. (3)

3.2.2 Adaptive control of safety lead time

If the demand process is stationary and its variance is very small,
the forecasting model will accurately estimate demand during
the total lead time. As a result, the JIT policy can replenish retail-
ers’ inventories at the time the inventory positions of retailers are
close to zero. However, a problem arises if the retailers encounter
sudden genuine changes in the underlying demand processes in
terms of the changes of mean and (or) variance, resulting in the
overestimation (or underestimation) of the demand. For example,
suppose that, for retailer i, demand during the total lead time is
underestimated. Then the ordered quantity triggered by the JIT
policy will be delivered to the retailer after the retailer’s inven-
tory becomes a minus level, resulting in significant loss of sales.
Therefore, it is necessary to expedite the order process. On the
other hand, if the demand is overestimated, the order process
should be delayed in order to avoid holding more inventory than
needed. Of course, forecasting errors can be reduced to some ex-
tent with more sophisticated time series models. However, the

models cannot fundamentally resolve the problem of forecasting
errors generated due to the change of demand process.

Safety lead time can adjust order placement time. For ex-
ample, suppose that demand is underestimated. In this case, as
shown in Fig. 2a, adding a positive safety lead time to actual lead
time (supplier’s lead time + retailer’s transportation lead time)
enforces the JIT policy to place an order earlier than the policy
without the safety lead time. Because the delivery of an ordered
quantity takes the actual lead time, the JIT policy considering
positive safety lead time brings the effect of expediting the order
process. Similarly, forecasting with a negative safety lead time
will delay order processes, and this is effective when demand is
overestimated (see Fig. 2b). The reinforcement learning formu-
las in Eq. 1 and Eq. 2 are used for determining appropriate safety
lead time.

In general, the safety lead time can be obtained from a mul-
tiplication function of lead time and forecast error [17]. Let
Si = {si1, si2, . . . , sik} is the set of safety factors for retailer i, in
which some sij , j = 1, 2, . . . , k, may have negative values. Then
as shown in Fig. 3, at inventory replenishment time t, safety lead

Fig. 2. The role of safety lead time in the JIT delivery policy
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Fig. 3. Derivation of supplier’s safety lead time

time stij corresponding to safety factor sij can be derived from

Find stij such that

t+stij∑

t ′=t

D̂i(t
′) = sij × σ̂ε(t)× (L0 + Li)

where estimated standard deviation of forecast errors σ̂ε(t) is
commonly approximated as 1.25× mean absolute deviation (see
Brown [16] for detailed justification about the approximation).

Suppose that some sij is selected at an inventory replenish-
ment time and an order for retailer i is placed at inspection time
t according to the JIT policy specified in Eq. 3. The ordered
quantity will be delivered to retailer i at time t + L0 + Li . Then
average service-level estimate of sij , SL(sij ), is updated by the
following reinforcement learning rule:

SLnew(sij ) = SLold(sij )

+StepSize[service level during (t, t + L0 + Li)

− SLold(sij )] (4)

If SLnew(sij ) moves to target service level, then sij can be re-
garded as an appropriate safety factor for the current demand
pattern. Hence, the selection chance of sij at the next inventory
replenishment time should be increased. To reflect this idea, the
next safety factor is determined according to the following rule:

P{new safety factor = sij } = e−(SLnew(sij )−TSL)2

∑

k
e−(SLnew(sik)−TSL)2 (5)

where TSL is a target service level.
The completed inventory-control procedure of the central-

ized model is explained as follows:
Supplier

Step 0. The supplier selects safety factor sij initially for each re-
tailer i (i = 1, 2, . . . , N).

Step 1. At inspection time t, if order placement condition 3 is sat-
isfied for retailer i, then the supplier issues an order of
size Qi to the outside source.

Step 2. If the ordered quantity, Qi , has arrived from the out-
side source, then the supplier immediately delivers Qi to
retailer i.

Step 3. After retailer i receives the ordered quantity, Qi (inven-
tory replenishment time), the supplier updates SLnew(sij )

according to the learning formula in Eq. 4. The next
safety factor is selected according to the probabilistic rule
in Eq. 5. Set sij = the next safety factor. Go to Step 1.

Retailer
Do nothing.

3.3 The decentralized model

In this model, the supplier and retailers are allowed to control
safety lead time and safety stocks, respectively. Detailed control
procedures of the safety stock and safety lead time are as follows.

3.3.1 The retailers

Retailer i (i = 1, 2, . . . , N) places an order to the suppler when
the inventory position reaches its reorder point. The reorder point
is controlled by safety stock. If service levels during successive
lead times are much lower than target service levels, retailer i sets
its reorder point high by adding large amounts of safety stock,
which results in the expedition of the order process. On the other
hand, in the case that service levels during successive lead times
are higher than the target service level, the reorder point is set to
a low one by adding a small amount of safety stock.

In general, safety stock is used for covering the variation of
demand during the retailer’s lead time. Under the assumption
that lead time is fixed, safety stock is commonly given as

Safety stock = safety factor

× estimated standard deviation of forecast error

× retailer’s lead time

In the decentralized model, however, retailer i’s lead time is not
fixed. Rather, it is equal to its transportation lead time plus wait-
ing time incurred in the case that the supplier has not enough
inventory to satisfy retailer i’s order. Due to this problem, we
approximate safety stock of retailer i as

Safety stock ≈ safety factor

× estimated standard deviation of forecast error

× (the latest actual lead time of retailer)β

where unknown actual lead time is replaced by a function of
the latest actual lead time and β measures the rate at which the
safety stock increases as the latest actual lead time increases.
(See Bernard [17] for the detailed role of β in determining safety
stock.)

Suppose that the jth safety factor of retailer i, sr
ij , is selected

at inventory replenishment time t. The corresponding safety
stock ssr

ij is given as sr
ij × σ̂ε(t)× (the latest actual lead time of
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retailer)β . Then retailer i places an order if the following condi-
tion is satisfied:

At inspection time t, if

{estimated demand during[t, t + transportation lead time of

retailer i] + safety stock ≥ inventory position of retailer i},

then retailer i places an order of Qi to the supplier. (6)

After retailer i receives the ordered quantity at inventory replen-
ishment time t, SL(sr

ij ) is updated as

SLnew(sr
ij ) = SLold(sr

ij )

+StepSize
[
service level during(t, t + La

i )

− SLold(sr
ij )

]
(7)

where La
i is the time interval between order placement time and

the time at which the inventory of retailer i is replenished (ac-
tual lead time). After that, the next reorder point is determined
according to the probabilistic rule in Eq. 5.

The operational steps of retailer are as follows:
Retailer

Step 0. Retailer i selects a safety factor sr
ij initially.

Step 1. At inspection time t, set reorder point according to Eq. 6,
and retailer i places an order if its forecasted inventory
position reaches the reorder point.

Step 2. After retailer i receives the ordered quantity, Qi , update
service level according to Eq. 7. Select the next safety
factor according to the probabilistic rule in Eq. 5. Set
sr

ij = the selected safety factor. Go to Step 1.

3.3.2 The supplier

In the decentralized model, the supplier’s inventory-control pol-
icy is almost the same as the JIT policy in the centralized model.
However, the objective functions of the supplier in both models
are different. While the supplier’s objective in the centralized
model is to meet target customer service levels set by the retail-
ers, in the decentralized model, it is to satisfy the retailers’ orders
without delay. In other words, the supplier’s role in the decentral-
ized model is to make the retailers’ actual lead time as close as
possible to their transportation lead times, for which safety lead
times are needed. The retailers control customer service levels
with safety stocks.

For retailer i, the supplier forecasts the time point t ′ at which
the inventory position of retailer i is anticipated to drop down
below its safety stock at first. If the time interval between the cur-
rent inspection time t and the forecasted time t ′ is approximately
close to the total lead time (supplier’s lead time + retailer’s trans-
portation lead time + safety lead time), then the supplier places
an order for retailer i. This JIT delivery rule can be represented
as

At inspection time t, if

{(the time t ′ that the time series model predicts the inventory

position of retailer i reaches its safety stock) − t}
≤ L0 + Li + sts

ij ,

then the supplier issues an order of Qi to the outside source.

(8)

Because the objective of the supplier is to deliver the ordered
quantity without delay to retailer i whenever he places an order,
the service level of the supplier can be defined as

SLnew(ss
ij ) = SLold(ss

ij )+StepSize[max(0, arrival time of

ordered quantity from the outside source to the

supplier − retailer’s order placement time)

− SLold(ss
ij )] (9)

Also, the safety factor selection rule is modified as

P{new safety factor = ss
ij } = e−SLnew(ss

ij )
2

∑

k
e−SLnew(ss

ik)
2 (10)

The detailed operational steps of the supplier are as follows:
Supplier

Step 0. The supplier selects safety factor ss
ij initially for each re-

tailer i (i = 1, 2, . . . , N).
Step 1. At inspection time t, if the retailer i’s inventory replenish-

ment condition 8 is satisfied, then the supplier issues an
order of Qi to the outside source.

Step 2. If the ordered quantity Qi is arrives from the outside
source and retailer i does not place an order yet, keep Qi

in his warehouse. Otherwise, deliver Qi to retailer i.
Step 3. After retailer i receives the ordered quantity, Qi , the re-

tailer updates the service level according to Eq. 9. Then
the supplier selects the next safety factor according to the
probabilistic rule in Eq. 10. Set ss

ij = the next safety fac-
tor. Go to Step 1.

4 Simulation-based experiment

4.1 Simulation environment

The simulated supply chain consists of one supplier and four
retailers. Different customer-demand processes are assumed for
each retailer. The time interval for inspecting the retailers’ inven-
tory position and customer demands is set at 1 day. The length of
a simulation run is 5,000 days, and the simulation result obtained
from the first 500 days is excluded in measuring the service level
in order to minimize the transient effect of the simulation run.
Given a specific demand process for each retailer, 20 simulation
runs were performed and their averages measured.

Two types of demand process patterns are considered: station-
ary demands and nonstationary demands. In the case of station-
ary demands, a normal distribution with mean 50 demands/day
and standard deviation 10 demands/day is applied. On the other
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hand, in the case of nonstationary demands, the mean of the nor-
mal distribution is designed to change at every random inter-
val T according to the rule of meanj = meanj−1 + slope. In this
rule, slope and T are randomly created by uniform distributions
U(−sm, sm) and U(tu/2, tu), respectively. sm and tu character-
ize the nonstationarity of demand processes. In this experiment,
we set the two parameters as

Low mean variation (LMV) : sm = 1.0 and tu = 30

Medium mean variation (MMV) : sm = 2.0 and tu = 15

High mean variation (HMV) : sm = 4.0 and tu = 8 .

The coefficient of variation (CV) is also taken into account in
the performance evaluation, where the coefficient of variation
is defined as the standard deviation divided by the mean. Be-
cause mean demand changes with time, performance evaluation

Fig. 4. Sample paths of retailer’s service level (sta-
tionary demand process and supply chain consist-
ing of one supplier and one retailer)

with a fixed CV implies the change of the standard deviation of
demand. Three coefficients of variation are chosen: CV = 0.1,
CV = 0.15, and CV = 0.2.

The supplier’s lead time and retailer’s transportation lead
times are set to 3 and 2 days, respectively. The target service level
is set to 95%. Finally, in the two models, the safety factor of the
supplier is allowed to have integer values in the range of [−3, 3].
In the decentralized model, the safety factor range of the retail-
ers is set to [3, 6] with increment 0.2 (See Bernard [17] for the
justification of the safety factor ranges.)

4.2 Results and analysis

Figure 4 shows simulation results for the case of a stationary de-
mand process. In this case, one retailer is assumed. The plotted
data in the figure are the service levels of the retailer collected at
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inventory replenishment times. As shown in the figure, the two
inventory-control models rapidly approach the 95% target ser-
vice level and do not significantly deviate from the target service
level.

From the aspect of service-level stabilization, however, we
can know that the centralized model shows a more stabilized
service level than the decentralized model. This result also ex-
perimentally supports the argument that, in most cases, decision-
making by a central controller produces better results than de-
centralized decision making. If the central controller is able to
access information on participants in a system, then it is able
to coordinate them toward achieving their global objective. On
the other hand, pure decentralized controllers are only concerned
with their local objectives, which are frequently inconsistent with
global objectives.

However, if local controllers in a decentralized system work
together according to a global coordination mechanism, it is not
impossible for them to generate globally good solutions. This is
shown in the decentralized case of Fig. 4. Although, in the decen-

Fig. 5. Averages of four retailers’ service levels
generated by centralized model (CM) and decen-
tralized model (DM) with three different β values
(supply chain consisting of one supplier and four
retailers, nonstationary demand process with dif-
ferent combinations of mean demand variation and
coefficient of variation)

Fig. 6. Averages of four retailers’ service levels
(RSL) and supplier’s service levels (SSL) in decen-
tralized model with three different β values: supply
chain consisting of one supplier and four retailers,
nonstationary demand process with different com-
binations of mean demand variation and coefficient
of variation

tralized model proposed in this paper, the supplier and retailers
independently control their safety factors, the control objective
of the supplier is strongly related to that of the retailers. That
is, the supplier does not control its safety factor (or safety lead
time) for reducing its own inventory-related objective, but for
satisfying the orders issued by the retailers. This is an implicit
coordination mechanism between the supplier and retailers. Sup-
pose that the retailers find reorder points that can meet the target
service level. Then the global objective of satisfying the target
service level can be easily achieved provided the supply perfectly
replenishes retailer’s inventory without delay.

In the case of a nonstationary demand process, the service
levels of the four retailers are averaged for each combination
of nonstationarity factors (mean demand variation, coefficient
of variation) and plotted on a graph. Figure 5 shows the graph.
In the graph, the performance of the decentralized model is
also evaluated with different β values. As expected, the cen-
tralized model shows more stabilized results than the decentral-
ized model in all combinations of the nonstationarity factors.
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However, the performance of the decentralized model is not so
disappointing—its average service levels do not fall below 90%.

In Fig. 5, as demand nonstationarity increases (high mean de-
mand variation, high CV), the average service levels also show
increasing trends. This result can be explained based on the fact
that high-demand nonstationarity implies a large standard devia-
tion of demand, which enforces the safety stocks of the retailers
to increase, resulting in high reorder points. Therefore, the re-
tailers place orders more frequently than in stationary demand
situations in order not to lose sales opportunities.

If the supplier has sufficient inventory in advance to meet all
the retailers’ orders, then the service levels of the retailers may
reach 100%. However, because the supplier has to place orders
to the outside source, he cannot perfectly follow retailers’ efforts.
This argument can be verified in Fig. 6, where the supplier’s ser-
vice level decreases as demand nonstationarity increases. Finally,
in Fig. 6, we can observe the role of β. Note that safety stock is
affected by the formula to approximate the retailer’s actual lead
time. Because β is an exponential factor in the approximation
formula, large β values result in high safety factors.

5 Conclusions

In this paper, we deal with the inventory-control problem of
a two-echelon supply-chain system consisting of one supplier
and multiple retailers. To cope with the nonstationary demand
situation, we propose two adaptive inventory-control models,
with the assumption that the supplier is able to access on-line
information about customer demand, as well as the inventory
position of each retailer. By applying a reinforcement-learning
technique, the control parameters of the two inventory-control
models are designed to adaptively change as customer-demand
patterns change. A simulation-based experiment was conducted
to compare the performance of the two inventory-control models.
Finally, two important future research topics related to our ap-

proach are mentioned as follows: (1) extension of our approach
to multiechelon supply chains and (2) incorporation of adaptive
control of β in our approach.
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